51
|
Knerr P, van der Donk WA. Chemical synthesis and biological activity of analogues of the lantibiotic epilancin 15X. J Am Chem Soc 2012; 134:7648-51. [PMID: 22524291 PMCID: PMC3349288 DOI: 10.1021/ja302435y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Indexed: 01/30/2023]
Abstract
Lantibiotics are a large family of antibacterial peptide natural products containing multiple post-translational modifications, including the thioether structures lanthionine and methyllanthionine. Efforts to probe structure-activity relationships and engineer improved pharmacological properties have driven the development of new methods to produce non-natural analogues of these compounds. In this study, solid-supported chemical synthesis was used to produce analogues of the potent lantibiotic epilancin 15X, in order to assess the importance of several N-terminal post-translational modifications for biological activity. Surprisingly, substitution of these moieties, including the unusual N-terminal D-lactyl moiety, resulted in relatively small changes in the antimicrobial activity and pore-forming ability of the peptides.
Collapse
Affiliation(s)
- Patrick
J. Knerr
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
52
|
Oman TJ, Knerr PJ, Bindman NA, Velásquez JE, van der Donk WA. An engineered lantibiotic synthetase that does not require a leader peptide on its substrate. J Am Chem Soc 2012; 134:6952-5. [PMID: 22480178 PMCID: PMC3350211 DOI: 10.1021/ja3017297] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribosomally synthesized and post-translationally modified
peptides
are a rapidly expanding class of natural products. They are typically
biosynthesized by modification of a C-terminal segment of the precursor
peptide (the core peptide). The precursor peptide also contains an
N-terminal leader peptide that is required to guide the biosynthetic
enzymes. For bioengineering purposes, the leader peptide is beneficial
because it allows promiscuous activity of the biosynthetic enzymes
with respect to modification of the core peptide sequence. However,
the leader peptide also presents drawbacks as it needs to be present
on the core peptide and then removed in a later step. We show that
fusing the leader peptide for the lantibiotic lacticin 481 to its
biosynthetic enzyme LctM allows the protein to act on core peptides
without a leader peptide. We illustrate the use of this methodology
for preparation of improved lacticin 481 analogues containing non-proteinogenic
amino acids.
Collapse
Affiliation(s)
- Trent J Oman
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
Aided by genome-mining strategies, knowledge of the prevalence and diversity of ribosomally synthesized natural products (RNPs) is rapidly increasing. Among these are the lantipeptides, posttranslationally modified peptides containing characteristic thioether cross-links imperative for bioactivity and stability. Though this family was once thought to be a limited class of antimicrobial compounds produced by gram-positive bacteria, new insights have revealed a much larger diversity of activity, structure, biosynthetic machinery, and producing organisms than previously appreciated. Detailed investigation of the enzymes responsible for installing the posttranslational modifications has resulted in improved in vivo and in vitro engineering systems focusing on enhancement of the therapeutic potential of these compounds. Although dozens of new lantipeptides have been isolated in recent years, bioinformatic analyses indicate that many hundreds more await discovery owing to the widespread frequency of lantipeptide biosynthetic machinery in bacterial genomes.
Collapse
Affiliation(s)
- Patrick J Knerr
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
54
|
Chalón MC, Acuña L, Morero RD, Minahk CJ, Bellomio A. Membrane-active bacteriocins to control Salmonella in foods. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
55
|
Rouse S, Field D, Daly KM, O'Connor PM, Cotter PD, Hill C, Ross RP. Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb Biotechnol 2012; 5:501-8. [PMID: 22260415 PMCID: PMC3815327 DOI: 10.1111/j.1751-7915.2011.00324.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer.
Collapse
Affiliation(s)
- Susan Rouse
- Department of Microbiology Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
56
|
McKinnie SMK, Ross AC, Little MJ, Vederas JC. The solid phase supported peptide synthesis of analogues of the lantibiotic lactocin S. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20014g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four analogues of lactocin S, an antimicrobial lantibiotic peptide produced by Lactobacillus sakei L45, have been generated using solid phase peptide synthesis. These compounds show enhanced oxidative stability to atmospheric oxygen and provide information on structure–activity relationships.
Collapse
Affiliation(s)
| | - Avena C. Ross
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | |
Collapse
|
57
|
Puramattathu TV, Islam MR, Nishie M, Yanagihara S, Nagao JI, Okuda KI, Zendo T, Nakayama J, Sonomoto K. Enhanced production of nukacin D13E in Lactococcus lactis NZ9000 by the additional expression of immunity genes. Appl Microbiol Biotechnol 2012; 93:671-678. [PMID: 21904816 DOI: 10.1007/s00253-011-3563-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/25/2022]
Abstract
Nukacin D13E (D13E) is a variant of type-A(II) lantibiotic nukacin ISK-1 produced by Staphylococcus warneri ISK-1. D13E exhibited a twofold higher specific antimicrobial activity than nukacin ISK-1 against a number of Gram-positive bacteria. We previously reported the heterologous production of D13E in Lactococcus lactis NZ9000 under the control of nisin-controlled gene expression system. In this study, we demonstrated enhanced production of D13E by the additional expression of immunity genes, nukFEG. The nukacin ISK-1 immunity, conferred by the ABC transporter complex, NukFEG, and the lantibiotic-binding protein, NukH, was not overwhelmed by D13E. The additional NukFEG resulted in a fourfold increase in the immunity level of the strain and a 5.2-fold increase in D13E production. The additional NukFEGH-expressing strain with the highest D13E immunity showed reduced level of production. Further improvement in D13E production was achieved by using pH-controlled batch fermentation.
Collapse
Affiliation(s)
- Tijo Varghese Puramattathu
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Aydillo C, Avenoza A, Busto JH, Jiménez-Osés G, Peregrina JM, Zurbano MM. A Biomimetic Approach to Lanthionines. Org Lett 2011; 14:334-7. [DOI: 10.1021/ol203068s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Aydillo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| | - María M. Zurbano
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, U.A.-C.S.I.C., E-26006 Logroño, Spain
| |
Collapse
|
59
|
Heterologous expression and purification of the dehydratase NisB involved in the biosynthesis of lantibiotic nisin. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
60
|
Liu W, Chan ASH, Liu H, Cochrane SA, Vederas JC. Solid supported chemical syntheses of both components of the lantibiotic lacticin 3147. J Am Chem Soc 2011; 133:14216-9. [PMID: 21848315 DOI: 10.1021/ja206017p] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lantibiotics are antimicrobial peptides produced by bacteria. Some are employed for food preservation, whereas others have therapeutic potential due to their activity against organisms resistant to current antibiotics. They are ribosomally synthesized and posttranslationally modified by dehydration of serine and threonine residues followed by attack of thiols of cysteines to form monosulfide lanthionine and methyllanthionine rings, respectively. Chemical synthesis of peptide analogues is a powerful method to verify stereochemistry and access structure-activity relationships. However, solid supported synthesis of lantibiotics has been difficult due to problems in generating lanthionines and methyllanthionines with orthogonal protection and good stereochemical control. We report the solid-phase syntheses of both peptides of a two-component lantibiotic, lacticin 3147. Both successive and interlocking ring systems were synthesized on-resin, thereby providing a general methodology for this family of natural products.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | |
Collapse
|
61
|
|
62
|
Al-Mahrous MM, Upton M. Discovery and development of lantibiotics; antimicrobial agents that have significant potential for medical application. Expert Opin Drug Discov 2011; 6:155-70. [PMID: 22647134 DOI: 10.1517/17460441.2011.545387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Antimicrobial drug resistance is driving the need for novel therapeutics. Amongst the most promising antibacterial agents that are being investigated as replacements for current therapeutic antibiotics are antibacterial peptides, such as the lanthionine-containing peptide antibiotics (lantibiotics). AREAS COVERED This review focuses on the current methods used for discovery of potentially exploitable lantibiotics for medical applications and discusses relevant recent innovations that will have a positive impact on the discovery of useful lantibiotics. EXPERT OPINION Recent technological advances in a number of fields mean that increased research into the identification and characterisation of new lantibiotics is feasible. We need to increase our understanding of the various mechanisms of antibacterial action exhibited by lantibiotics and apply this knowledge to peptide engineering or novel practical applications. The advent of next-generation sequencing approaches now negate the need for extensive reverse genetics and employment of bioinformatics approaches is greatly assisting the identification of potentially useful inhibitors in the genomes of a range of clinically significant bacteria. These advances in genetic analysis and engineering will facilitate increased exploitation of lantibiotics in medical therapy.
Collapse
Affiliation(s)
- Mohammed M Al-Mahrous
- University of Manchester, School of Translational Medicine, Department of Medical Microbiology, Clinical Sciences Building, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK +44 1 161 276 8828 ; +44 0 161 276 8826 ;
| | | |
Collapse
|