51
|
Zhang Y, Li B, Huai D, Zhou Y, Kliebenstein DJ. The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:343. [PMID: 26029237 PMCID: PMC4429563 DOI: 10.3389/fpls.2015.00343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/30/2015] [Indexed: 05/22/2023]
Abstract
The evolution of plant metabolic diversity is largely driven by gene duplication and ensuing sub-functionalization and/or neo-functionalization to generate new enzymatic activities. However, it is not clear whether the transcription factors (TFs) regulating these new enzyme encoding genes were required to co-evolve with these genes in a similar fashion or if these new genes can be captured by existing conserved TFs to provide the appropriate expression pattern. In this study, we found two conserved TFs, MYB115, and MYB118, co-expressed with the key enzyme encoding genes in the newly evolved benzoyloxy glucosinolate (GLS) pathway. These TFs interacted with the promoters of the GLS biosynthetic genes and negatively influenced their expression. Similarly, the GLS profiles of these two TFs knockouts showed that they influenced the aliphatic GLS accumulation within seed, leaf and flower, while they mainly expressed in seeds. Further studies indicated that they are functionally redundant and epistatically interact to control the transcription of GLS genes. Complementation study confirmed their roles in regulating the aliphatic GLS biosynthesis. These results suggest that the newly evolved enzyme encoding genes for novel metabolites can be regulated by conserved TFs, which helps to improve our model for newly evolved genes regulation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dongxin Huai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Yongming Zhou, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
- Daniel J. Kliebenstein, Department of Plant Sciences, University of California, Davis, One Shield Avenue, Davis, CA 95616, USA
| |
Collapse
|
52
|
Sasaki N, Nishizaki Y, Ozeki Y, Miyahara T. The role of acyl-glucose in anthocyanin modifications. Molecules 2014; 19:18747-66. [PMID: 25405291 PMCID: PMC6271837 DOI: 10.3390/molecules191118747] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT) and acyltransferase (AT) have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.
Collapse
Affiliation(s)
- Nobuhiro Sasaki
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate 024-0003, Japan.
| | - Yuzo Nishizaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Yoshihiro Ozeki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Taira Miyahara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
53
|
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4833-47. [PMID: 24913629 PMCID: PMC4144768 DOI: 10.1093/jxb/eru243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anne Medhurst
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carlo W van Roermund
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Xuebin Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - José Fernández
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Barry Axcell
- SABMiller plc., SABMiller House, Church Street, West Woking, Surrey GU21 6HS, UK
| | - Luke Ramsay
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hans R Waterham
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Robbie Waugh
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
54
|
Block A, Widhalm JR, Fatihi A, Cahoon RE, Wamboldt Y, Elowsky C, Mackenzie SA, Cahoon EB, Chapple C, Dudareva N, Basset GJ. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis. THE PLANT CELL 2014; 26:1938-1948. [PMID: 24838974 PMCID: PMC4079360 DOI: 10.1105/tpc.114.125807] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
55
|
Bianco G, Agerbirk N, Losito I, Cataldi TRI. Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. PHYTOCHEMISTRY 2014; 100:92-102. [PMID: 24512839 DOI: 10.1016/j.phytochem.2014.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
With the aim of developing a procedure for detecting and identifying intact acylated glucosinolates (a-GLSs) found in trace quantities in natural plant samples, extracts of Barbarea vulgaris seeds were analyzed by reversed-phase liquid chromatography coupled with electrospray ionization and Fourier-transform ion cyclotron resonance mass spectrometry (RPLC-ESI FTICR MS). After a preliminary optimization of fragmentation conditions, based on a non-acylated parent glucosinolate (glucobarbarin) and three previously identified a-GLSs (the 6'-isoferuloyl esters of glucobarbarin, gluconasturtiin and glucobrassicin), infrared multiphoton dissociation (IRMPD) was employed for a tandem MS-based elucidation of the molecular structures of novel a-GLSs. As a result, three acylated derivatives of glucobarbarin, esterified at the thioglucose moiety with a coumaric acid isomer, sinapic acid or an isomer and a dimethoxycinnamic acid isomer, were identified. In addition, a further acylated glucosinolate was tentatively identified as the isoferuloyl ester of an unidentified hydroxylic derivative of glucobarbarin. This is the first demonstration of diversity in the acyl moieties of thioglucose-acylated glucosinolates, which may reflect the substrate specificity of the endogenous acyl transferase. As expected, 6'-isoferuloyl-glucobarbarin was detected as the main acylated GLS in extracts of B. vulgaris seeds. A quantitative estimate suggested that non-isoferuloyl substituted glucobarbarins correspond to ca. 0.026% of the level of 6'-isoferuloyl glucobarbarin. The formation of an uncommon distonic radical anion, most likely generated in the gas phase upon methyl radical (CH3·) loss from the isoferuloyl anion, is demonstrated.
Collapse
Affiliation(s)
- Giuliana Bianco
- Dipartimento di Scienze & Centro Interdipartimentale Grandi Attrezzature Scientifiche (CIGAS), Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Ilario Losito
- Dipartimento di Chimica & Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica & Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
56
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
57
|
Higashi Y, Saito K. Network analysis for gene discovery in plant-specialized metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1597-606. [PMID: 23336321 DOI: 10.1111/pce.12069] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 05/03/2023]
Abstract
Recent omics technologies provide information on multiple components of biological networks. Web-based data mining tools are continuously being developed. Because genes involved in specialized (secondary) metabolism are often co-ordinately regulated at the transcriptional level, a number of gene discovery studies have been successfully conducted using network analysis, especially by integrating gene co-expression network analysis and metabolomic investigation. In addition, next-generation sequencing technologies are currently utilized in functional genomics investigations of Arabidopsis and non-model plant species including medicinal plants. Systems-based approaches are expected to gain importance in medicinal plant research. This review discussed network analysis in Arabidopsis and gene discovery in plant-specialized metabolism in non-model plants.
Collapse
Affiliation(s)
- Yasuhiro Higashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
58
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
59
|
Xu H, Zhang F, Liu B, Huhman DV, Sumner LW, Dixon RA, Wang G. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes. MOLECULAR PLANT 2013; 6:1301-17. [PMID: 23300257 DOI: 10.1093/mp/sst004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyl-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HlCCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (K cat /K m = 4100 s(-1) M(-1)), whereas recombinant HlCCL4 specifically utilized isobutyric acid (Kcat/K m = 1800 s(-1) M(-1)) and 2-methylbutyric acid (Kcat/K m = 6900 s(-1) M(-1)) as substrates. Both HlCCLs, like hop valerophenone synthase (HlVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HlCCL2 and HlCCL4 with HlVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HlCCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.
Collapse
Affiliation(s)
- Haiyang Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
White campion (Silene latifolia) is a dioecious plant that emits 1,2-dimethoxybenzene (veratrole), a potent pollinator attractant to the nocturnal moth Hadena bicruris. Little is known about veratrole biosynthesis, although methylation of 2-methoxyphenol (guaiacol), another volatile emitted from white campion flowers, has been proposed. Here, we explore the biosynthetic route to veratrole. Feeding white campion flowers with [(13)C9]l-phenylalanine increased guaiacol and veratrole emission, and a significant portion of these volatile molecules contained the stable isotope. When white campion flowers were treated with the phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid, guaiacol and veratrole levels were reduced by 50% and 63%, respectively. Feeding with benzoic acid (BA) or salicylic acid (SA) increased veratrole emission 2-fold, while [(2)H5]BA and [(2)H6]SA feeding indicated that the benzene ring of both guaiacol and veratrole is derived from BA via SA. We further report guaiacol O-methyltransferase (GOMT) activity in the flowers of white campion. The enzyme was purified to apparent homogeneity, and the peptide sequence matched that encoded by a recently identified complementary DNA (SlGOMT1) from a white campion flower expressed sequence tag database. Screening of a small population of North American white campion plants for floral volatile emission revealed that not all plants emitted veratrole or possessed GOMT activity, and SlGOMT1 expression was only observed in veratrole emitters. Collectively these data suggest that veratrole is derived by the methylation of guaiacol, which itself originates from phenylalanine via BA and SA, and therefore implies a novel branch point of the general phenylpropanoid pathway.
Collapse
|
61
|
Reumann S. Biosynthesis of vitamin K1 (phylloquinone) by plant peroxisomes and its integration into signaling molecule synthesis pathways. Subcell Biochem 2013; 69:213-29. [PMID: 23821151 DOI: 10.1007/978-94-007-6889-5_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vitamin K1 (phylloquinone) is a substituted membrane-anchored naphthoquinone that functions as an essential electron carrier in photosystem I in photosynthetic organisms. While plants can synthesize phylloquinone de novo, humans rely on vitamin K1 uptake from green leafy vegetables as a precursor for the synthesis of its structural derivative, menaquinone-4 (vitamin K2). In vertebrates, menaquinone-4 serves as an enzymatic co-factor that is required for posttranslational protein modification, i.e. the γ-carboxylation of glutamate residues in specific proteins involved in blood coagulation, bone metabolism and vascular biology. Comprehensive knowledge of the subcellular compartmentalization of vitamin K biosynthesis in plants, pathway regulation and its integration in cellular metabolic networks is important to design functional food with elevated vitamin levels and health benefits to human consumers. It had long been assumed that plants obtained all enzymes for phylloquinone biosynthesis from the ancient cyanobacterial endosymbiont and that, upon gene transfer to the nucleus, all biosynthetic enzymes were re-directed to the plastid. This view, however, has been recently challenged by the exclusive localization of the 6th pathway enzyme (MenB/NS) to peroxisomes in Arabidopsis. Soon afterwards, not only the preceding enzyme, acyl-activating enzyme 14 (MenE/AAE14), but also the succeeding thioesterase (DHNAT) were also shown to be peroxisomal. Phylogenetic analysis revealed a heterogeneous evolutionary origin of the peroxisomal enzymes. Phylloquinone biosynthesis reveals several branching points leading to the synthesis of important defence signalling molecules, such as salicylic acid and benzoic acid derivatives. Recent research data demonstrate that, of the two phenylalanine-dependent pathways for benzoic and salicylic acid biosynthesis, the CoA-dependent β-oxidative pathway, which is peroxisomal, is the major route. Hence, peroxisomes emerge as an important cell compartment for the interconnected networks of phylloquinone, benzoic and salicylic acid biosynthesis. Numerous mechanisms to regulate intermediate flux and the fine-tuned inducible production of secondary metabolites, including signalling molecules, await their characterization at the molecular level.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway,
| |
Collapse
|
62
|
Linka N, Theodoulou FL. Metabolite transporters of the plant peroxisomal membrane: known and unknown. Subcell Biochem 2013; 69:169-194. [PMID: 23821149 DOI: 10.1007/978-94-007-6889-5_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tremendous progress in plant peroxisome research has revealed unexpected metabolic functions for plant peroxisomes. Besides photorespiration and lipid metabolism, plant peroxisomes play a key role in many metabolic and signaling pathways, such as biosynthesis of phytohormones, pathogen defense, senescence-associated processes, biosynthesis of biotin and isoprenoids, and metabolism of urate, polyamines, sulfite, phylloquinone, volatile benzenoids, and branched chain amino acids. These peroxisomal pathways require an interplay with other cellular compartments, including plastids, mitochondria, and the cytosol. Consequently, a considerable number of substrates, intermediates, end products, and cofactors have to shuttle across peroxisome membranes. However, our knowledge of their membrane passage is still quite limited. This review describes the solute transport processes required to connect peroxisomes with other cell compartments. Furthermore, we discuss the known and yet-to-be-defined transport proteins that mediate these metabolic exchanges across the peroxisomal bilayer.
Collapse
Affiliation(s)
- Nicole Linka
- Department of Plant Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany,
| | | |
Collapse
|
63
|
Gaid MM, Sircar D, Müller A, Beuerle T, Liu B, Ernst L, Hänsch R, Beerhues L. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures. PLANT PHYSIOLOGY 2012; 160:1267-80. [PMID: 22992510 PMCID: PMC3490583 DOI: 10.1104/pp.112.204180] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/17/2012] [Indexed: 05/23/2023]
Abstract
Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.
Collapse
|