51
|
Kong Y, Wang G, Chen X, Li L, Zhang X, Chen S, He Y, Hong G. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae. PLANT, CELL & ENVIRONMENT 2021; 44:3432-3444. [PMID: 33938007 DOI: 10.1111/pce.14078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Phosphate (Pi) and MYC2-mediated jasmonate (JA) pathway play critical roles in plant growth and development. In particular, crosstalk between JA and Pi starvation signalling has been reported to mediate insect herbivory resistance in dicot plants. However, its roles and mechanism in monocot-bacterial defense systems remain obscure. Here, we report that Pi starvation in rice activates the OsMYC2 signalling and enhances resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection. The direct regulation of OsPHR2 on the OsMYC2 promoter was confirmed by yeast one-hybrid, electrophoretic mobility shift, dual-luciferase and chromatin immunoprecipitation assays. Molecular analyses and infection studies using OsPHR2-Ov1 and phr2 mutants further demonstrated that OsPHR2 enhances antibacterial resistance via transcriptional regulation of OsMYC2 expression, indicating a positive role of OsPHR2-OsMYC2 crosstalk in modulating the OsMYC2 signalling and Xoo infection. Genetic analysis and infection assays using myc2 mutants revealed that Pi starvation-induced OsMYC2 signalling activation and consequent Xoo resistance depends on the regulation of OsMYC2. Together, these results reveal a clear interlink between Pi starvation- and OsMYC2- signalling in monocot plants, and provide new insight into how plants balance growth and defence by integrating nutrient deficiency and phytohormone signalling. We highlighted a molecular link connecting OsMYC2-mediated JA pathway and phosphate starvation signalling in monocot plant. We demonstrated that phosphate starvation promoted OsMYC2 signalling to enhance rice defence to bacterial blight via transcriptional regulation of OsPHR2 on OsMYC2.
Collapse
Affiliation(s)
- Yaze Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, China
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sangtian Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
52
|
Aslam MM, Karanja JK, Yuan W, Zhang Q, Zhang J, Xu W. Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:531-539. [PMID: 34174658 DOI: 10.1016/j.plaphy.2021.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency largely restricts plant growth and lead to severe yield losses. Therefore, identification of novel root traits to improve P uptake is needed to circumvent yield losses. White lupin (Lupinus albus) is a legume crop that develops cluster roots and has the high phosphorus use efficiency in low P soils. We aimed to investigate the association between cluster roots (CR) rhizosheath formation and P uptake in white lupin. Rhizosheath formation and P concentration were evaluated under four soil treatments. CR increased up to 2.5-fold of overall plant dry weight under SD-P compared to WW + P (control), partly attributable to variations in CR development. Our data showed that SD-P significantly increase rhizosheath weight in white lupin. Among the root segments, MCR showed improved P accumulation in the root which is associated with increased MCR rhizosheath weight. Additionally, a positive correlation was observed between MCR rhizosheath weight and P uptake. Moreover, high sucrose content was recorded in MCR, which may contribute in CR growth under SD-P. Expression analysis of genes related to sucrose accumulation (LaSUC1, LaSUC5, and LaSUC9) and phosphorus uptake (LaSPX3, LaPHO1, and LaPHT1) exhibited peaked expression in MCR under SD-P. This indicate that root sucrose status may facilitate P uptake under P starvation. Together, the ability to enhance P uptake of white lupin is largely associated with MCR rhizosheath under SD-P. Our results showed that gene expression modulation of CR forming plant species, demonstrating that these novel root structures may play crucial role in P acquisition from the soil. Our findings could be implicated for developing P and water efficient crop via CR development in sustainable agriculture.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Joseph K Karanja
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- State Key Laboratory of Agro-biotechnology in Chinese University of Hong Kong, Hong Kong Baptist University, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
53
|
Barragán-Rosillo AC, Peralta-Alvarez CA, Ojeda-Rivera JO, Arzate-Mejía RG, Recillas-Targa F, Herrera-Estrella L. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:e2107558118. [PMID: 34385324 PMCID: PMC8379931 DOI: 10.1073/pnas.2107558118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.
Collapse
Affiliation(s)
- Alfonso Carlos Barragán-Rosillo
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| | - Carlos Alberto Peralta-Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jonathan Odilón Ojeda-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| |
Collapse
|
54
|
Pandey BK, Verma L, Prusty A, Singh AP, Bennett MJ, Tyagi AK, Giri J, Mehra P. OsJAZ11 regulates phosphate starvation responses in rice. PLANTA 2021; 254:8. [PMID: 34143292 PMCID: PMC8213676 DOI: 10.1007/s00425-021-03657-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 06/01/2023]
Abstract
OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes.
Collapse
Affiliation(s)
- Bipin K Pandey
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Lokesh Verma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Ankita Prusty
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ajit Pal Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Poonam Mehra
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
55
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
56
|
Zhang J, Gu M, Liang R, Shi X, Chen L, Hu X, Wang S, Dai X, Qu H, Li H, Xu G. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. THE NEW PHYTOLOGIST 2021; 229:1598-1614. [PMID: 32936937 PMCID: PMC7820984 DOI: 10.1111/nph.16931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/03/2020] [Indexed: 05/20/2023]
Abstract
Plant Phosphate Transporter 1 (PHT1) proteins, probably the only influx transporters for phosphate (Pi) uptake, are partially degraded on sufficient Pi levels to prevent excessive Pi accumulation. Therefore, the basal/constitutive expression level of PHT1 genes is vital for maintaining Pi uptake under Pi-replete conditions. Rice (Oryza sativa) OsPHT1;1 is a unique gene as it is highly expressed and not responsive to Pi, however the mechanism for maintaining its basal/constitutive expression remains unknown. Using biochemical and genetic approaches, we identified and functionally characterised the transcription factors maintaining the basal/constitutive expression of OsPHT1;1. OsWRKY21 and OsWRKY108 interact within the nucleus and both bind to the W-box in the OsPHT1;1 promoter. Overexpression of OsWRKY21 or OsWRKY108 led to increased Pi accumulation, resulting from elevated expression of OsPHT1;1. By contrast, oswrky21 oswrky108 double mutants showed decreased Pi accumulation and OsPHT1;1 expression in a Pi-dependent manner. Moreover, similar to ospht1;1 mutants, plants expressing the OsWRKY21-SRDX fusion protein (a chimeric dominant suppressor) were impaired in Pi accumulation in Pi-replete roots, accompanied by downregulation of OsPHT1;1 expression. Our findings demonstrated that rice WRKY transcription factors function redundantly to promote Pi uptake by activating OsPHT1;1 expression under Pi-replete conditions, and represent a novel pathway independent of the central Pi signalling system.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| | - Ruisuhua Liang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xinyu Shi
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Lingling Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xu Hu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| |
Collapse
|
57
|
He Q, Lu H, Guo H, Wang Y, Zhao P, Li Y, Wang F, Xu J, Mo X, Mao C. OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:649-667. [PMID: 33128314 DOI: 10.1111/tpj.15061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Low soil phosphorus (P) availability is a major limitation for crop production. The molecular mechanisms underlying plant responses and adaptation to phosphate (Pi) deficiency are unclear. OsbHLH6 (hereafter bHLH6), an uncharacterized rice (Oryza sativa) Pi starvation response gene encoding a basic helix-loop-helix protein, was identified by yeast two-hybrid screening using the phosphate response repressor OsSPX4 (hereafter SPX4) as bait. bHLH6 is expressed in shoots and roots, and its expression is significantly induced in shoots by Pi deficiency. bHLH6 overexpression lines showed Pi accumulation and enhanced Pi starvation responses, including upregulation of Pi starvation-induced genes and longer root hairs. A bhlh6 mutant showed no significant phenotype variation at the seedling stage. A pull-down assay indicated that bHLH6 had higher binding affinity with SPX4 compared to OsPHR2; therefore, bHLH6 competitively inhibited the interaction of SPX4 and OsPHR2. SPX4 overexpression rescued the Pi accumulation caused by bHLH6 overexpression under high- and low-P conditions. Moreover, overexpression of bHLH6 in an spx4 background did not affect the Pi content of spx4 under high- and low-P conditions. The bhlh6 spx4 double mutant showed lower shoot Pi concentrations and transcript levels of OsPT3 and OsPT10 compared with the spx4 mutant under high-P conditions. RNA sequencing results indicated that bHLH6 overexpression and spx4 mutant lines share many differentially expressed Pi-responsive genes. Therefore, bHLH6 is an important regulator for Pi signaling and homeostasis which antagonizes SPX4. This knowledge helps elucidate the molecular regulation of plant adaptation to Pi deficiency and will promote efforts toward the creation of low Pi-tolerant crops.
Collapse
Affiliation(s)
- Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaxing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
58
|
Gu M, Hu X, Wang T, Xu G. Modulation of plant root traits by nitrogen and phosphate: transporters, long-distance signaling proteins and peptides, and potential artificial traps. BREEDING SCIENCE 2021; 71:62-75. [PMID: 33762877 PMCID: PMC7973493 DOI: 10.1270/jsbbs.20102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 05/11/2023]
Abstract
As sessile organisms, plants rely on their roots for anchorage and uptake of water and nutrients. Plant root is an organ showing extensive morphological and metabolic plasticity in response to diverse environmental stimuli including nitrogen (N) and phosphorus (P) nutrition/stresses. N and P are two essential macronutrients serving as not only cell structural components but also local and systemic signals triggering root acclimatory responses. Here, we mainly focused on the current advances on root responses to N and P nutrition/stresses regarding transporters as well as long-distance mobile proteins and peptides, which largely represent local and systemic regulators, respectively. Moreover, we exemplified some of the potential pitfalls in experimental design, which has been routinely adopted for decades. These commonly accepted methods may help researchers gain fundamental mechanistic insights into plant intrinsic responses, yet the output might lack strong relevance to the real situation in the context of natural and agricultural ecosystems. On this basis, we further discuss the established-and yet to be validated-improvements in experimental design, aiming at interpreting the data obtained under laboratory conditions in a more practical view.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Corresponding author (e-mail: )
| | - Xu Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
59
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
60
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
61
|
Ried MK, Wild R, Zhu J, Pipercevic J, Sturm K, Broger L, Harmel RK, Abriata LA, Hothorn LA, Fiedler D, Hiller S, Hothorn M. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat Commun 2021; 12:384. [PMID: 33452263 PMCID: PMC7810988 DOI: 10.1038/s41467-020-20681-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. Plants regulate phosphate homeostasis via the interaction of PHR transcription factors with SPX receptors bound to inositol pyrophosphate signaling molecules. Here the authors show that inositol pyrophosphate-bound SPX interacts with the coiled-coil domain of PHR, which regulates the oligomerization and activity of the transcription factor.
Collapse
Affiliation(s)
- Martina K Ried
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Rebekka Wild
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Institut de Biologie Structurale (IBS), 38044, Grenoble, France
| | - Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Kristina Sturm
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Luciano A Abriata
- Protein production and structure Core Facility, EPFL, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30419, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
62
|
Bhutia KL, Nongbri EL, Sharma TO, Rai M, Tyagi W. A 1.84-Mb region on rice chromosome 2 carrying SPL4, SPL5 and MLO8 genes is associated with higher yield under phosphorus-deficient acidic soil. J Appl Genet 2021; 62:207-222. [PMID: 33409935 DOI: 10.1007/s13353-020-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Phosphorus (P) deficiency is one of the major limiting factors for rice productivity with only one locus (PSTOL1) available for field based application. A biparental mapping population (F6) derived from two P deficiency tolerant genotypes (Sahbhagi Dhan (SD) (PSTOL1+) and Chakhao Poreiton (CP) (PSTOL1-)), in which, transcriptome data generated from our lab had previously shown existence of diverse mechanisms was used to identify novel regions for better yield under lowland acidic soils. Phenotyping at F4, F5 and F6 generations revealed significant correlation between traits like tiller number at 30 days (TN 30), tiller number at 60 days (TN 60), filled grains (FG), percent spikelet fertility (SF%), panicle number (PN) and grain yield per panicle (GYPP) and also association with better yield/performance under low P acidic soil conditions. Through selected genotyping on a set of forty superior and inferior lines using SSR, candidate gene-based and SNP polymorphic markers, 5 genomic regions associated with various yield-related traits were identified. Marker trait association studies revealed 13 markers significantly associated with yield attributing traits and PUE under lowland acidic field conditions. Chi-square and regression analyses of markers run on the entire population identified seven and six markers for SF% and GYPP, respectively, and two for biological yield with positive allele derived from SD which constitute a novel 1.847-Mb region on chromosome 2 flanked by two markers RM12550 and PR9-2. Expression analysis of 7 candidate genes lying within this region across SD, CP and two low P susceptible rice genotypes has revealed that expression of four genes including SPL4, SPL5, ACA9 and MLO8 is significantly upregulated only in SD under low P conditions. In CP, there is low expression of MLO8 under low P conditions, whereas SPL4, SPL5 and Os02g08120 are downregulated. In the case of the two susceptible genotypes, there is no expression of Os02g08120 either in optimum or limiting conditions. Sequence data across a panel of 3024 rice genotypes also suggests that there is polymorphism for these differentially expressed genes. The genes and underlying markers identified on chromosome 2 will be key to imparting tolerance to low P in diverse genetic backgrounds and for marker-assisted selection for higher yield under lowland acidic conditions.
Collapse
Affiliation(s)
- Karma Landup Bhutia
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India.,CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Ernieca Lyngdoh Nongbri
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Takhenchangbam Oshin Sharma
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India.
| |
Collapse
|
63
|
Wang F, Cui P, Tian Y, Huang Y, Wang H, Liu F, Chen Y. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2406-2419. [PMID: 32431055 PMCID: PMC7680542 DOI: 10.1111/pbi.13414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
Phosphorus, an essential mineral macronutrient, is a major constituent of fertilizers for maize (Zea mays L.) production. However, the molecular mechanisms of phosphate (Pi) acquisition in maize plants and its redistribution remain unclear. This study presents the functional characterization of ZmPT7 in Pi uptake and redistribution in maize. The ZmPT7 was expressed in roots and leaves, and induced during Pi starvation. The ZmPT7 complemented the Pi-uptake deficiency of yeast mutant phoΔnull and Arabidopsis mutant pht1;1Δ4Δ, indicating that ZmPT7 functioned as a Pi transporter. We generated zmpt7 mutants by CRISPR/Cas9 and ZmPT7-overexpressing lines. The zmpt7 mutants showed reduced, whereas the ZmPT7-overexpressing lines displayed increased Pi-uptake capacity and Pi redistribution from old to young leaves, demonstrating that ZmPT7 played central roles in Pi acquisition and Pi redistribution from old to young leaves. The ZmCK2 kinases phosphorylated ZmPT7 at Ser-521 in old maize leaves, which enhanced transport activity of ZmPT7. The Ser-520 of Arabidopsis AtPHT1;1, a conserved residue of ZmPT7 Ser-521, was also phosphorylated by AtCK2 kinase, and the mutation of Ser-520 to Glu (phosphorylation mimic) yielded enhanced transport activity of AtPHT1;1. Taken together, these results indicate that ZmPT7 plays important roles in Pi acquisition and redistribution, and its transport activity is modulated by phosphorylation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Peng‐Juan Cui
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yan Tian
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yun Huang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hai‐Feng Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Fang Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi‐Fang Chen
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
64
|
Gho YS, Choi H, Moon S, Song MY, Park HE, Kim DH, Ha SH, Jung KH. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. FRONTIERS IN PLANT SCIENCE 2020; 11:585561. [PMID: 33424882 PMCID: PMC7793952 DOI: 10.3389/fpls.2020.585561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Heebak Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Min Yeong Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ha Eun Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Doh-Hoon Kim
- Department of Life Science, College of Life Science and Natural Resources, Dong-A University, Busan, South Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
65
|
Lhamo D, Shao Q, Tang R, Luan S. Genome-Wide Analysis of the Five Phosphate Transporter Families in Camelina sativa and Their Expressions in Response to Low-P. Int J Mol Sci 2020; 21:ijms21218365. [PMID: 33171866 PMCID: PMC7664626 DOI: 10.3390/ijms21218365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- Correspondence: (D.L.); (S.L.)
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- Correspondence: (D.L.); (S.L.)
| |
Collapse
|
66
|
Takagi D, Miyagi A, Tazoe Y, Suganami M, Kawai-Yamada M, Ueda A, Suzuki Y, Noguchi K, Hirotsu N, Makino A. Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defence systems by phytic acid accumulation in leaves. PLANT, CELL & ENVIRONMENT 2020; 43:2033-2053. [PMID: 32281116 DOI: 10.1111/pce.13772] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plants. Nevertheless, excessive P accumulation in leaf mesophyll cells causes necrotic symptoms in land plants; this phenomenon is termed P toxicity. However, the detailed mechanisms underlying P toxicity in plants have not yet been elucidated. This study aimed to investigate the molecular mechanism of P toxicity in rice. We found that under excessive inorganic P (Pi) application, Rubisco activation decreased and photosynthesis was inhibited, leading to lipid peroxidation. Although the defence systems against reactive oxygen species accumulation were activated under excessive Pi application conditions, the Cu/Zn-type superoxide dismutase activities were inhibited. A metabolic analysis revealed that excessive Pi application led to an increase in the cytosolic sugar phosphate concentration and the activation of phytic acid synthesis. These conditions induced mRNA expression of genes that are activated under metal-deficient conditions, although metals did accumulate. These results suggest that P toxicity is triggered by the attenuation of both photosynthesis and metal availability within cells mediated by phytic acid accumulation. Here, we discuss the whole phenomenon of P toxicity, beginning from the accumulation of Pi within cells to death in land plants.
Collapse
Affiliation(s)
- Daisuke Takagi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Youshi Tazoe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Naoki Hirotsu
- Faculty of Life Sciences, Toyo University, Itakura-machi, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
67
|
Genome-wide transcriptome profile of rice hybrids with and without Oryza rufipogon introgression reveals candidate genes for yield. Sci Rep 2020; 10:4873. [PMID: 32184449 PMCID: PMC7078188 DOI: 10.1038/s41598-020-60922-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, we compared genome-wide transcriptome profile of two rice hybrids, one with (test hybrid IR79156A/IL50-13) and the other without (control hybrid IR79156A/KMR3) O. rufipogon introgressions to identify candidate genes related to grain yield in the test hybrid. IL50-13 (Chinsurah Nona2 IET21943) the male parent (restorer) used in the test hybrid, is an elite BC4F8 introgression line of KMR3 with O. rufipogon introgressions. We identified 2798 differentially expressed genes (DEGs) in flag leaf and 3706 DEGs in panicle. Overall, 78 DEGs were within the major yield QTL qyld2.1 and 25 within minor QTL qyld8.2. The DEGs were significantly (p < 0.05) enriched in starch synthesis, phenyl propanoid pathway, ubiquitin degradation and phytohormone related pathways in test hybrid compared to control hybrid. Sequence analysis of 136 DEGs from KMR3 and IL50-13 revealed 19 DEGs with SNP/InDel variations. Of the 19 DEGs only 6 showed both SNP and InDel variations in exon regions. Of these, two DEGs within qyld2.1, Phenylalanine ammonia- lyase (PAL) (Os02t0626400-01, OsPAL2) showed 184 SNPs and 11 InDel variations and Similar to phenylalanine ammonia- lyase (Os02t0627100-01, OsPAL4) showed 205 SNPs and 13 InDel variations. Both PAL genes within qyld2.1 and derived from O. rufipogon are high priority candidate genes for increasing grain yield in rice.
Collapse
|
68
|
Sega P, Pacak A. Plant PHR Transcription Factors: Put on A Map. Genes (Basel) 2019; 10:E1018. [PMID: 31817743 PMCID: PMC6947268 DOI: 10.3390/genes10121018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphate starvation response (PHR) protein family exhibits the MYB and coiled-coil domains. In plants, within the either 5' untranslated regions (UTRs) or promoter regions of phosphate starvation-induced (PSI) genes are characteristic cis-regulatory elements, namely PHR1 binding sequence (P1BS). The most widely studied PHR protein family members, such as AtPHR1 in Arabidopsis thaliana (L.) and OsPHR2 in Oryza sativa (L.), may activate the gene expression of a broad range of PSI genes by binding to such elements in a phosphate (Pi) dependent manner. In Pi signaling, PHR transcription factors (TFs) can be selectively activated or deactivated by other proteins to execute the final step of signal transduction. Several new proteins have been associated with the AtPHR1/OsPHR2 signaling cascade in the last few years. While the PHR TF transcriptional role has been studied intensively, here we highlight the recent findings of upstream molecular components and other signaling pathways that may interfere with the PHR final mode of action in plants. Detailed information about transcriptional regulation of the AtPHR1 gene itself and its upstream molecular events has been reviewed.
Collapse
Affiliation(s)
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
69
|
Kumar A, Sharma M, Gahlaut V, Nagaraju M, Chaudhary S, Kumar A, Tyagi P, Gajula MP, Singh KP. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. Int J Biol Macromol 2019; 140:17-32. [DOI: 10.1016/j.ijbiomac.2019.08.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023]
|
70
|
Zhang ZW, Feng LY, Wang JH, Fu YF, Cai X, Wang CQ, Du JB, Yuan M, Chen YE, Xu PZ, Lan T, Chen GD, Wu LT, Li Y, Hu JY, Yuan S. Two-factor ANOVA of SSH and RNA-seq analysis reveal development-associated Pi-starvation genes in oilseed rape. PLANTA 2019; 250:1073-1088. [PMID: 31165231 DOI: 10.1007/s00425-019-03201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The 5-leaf-stage rape seedlings were more insensitive to Pi starvation than that of the 3-leaf-stage plants, which may be attributed to the higher expression levels of ethylene signaling and sugar-metabolism genes in more mature seedlings. Traditional suppression subtractive hybridization (SSH) and RNA-Seq usually screen out thousands of differentially expressed genes. However, identification of the most important regulators has not been performed to date. Here, we employed two methods, namely, a two-round SSH and two-factor transcriptome analysis derived from the two-factor ANOVA that is commonly used in the statistics, to identify development-associated inorganic phosphate (Pi) starvation-induced genes in Brassica napus. Several of these genes are related to ethylene signaling (such as EIN3, ACO3, ACS8, ERF1A, and ERF2) or sugar metabolism (such as ACC2, GH3, LHCB1.4, XTH4, and SUS2). Although sucrose and ethylene may counteract each other at the biosynthetic level, they may also work synergistically on Pi-starvation-induced gene expression (such as PT1, PT2, RNS1, ACP5, AT4, and IPS1) and root acid phosphatase activation. Furthermore, three new transcription factors that are responsive to Pi starvation were identified: the zinc-finger MYND domain-containing protein 15 (MYND), a Magonashi family protein (MAGO), and a B-box zinc-finger family salt-tolerance protein. This study indicates that the two methods are highly efficient for functional gene screening in non-model organisms.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian-Hui Wang
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xin Cai
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Pei-Zhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin-Tao Wu
- Rape Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550008, Guizhou, China
| | - Yun Li
- Rape Research Institute, Chengdu Academy of Agriculture and Forestry, Chengdu, 611130, Sichuan, China
| | - Jin-Yao Hu
- Research Center for Eco-Environmental Engineering, Mianyang Normal University, Mianyang, 621000, Sichuan, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
71
|
Zhu CQ, Hu WJ, Cao XC, Zhu LF, Bai ZG, Liang QD, Huang J, Jin QY, Zhang JH. Hydrogen peroxide alleviates P starvation in rice by facilitating P remobilization from the root cell wall. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153003. [PMID: 31279219 DOI: 10.1016/j.jplph.2019.153003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus (P) deficiency limits rice production. Increasing the remobilization of P stored in the root cell wall is an efficient way to alleviate P starvation in rice. In the current study, we found that the addition of 50 μM H2O2 significantly increased soluble P content in rice. H2O2 stimulated pectin biosynthesis and increased pectin methylesterase (PME) activity, thus stimulating the release of P from the cell wall in roots. H2O2 also regulates internal P homeostasis by increasing the expression of P transporter genes OsPT2, OsPT6, and OsPT8 at different treatment times. In addition, the H2O2 treatment increased the expression of nitrate reductase (NR) genes OsNIA1 and OsNIA2 and the activity of NR, then increased the accumulation of nitric oxide (NO) in the rice root. The application of the NO donor sodium nitroprusside (SNP) and the H2O2 scavenger 4-hydroxy-TEMPO significantly increased soluble P content by increasing pectin levels and PME activity to enhance the remobilization of P from the cell wall. However, the addition of NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) with and without H2O2 had the opposite effect, suggesting that NO functions downstream of H2O2 to increase the remobilization of cell wall P in rice.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Wen Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiao Chuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Lian Feng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Zhi Gang Bai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qing Duo Liang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Jie Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qian Yu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Jun Hua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
72
|
Ruan W, Guo M, Wang X, Guo Z, Xu Z, Xu L, Zhao H, Sun H, Yan C, Yi K. Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice. MOLECULAR PLANT 2019; 12:1060-1074. [PMID: 31002982 DOI: 10.1016/j.molp.2019.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 05/13/2023]
Abstract
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
Collapse
Affiliation(s)
- Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meina Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenhui Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuang Xu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyu Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chengqi Yan
- Ningbo Academy of Agriculture Sciences, 19 Dehou Street, Ningbo City 315000, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
73
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
74
|
Dong Z, Li W, Liu J, Li L, Pan S, Liu S, Gao J, Liu L, Liu X, Wang GL, Dai L. The Rice Phosphate Transporter Protein OsPT8 Regulates Disease Resistance and Plant Growth. Sci Rep 2019; 9:5408. [PMID: 30931952 PMCID: PMC6443681 DOI: 10.1038/s41598-019-41718-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
The absorption of nutrients and disease resistance are two indispensable physiological processes in plants; however, it is still largely unknown whether there is cross-talk between their molecular signaling pathways. In this study, we identified the rice OsPT8 protein, which is a member of the phosphate transporters (PTs) Pht1 family and also plays a role in rice disease resistance. The transcriptional level of OsPT8 is suppressed after infection with rice pathogens and treatment with pathogen-associated molecular patterns (PAMPs). Overexpression of OsPT8 suppresses rice disease resistance against the pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Accordingly, the transcription level of resistance related genes, such as PAL and PBZ1, is inhibited in plants overexpressing OsPT8 (OsPT8-OX) after inoculation with these pathogens. In OsPT8-OX plants, PAMPs-triggered immunity (PTI) response genes, such as OsRac1 and SGT1, are suppressed during treatment with PAMPs chitin or flg22. Moreover, the typical response of PTI is suppressed after chitin or flg22 treatment. We also identified OsPT8 as an interactor of a rice mitogen-activated protein kinase BWMK1, which is a regulator of disease resistance. Under low phosphate (Pi) conditions, the OsPT8-OX plants display better agronomic traits than the control plants. However, the differences in development between OsPT8-OX and the control plants are reduced upon the increase of Pi concentration. These results demonstrate that OsPT8 regulates the transduction of Pi signaling for development and negatively regulates rice immunity.
Collapse
Affiliation(s)
- Zheng Dong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
| | - Jing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Lihua Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Sujun Pan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Saijun Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Jia Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Ling Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Xionglun Liu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests and College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|
75
|
Li Y, Li C, Cheng L, Yu S, Shen C, Pan Y. Over-expression of OsPT2 under a rice root specific promoter Os03g01700. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:52-57. [PMID: 30641408 DOI: 10.1016/j.plaphy.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Identification of root-specific promoters is a good method to drive root-specific gene expression for nutrient uptake. Constitutive over-expression of OsPT2 may have negative effects on the growth of rice seedlings under high Pi condition. Thus, characterization and utilization of root-specific promoters are critical for genetic breeding. Here, a root-specific promoter (Os03g01700) with a number of specific regulatory elements has been confirmed. Interestingly, cis-regulatory element S449 is significantly enriched in the -1475∼-2013 bp and -1077∼-1475 bp regions of Os03g01700 promoter. The activities of several deletion derivatives of Os03g01700 promoter were analyzed using both transient expression and genetic transformation system. The results showed that the root-specific cis-acting elements might be present in the -2013 bp~-1475 bp and -1077 bp~-561 bp regions of Os03g01700 promoter. To determine the actual effect of root-specific expression of OsPT2, a construction consisting of Os03g01700 promoter and OsPT2 CDS was used to transform rice. Under Pi-sufficient condition, there were a series of symptoms of phosphorus toxicity in the shoots of OsPT2 over-expressing (Ov-OsPT2) seedlings. Under Pi-deficient condition, more soluble Pi was accumulated in the shoots of Ov-OsPT2 seedlings than that in the wild type. Our data provide a candidate root-specific promoter in the breeding of rice with high phosphorus uptake variety.
Collapse
Affiliation(s)
- Yuanya Li
- College of Life Science, Yunnan University, Kunming, 650091, China.
| | - Caixia Li
- Lab Center of Life Science, Yunnan University, Kunming, 650091, China
| | - Lizhong Cheng
- Lab Center of Life Science, Yunnan University, Kunming, 650091, China
| | - Shuangshuang Yu
- College of Life Science, Yunnan University, Kunming, 650091, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yue Pan
- College of Life Science, Yunnan University, Kunming, 650091, China
| |
Collapse
|
76
|
Takehisa H, Sato Y. Transcriptome monitoring visualizes growth stage-dependent nutrient status dynamics in rice under field conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1048-1060. [PMID: 30481387 DOI: 10.1111/tpj.14176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 05/24/2023]
Abstract
Crop plants undergo morpho-physiological changes throughout the growth process in response to both the internal and the external environment, and that eventually determine the yield. The system-level adjustment of the morpho-physiological changes has remained largely unclear, however, especially in field conditions. Here, we reveal changes in nutrient status associated with tiller development and soil conditions based on the leaf transcriptome profile of rice (Oryza sativa) throughout the entire period of growth. We performed gene co-expression network analysis and identified three gene sets as indicators for monitoring the internal nitrogen and phosphorus status. Expression profiling reveals that the phosphorus starvation response is expressed during the tillering stage and is then switched off with the transition to nitrogen deficiency. Coincident with phosphorus status dynamics, the level of phosphate in the leaf is demonstrated to be low during the tillering stage and subsequently increases drastically. The phosphorus dynamics are genetically validated by analysing mutants with a defect in phosphorus homeostasis. Notably, we show that nitrogen limitation directly suppresses the phosphorus starvation response. Finally, the phosphorus starvation response is demonstrated to be activated in soil with a high phosphate retention capacity, without the visible phenotypes associated with phosphorus starvation. Our results reveal a growth stage- and soil condition-dependent reaction that requires phosphorus, which is expressed to promote the phosphorus uptake required for developing tillers and is directly adjusted by nitrogen status. A molecular framework for elucidating nutrient status dynamics under field conditions would provide insights into improving crop productivity.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| |
Collapse
|
77
|
Yeh CM, Kobayashi K, Fujii S, Fukaki H, Mitsuda N, Ohme-Takagi M. Blue Light Regulates Phosphate Deficiency-Dependent Primary Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1803. [PMID: 32082352 PMCID: PMC7005603 DOI: 10.3389/fpls.2019.01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/24/2019] [Indexed: 05/09/2023]
Abstract
Plants have evolved mechanisms to improve utilization efficiency or acquisition of inorganic phosphate (Pi) in response to Pi deficiency, such as altering root architecture, secreting acid phosphatases, and activating the expression of genes related to Pi uptake and recycling. Although many genes responsive to Pi starvation have been identified, transcription factors that affect tolerance to Pi deficiency have not been well characterized. We show here that the ectopic expression of B-BOX32 (BBX32) and the mutation of ELONGATED HYPOCOTYL 5 (HY5), whose transcriptional activity is negatively regulated by BBX32, resulted in the tolerance to Pi deficiency in Arabidopsis. The primary root lengths of 35S:BBX32 and hy5 plants were only slightly inhibited under Pi deficient condition and the fresh weights were significantly higher than those of wild type. The Pi deficiency-tolerant root phenotype of hy5 was similarly observed when grown on the medium without Pi. In addition, a double mutant, hy5 slr1, without lateral roots, also showed a long primary root phenotype under phosphate deficiency, indicating that the root phenotype of hy5 does not result from an increase of external Pi uptake. Moreover, we found that blue light may regulate Pi deficiency-dependent primary root growth inhibition through activating peroxidase gene expression, suggesting the Pi-deficiency tolerant root phenotype of hy5 may be due to blockage of blue light responses. Altogether, this study points out light quality may play an important role in the regulation of Pi deficiency responses. It may contribute to regulate plant growth under Pi deficiency through proper illumination.
Collapse
Affiliation(s)
- Chuan-Ming Yeh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute of Tropical Plant Sciences and Microbiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Fujii
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Masaru Ohme-Takagi,
| |
Collapse
|
78
|
Ding Y, Wang Z, Ren M, Zhang P, Li Z, Chen S, Ge C, Wang Y. Iron and callose homeostatic regulation in rice roots under low phosphorus. BMC PLANT BIOLOGY 2018; 18:326. [PMID: 30514218 PMCID: PMC6278065 DOI: 10.1186/s12870-018-1486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phosphorus (Pi) deficiency induces root morphological remodeling in plants. The primary root length of rice increased under Pi deficiency stress; however, the underlying mechanism is not well understood. In this study, transcriptome analysis (RNA-seq) and Real-time quantitative PCR (qRT-PCR) techniques were combined with the determination of physiological and biochemical indexes to research the regulation mechanisms of iron (Fe) accumulation and callose deposition in rice roots, to illuminate the relationship between Fe accumulation and primary root growth under Pi deficient conditions. RESULTS Induced expression of LPR1 genes was observed under low Pi, which also caused Fe accumulation, resulting in iron plaque formation on the root surface in rice; however, in contrast to Arabidopsis, low Pi promoted primary root lengthening in rice. This might be due to Fe accumulation and callose deposition being still appropriately regulated under low Pi. The down-regulated expression of Fe-uptake-related key genes (including IRT, NAS, NAAT, YSLs, OsNRAMP1, ZIPs, ARF, and Rabs) inhibited iron uptake pathways I, II, and III in rice roots under low Pi conditions. In contrast, due to the up-regulated expression of the VITs gene, Fe was increasingly stored in both root vacuoles and cell walls. Furthermore, due to induced expression and increased activity of β-1-3 glucanase, callose deposition was more controlled in low Pi treated rice roots. In addition, low Pi and low Fe treatment still caused primary root lengthening. CONCLUSIONS The obtained results indicate that Low phosphorus induces iron and callose homeostatic regulation in rice roots. Because of the Fe homeostatic regulation, Fe plays a small role in rice root morphological remodeling under low Pi.
Collapse
Affiliation(s)
- Yan Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
- College of Materials and chemical engineering, Bengbu University, 1866 Caoshan Road, Bengbu, 233000 People’s Republic of China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Menglian Ren
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Ping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Zhongnan Li
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Sheng Chen
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Cailin Ge
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
79
|
Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. THE NEW PHYTOLOGIST 2018; 219:135-148. [PMID: 29658119 DOI: 10.1111/nph.15155] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development, but the molecular mechanism determining how plants sense external inorganic phosphate (Pi) levels and reprogram transcriptional and adaptive responses is incompletely understood. In this study, we investigated the function of OsSPX6 (hereafter SPX6), an uncharacterized member of SPX domain (SYG1, Pho81 and XPR1)-containing proteins in rice, using reverse genetics and biochemical approaches. Transgenic plants overexpressing SPX6 exhibited decreased Pi concentrations and suppression of phosphate starvation-induced (PSI) genes. By contrast, transgenic lines with decreased SPX6 transcript levels or spx6 mutant showed significant Pi accumulation in the leaf and upregulation of PSI genes. Overexpression of SPX6 genetically suppressed the overexpression of PHOSPHATE STARVATION RESPONSE REGULATOR 2 (PHR2) in terms of the accumulation of high Pi content. Moreover, direct interaction of SPX6 with PHR2 impeded PHR2 translocation into the nucleus, and inhibited PHR2 binding to the P1BS (PHR1 binding sequence) element. SPX6 protein was degraded in leaves under Pi-deficient conditions, whereas it accumulated in roots. We conclude that rice SPX6 is another important negative regulator in Pi starvation signaling through the interaction with PHR2. SPX6 shows different responses to Pi starvation in shoot and root, which differ from those of other SPX proteins.
Collapse
Affiliation(s)
- Yongjia Zhong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuguang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qundan Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
- Chemical Biology Center, Lishui Institute of Agricultural Science, Lishui, Zhejiang, 323000, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
80
|
Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Tran LSP. Cellular and Subcellular Phosphate Transport Machinery in Plants. Int J Mol Sci 2018; 19:ijms19071914. [PMID: 29966288 PMCID: PMC6073359 DOI: 10.3390/ijms19071914] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs. Under conditions of Pi deficiency, Pi is also translocated from the shoot to the root via the phloem. Vacuoles act as a storage pool for extra Pi, enabling its delivery to the cytosol, a process which plays an important role in the homeostatic control of cytoplasmic Pi levels. In mitochondria and chloroplasts, Pi homeostasis regulates ATP synthase activity to maintain optimal ATP levels. Additionally, the endoplasmic reticulum functions to direct Pi transporters and Pi toward various locations. The intracellular membrane potential and pH in the subcellular organelles could also play an important role in the kinetics of Pi transport. The presented review provides an overview of Pi transport mechanisms in subcellular organelles, and also discusses how they affect Pi balancing at cellular, tissue, and whole-plant levels.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Munish Kumar Upadhyay
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamaska, Tottori 680-0001, Japan.
- Botany Department, Faculty of Sciences, Aswan University, Aswan 81528, Egypt.
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan.
| |
Collapse
|
81
|
Yang WT, Baek D, Yun DJ, Lee KS, Hong SY, Bae KD, Chung YS, Kwon YS, Kim DH, Jung KH, Kim DH. Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter. PLoS One 2018; 13:e0194628. [PMID: 29566032 PMCID: PMC5864048 DOI: 10.1371/journal.pone.0194628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Myeloblastosis (MYB) transcription factors play central roles in plant developmental processes and in responses to nutrient deficiency. In this study, OsMYB5P, an R2R3-MYB transcription factor, was isolated and identified from rice (Oryza sativa L. 'Dongjin') under inorganic phosphate (Pi)-deficient conditions. OsMYB5P protein is localized to the nucleus and functions as a transcription activator in plant development. Overexpression of OsMYB5P in rice and Arabidopsis (Arabidopsis thaliana Col-0) increases tolerance to phosphate starvation, whereas OsMYB5P knock-out through RNA interference increases sensitivity to Pi depletion in rice. Furthermore, shoots and roots of transgenic rice plants overexpressing OsMYB5P were longer than those of wild plants under both normal and Pi-deficient conditions. These results indicate that OsMYB5P is associated with the regulation of shoot development and root- system architecture. Overexpression of OsMYB5P led to increased Pi accumulation in shoots and roots. Interestingly, OsMYB5P directly bound to MBS (MYB binding site) motifs on the OsPT5 promoter and induced transcription of OsPT5 in rice. In addition, overexpression of OsMYB5P in Arabidopsis triggered increased expression of AtPht1;3, an Arabidopsis Pi transporter, in shoots and roots under normal and Pi-deficient conditions. Together, these results demonstrate that overexpression of OsMYB5P increases tolerance to Pi deficiency in plants by modulating Pi transporters at the transcriptional level in monocots and dicots.
Collapse
Affiliation(s)
- Won Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Dongwon Baek
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Korea
| | - Kwang Sik Lee
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - So Yeon Hong
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Ki Deuk Bae
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Young Soo Chung
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Yong Sham Kwon
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Du Hyun Kim
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
- * E-mail:
| |
Collapse
|
82
|
Liu N, Shang W, Li C, Jia L, Wang X, Xing G, Zheng W. Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biol 2018; 8:170231. [PMID: 29298909 PMCID: PMC5795055 DOI: 10.1098/rsob.170231] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular and genomic studies have shown the presence of a large number of SPX gene family members in plants, some of which have been proved to act in P signalling and homeostasis. In this study, the molecular and evolutionary characteristics of the SPX gene family in plants were comprehensively analysed, and the mechanisms underlying the function of SPX genes in P signalling and homeostasis in the model plant species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), and in important crops, including wheat (Triticum aestivum), soya beans (Glycine max) and rapeseed (Brassica napus), were described. Emerging findings on the involvement of SPX genes in other important processes (i.e. disease resistance, iron deficiency response, low oxygen response and phytochrome-mediated light signalling) were also highlighted. The available data suggest that SPX genes are important regulators in the P signalling network, and may be valuable targets for enhancing crop tolerance to low P stress. Further studies on SPX proteins should include more diverse members, which may reveal SPX proteins as important regulatory hubs for multiple processes including P signalling and homeostasis in plants.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wenyan Shang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - WenMing Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
83
|
Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Curr Opin Biotechnol 2017; 49:156-162. [PMID: 28889038 DOI: 10.1016/j.copbio.2017.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
Proteins containing a SPX domain are involved in phosphate (Pi) homeostasis, including Pi transport and adaptation to Pi deficiency. The SPX domain harbors a basic surface binding Pi at low affinity and inositol pyrophosphates (PP-InsPs) at high affinity. Genetic and biochemical studies revealed that PP-InsPs serve as ligands for the SPX domain. Residues in the PHO1 SPX domain involved in PP-InsPs binding are critical for its Pi export activity, and the interaction between SPX proteins and the PHR1 transcription factor, which results in PHR1 inactivation, is promoted by PP-InsPs. Changes in PP-InsPs levels in response to Pi deficiency may thus contribute to the adaptation of plants to stress via the modulation of the activity of SPX-containing proteins and their interactors. Modulating PP-InsP levels or the affinity/specificity of the SPX domain for PP-InsP could potentially be used to engineer crops to maintain high yield under reduced Pi fertilizer input.
Collapse
|
84
|
Li S, Ying Y, Secco D, Wang C, Narsai R, Whelan J, Shou H. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa. PLANT, CELL & ENVIRONMENT 2017; 40:1487-1499. [PMID: 28337762 DOI: 10.1111/pce.12945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/18/2017] [Accepted: 02/24/2017] [Indexed: 05/08/2023]
Abstract
Plants are often confronted to nutrient limiting conditions, such as inorganic phosphate (Pi) deficiency, resulting in a reduction in growth and yield. PHO2, encoding a ubiquitin-conjugating E2 enzyme, is a central component of the Pi-starvation response signalling pathway. A yeast-two-hybrid screen using Oryza sativa (rice) PHO2 as bait, revealed an interaction between OsPHO2 and OsGIGANTEA, a key regulator of flowering time, which was confirmed using bimolecular fluorescence complementation (BiFC). Characterization of rice Osgi and Ospho2 mutants revealed that they displayed several similar phenotypic features supporting a physiological role for this interaction. Reduced growth, leaf tip necrosis, delayed flowering and over-accumulation of Pi in leaves compared to wild type were shared features of Osgi and Ospho2 plants. Pi analysis of individual leaves demonstrated that Osgi, similar to Ospho2 mutants, were impaired in Pi remobilization from old to young leaves, albeit to a lesser extent. Transcriptome analyses revealed more than 55% of the genes differentially expressed in Osgi plants overlapped with the set of differentially expressed genes in Ospho2 plants. The interaction between OsPHO2 and OsGI links high-level regulators of Pi homeostasis and development in rice.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
85
|
Feng H, Li B, Zhi Y, Chen J, Li R, Xia X, Xu G, Fan X. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. PLANT CELL REPORTS 2017; 36:1287-1296. [PMID: 28502056 DOI: 10.1007/s00299-017-2153-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 05/22/2023]
Abstract
Overexpression of OsNRT2.3b in rice can increase Pi uptake and accumulation through advanced root system, enhanced OsPT and OsPHR genes expression, and the phloem pH homeostasis. Nitrogen (N) and phosphorus (P) are two essential macronutrients for plants. Overexpression of the rice nitrate transporter, OsNRT2.3b, can improve rice grain yield and nitrogen use efficiency (NUE). Here, OsNRT2.3b overexpression resulted in increased grain yield, straw yield, and grain:straw ratio, accompanied by increased P concentrations in the leaf blade, leaf sheath, culm, and unfilled rice hulls. Overexpression of OsNRT2.3b significantly increased 33Pi uptake compared with WT under 300-μM Pi but not 10-μM Pi condition in 24 h. Moreover, the OsNRT2.3b-overexpressing rice lines showed increased root and shoot biomass, root:shoot ratio, total root length root surface area and N, P accumulation under 300- and 10-μM Pi supply in hydroponic solution. The levels of OsPT2, OsPT8, and OsPHR2 expression in roots and of OsPT1 and OsPHR2 in shoots were upregulated in OsNRT2.3b-overexpressing rice. These results indicated that OsNRT2.3b overexpression can improve rice P uptake and accumulation, partially through the advanced root system, enhanced gene expression, and the phloem pH regulation function.
Collapse
Affiliation(s)
- Huimin Feng
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhi
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Li
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
86
|
Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, xu G. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3603-3615. [PMID: 28549191 PMCID: PMC5853628 DOI: 10.1093/jxb/erx174] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
The adaptive responses of plants to phosphate (Pi) starvation stress are fine-tuned by an elaborate regulatory network. In this study, we identified and characterized a novel Pi starvation-responsive gene, MYB1, encoding an R2R3-type transcription factor in rice. MYB1 was transcriptionally induced in leaf sheaths and old leaf blades. It was localized to the nucleus and expressed mainly in vascular tissues. Mutation of MYB1 led to an increase in Pi uptake and accumulation, accompanied by altered expression of a subset of Pi transporters and several genes involved in Pi starvation signaling. Furthermore, MYB1 affected the elongation of the primary root in a Pi-dependent manner and lateral roots in a Pi-independent manner. Moreover, gibberellic acid (GA)-triggered lateral root elongation was largely suppressed in wild-type plants under Pi starvation conditions, whereas this suppression was partially rescued in myb1 mutant lines, correlating with the up-regulation of a GA biosynthetic gene upon MYB1 mutation. Taken together, the findings of this study highlight the role of MYB1 as a regulator involved in both Pi starvation signaling and GA biosynthesis. Such a co-regulator might have broad implications for the study of cross-talk between nutrient stress and other signaling pathways.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Daqian Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Correspondence:
| |
Collapse
|
87
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
88
|
Ruan W, Guo M, Wu P, Yi K. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. PLANT MOLECULAR BIOLOGY 2017; 93:327-340. [PMID: 27878661 DOI: 10.1007/s11103-016-0564-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/14/2016] [Indexed: 05/09/2023]
Abstract
OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice. Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.
Collapse
Affiliation(s)
- Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meina Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ping Wu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
89
|
Du H, Yang C, Ding G, Shi L, Xu F. Genome-Wide Identification and Characterization of SPX Domain-Containing Members and Their Responses to Phosphate Deficiency in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:35. [PMID: 28179909 PMCID: PMC5263162 DOI: 10.3389/fpls.2017.00035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/22/2023]
Abstract
The importance of SPX domain-encoding proteins to phosphate (Pi) homeostasis and signaling pathways has been well-documented in rice and Arabidopsis. However, global information and responses of SPX members to P stress in allotetraploid Brassica napus, one of the world's major oil crops that is sensitive to P deficiency, remain undefined. We identified a total of 69 SPX domain-containing genes in the B. napus genome. Based on the domain organizations, these genes were classified into four distinct subfamilies-SPX (11), SPX-EXS (43), SPX-MFS (8), and SPX-RING (7)-that represented clear orthologous relationships to their family members in Arabidopsis. A cis-element analysis indicated that 2 ∼ 4 P1BS elements were enriched in the promoter of SPX subfamily genes except BnaSPX4s. RNA-Seq analysis showed that BnaSPX genes were differentially expressed in response to Pi deficiency. Furthermore, quantitative real-time reverse transcription PCR revealed that nine SPX subfamily genes were significantly induced by Pi starvation and recovered rapidly after Pi refeeding. A functional analysis of two paralogous BnaSPX1 genes in transgenic Arabidopsis indicated their functional divergence during long-term evolution. This comprehensive study on the abundance, molecular characterization and responses to Pi deficiency of BnaSPX genes provides insights into the structural and functional diversities of these family members in B. napus and provides a solid foundation for future functional studies of BnaSPX genes. Highlight: The genome-wide identification and characterization of SPX genes in B. napus and their responses to Pi deficiency provide comprehensive insights into the structural and functional diversities of the family members in B. napus and their potential in Pi homeostasis and signaling responsiveness to Pi stress.
Collapse
Affiliation(s)
- Hongyuan Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Chang Yang
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Guangda Ding
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
90
|
Ye Y, Li P, Xu T, Zeng L, Cheng D, Yang M, Luo J, Lian X. OsPT4 Contributes to Arsenate Uptake and Transport in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2197. [PMID: 29312424 PMCID: PMC5744437 DOI: 10.3389/fpls.2017.02197] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/13/2017] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is toxic to organisms, and elevated As accumulation in rice (Oryza sativa) grain may pose a significant health risk to humans. The predominant form of As in soil under aerobic conditions is As(V), which has a chemical structure similar to that of PO43-. Rice roots take up As(V) by phosphate (Pi) transporters, such as OsPT1 and OsPT8. In the present study, we investigated the contribution of OsPT4, belonging to the Pht1 family, on rice As(V) uptake and transport. We determined the mRNA amounts of OsPTs in rice seedlings, and expressions of OsPT1, OsPT4, and OsPT8 were up-regulated under As(V) conditions. OsPT4-overexpressing plants were obtained to examine the As (V) transport activity of OsPT4 in rice. When transgenic rice grew in hydroponic culture with 25 and 50 μM As(V), the plants showed sensitivity to As(V) stress with aboveground parts showing delayed growth and the roots stunted. The OsPT4 CRISPR lines showed the opposite phenotype. When plants were grown in 5 μM As(V) solution for 7 days, the As accumulation of OsPT4-overexpressing plants increased up to twice in roots and shoots. Furthermore, the arsenate uptake rates of OsPT4-overexpressing lines were higher compared with wild type. The Vmax of As(V) uptake in OsPT4-overexpressing plants increased 23-45% compared with Nipponbare. In the flooded soil, the As accumulation of OsPT4-overexpressing plants increased 40-66% and 22-30% in straw and grain, respectively. While in OsPT4-cr plants As accumulation in roots decreased 17-30% compared with Nipponbare. Therefore, the present study indicates that OsPT4 is involved in As(V) uptake and transport and could be a good candidate gene to generate low As-accumulating rice.
Collapse
|
91
|
Wang P, Zhang W, Mao C, Xu G, Zhao FJ. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6051-6059. [PMID: 27683727 DOI: 10.1093/jxb/erw362] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arsenic (As) contamination in paddy soil can cause phytotoxicity and elevated As accumulation in rice grain. Rice varieties vary in As uptake and tolerance, but the underlying mechanisms remain unclear. In this study, the aus variety Kasalath was found to be more tolerant to arsenate [As(V)] than the japonica variety Nipponbare, but the two varieties showed similar arsenite [As(III)] tolerance. Nipponbare took up more phosphate (Pi) and As(V) than Kasalath. The expression of genes for Pi transporters or Pi homeostasis regulation was quantified. Nipponbare showed 2- to 3-fold higher expression of the Pi transporter genes OsPT2 and OsPT8 than Kasalath. Two ospt8 mutants were isolated from the Kasalath background and compared with an ospt8 mutant in the Nipponbare background. Mutation in OsPT8 in both backgrounds decreased As(V) uptake by 33-57%, increased As(V) tolerance assayed by root elongation by >100-fold, and abolished the varietal differences in As(V) uptake and tolerance. The results show that OsPT8 plays a key role in As(V) uptake and that As(V) uptake mediated by OsPT8 exerts a profound toxic effect on root elongation. The results also suggest that differential OsPT8 expression explains the varietal differences in As(V) uptake and tolerance between Kasalath and Nipponbare.
Collapse
Affiliation(s)
- Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
92
|
Liu L, Yang D, Liang T, Zhang H, He Z, Liang Z. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2016; 35:1933-42. [PMID: 27271760 DOI: 10.1007/s00299-016-2007-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.
Collapse
Affiliation(s)
- Lin Liu
- College of Life Science of Northwest A&F University, Yangling, China
| | - DongFeng Yang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - TongYao Liang
- College of Life Science of Northwest A&F University, Yangling, China
| | - HaiHua Zhang
- College of Life Science of Northwest A&F University, Yangling, China
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - ZhiGui He
- College of Life Science of Northwest A&F University, Yangling, China
| | - ZongSuo Liang
- College of Life Science of Northwest A&F University, Yangling, China.
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
93
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
94
|
Li Y, Wu H, Fan H, Zhao T, Ling HQ. Characterization of the AtSPX3 Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1767-78. [PMID: 27382128 DOI: 10.1093/pcp/pcw100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 05/14/2023]
Abstract
AtSPX3, responding to phosphate (Pi) deficiency by its expression, is an important gene involved in Pi homeostasis in Arabidopsis. To understand its transcriptional regulation, we characterized the AtSPX3 promoter by distal truncation, internal deletion and mutation of the predicted cis-elements, and identified multiple cis-elements responsive to Pi status. The P1BS (AtPHR-binding site) and AtMyb4 (putative MYB4-binding site) elements were two main cis-elements in the AtSPX3 promoter. P1BS is essential and has a dosage effect for activating expression of the gene under Pi deficiency, while the element AtMyb4 possesses a dual function: one is to enhance AtSPX3 expression in roots under Pi deficiency, and the other one is to repress AtSPX3 expression in shoots under both Pi deficiency and sufficiency. Moreover, we confirmed that AtPHR1, a key transcription factor in Pi homeostasis of plants, was required for the negative regulation function of the AtMyb4 element in shoots. Additionally, we also found that the AtSPX3 promoter had a length limitation for activating gene expression. Generally, our findings in this work are useful for understanding the molecular regulation mechanism of genes involved in Pi uptake and homeostasis.
Collapse
Affiliation(s)
- Ye Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huajie Fan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
95
|
Zhang K, Song Q, Wei Q, Wang C, Zhang L, Xu W, Su Z. Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1661-72. [PMID: 26806409 PMCID: PMC5066639 DOI: 10.1111/pbi.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/06/2015] [Indexed: 05/03/2023]
Abstract
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)-sensing mechanism plays an essential role in the Pi-signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down-regulation of OsSPX1 caused reduction of seed-setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild-type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi-male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole-genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down-regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed-setting rate in rice. The down-regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down-regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi-male sterility, and ultimately resulted in low seed-setting rate and grain yield.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
96
|
Hasan MM, Hasan MM, Teixeira da Silva JA, Li X. Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 2016; 21:7. [PMID: 28536610 PMCID: PMC5415736 DOI: 10.1186/s11658-016-0008-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphorus is a poorly bioavailable macronutrient that is essential for crop growth and yield. Overuse of phosphorus fertilizers results in low phosphorus use efficiency (PUE), has serious environmental consequences and accelerates the depletion of phosphorus mineral reserves. It has become extremely challenging to improve PUE while preserving global food supplies and maintaining environmental sustainability. Molecular and genetic analyses have revealed the primary mechanisms of phosphorus uptake and utilization and their relationships to phosphorus transporters, regulators, root architecture, metabolic adaptations, quantitative trait loci, hormonal signaling and microRNA. The ability to improve PUE requires a transition from this knowledge of molecular mechanisms and plant architecture to practical strategies. These could include: i) the use of arbuscular mycorrhizal fungal symbioses for efficient phosphorus mining and uptake; ii) intercropping with suitable crop species to achieve phosphorus activation and mobilization in the soil; and iii) tissue-specific overexpression of homologous genes with advantageous agronomic properties for higher PUE along with breeding for phosphorus-efficient varieties and introgression of key quantitative trait loci. More effort is required to further dissect the mechanisms controlling phosphorus uptake and utilization within plants and provide new insight into the means to efficiently improve PUE.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| | - Md. Mainul Hasan
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali Bangladesh
| | | | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
97
|
Zhang J, Zhou X, Xu Y, Yao M, Xie F, Gai J, Li Y, Yang S. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:82-91. [PMID: 27181950 DOI: 10.1016/j.plantsci.2016.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 05/25/2023]
Abstract
Phosphate (Pi) homeostasis is required for plant growth and development, but the Pi-signaling pathways in plants still remain largely unknown. Proteins only containing the SPX domain are very important in phosphate (Pi) homeostasis and signaling transduction. In the T-DNA insertion Arabidopsis mutant spx3, AtPHT1-4, AtPHT1-5, AtACP5, AtRNS, and AtAT4 expression levels were increased under Pi-sufficient condition and low Pi condition compared with WT. Meanwhile, the expression levels of these phosphate starvation genes was inhibited in OXSPX1 and spx3/OXSPX1 compared with WT, only under Pi-sufficient condition. These imply that GmSPX1 may negatively control the transcription of Pi starvation responsive genes indirectly. However, there were no differences between expression levels of these PSI genes in spx3 and those in WT under -Pi conditions. These facts imply that the negative regulation of GmSPX1 and AtSPX3 on PSI genes is depending on Pi concentration. Consistent with this, GmSPX1 overexpression in the WT and spx3 decreased the total Pi concentration in plants and changed root hair morphology, suppressing the elongation and number of root hairs compared with the WT and spx3. The yeast two-hybrid assays and BiFC assays demonstrated that GmSPX1 could interact with GmMYB48.The qRT-PCR analysis showed that GmMYB48 is a new phosphate starvation induced transcription factor in soybean. Also, GmSPX1 overexpression led to decreased transcripts of AtMYB4, an ortholog of GmMYB48, in OXSPX1. Together, these results suggest that GmSPX1 is a negative regulator in the Pi signaling network of soybean, and the interaction of GmSPX1/GmMYB48 can be considered a potential candidate suppressor.
Collapse
Affiliation(s)
- Jingyao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xi Zhou
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ying Xu
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Minlei Yao
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fengbin Xie
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
98
|
Gu M, Chen A, Sun S, Xu G. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? MOLECULAR PLANT 2016; 9:396-416. [PMID: 26714050 DOI: 10.1016/j.molp.2015.12.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China.
| |
Collapse
|
99
|
Dai X, Wang Y, Zhang WH. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:947-60. [PMID: 26663563 PMCID: PMC4737085 DOI: 10.1093/jxb/erv515] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
Collapse
Affiliation(s)
- Xiaoyan Dai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanyuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
100
|
Wang H, Sun R, Cao Y, Pei W, Sun Y, Zhou H, Wu X, Zhang F, Luo L, Shen Q, Xu G, Sun S. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice. PLANT & CELL PHYSIOLOGY 2015; 56:2381-95. [PMID: 26615033 DOI: 10.1093/pcp/pcv162] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/25/2015] [Indexed: 05/09/2023]
Abstract
SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice.
Collapse
Affiliation(s)
- Huadun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China Present address: Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rui Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Yue Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Hongmin Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Xueneng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Fang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Qirong Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, China
| |
Collapse
|