51
|
Köstel AS, Bora-Tatar G, Erdem-Yurter H. Spinal muscular atrophy: An oxidative stress response counteracted with curcumin. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
52
|
Parellada M, Moreno C, Mac-Dowell K, Leza JC, Giraldez M, Bailón C, Castro C, Miranda-Azpiazu P, Fraguas D, Arango C. Plasma antioxidant capacity is reduced in Asperger syndrome. J Psychiatr Res 2012; 46:394-401. [PMID: 22225920 DOI: 10.1016/j.jpsychires.2011.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/06/2023]
Abstract
Recent evidence suggests that children with autism have impaired detoxification capacity and may suffer from chronic oxidative stress. To our knowledge, there has been no study focusing on oxidative metabolism specifically in Asperger syndrome (a milder form of autism) or comparing this metabolism with other psychiatric disorders. In this study, total antioxidant status (TAOS), non-enzymatic (glutathione and homocysteine) and enzymatic (catalase, superoxide dismutase, and glutathione peroxidase) antioxidants, and lipid peroxidation were measured in plasma or erythrocyte lysates in a group of adolescent patients with Asperger syndrome, a group of adolescents with a first episode of psychosis, and a group of healthy controls at baseline and at 8-12 weeks. TAOS was also analyzed at 1 year. TAOS was reduced in Asperger individuals compared with healthy controls and psychosis patients, after covarying by age and antipsychotic treatment. This reduced antioxidant capacity did not depend on any of the individual antioxidant variables measured. Psychosis patients had increased homocysteine levels in plasma and decreased copper and ceruloplasmin at baseline. In conclusion, Asperger patients seem to have chronic low detoxifying capacity. No impaired detoxifying capacity was found in the first-episode psychosis group in the first year of illness.
Collapse
Affiliation(s)
- Mara Parellada
- Child and Adolescent Psychiatry, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Centro de Investigación en Red de Salud Mental, CIBERSAM, Dr Esquerdo 46, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Administration of Histidine to Female Rats Induces Changes in Oxidative Status in Cortex and Hippocampus of the Offspring. Neurochem Res 2012; 37:1031-6. [DOI: 10.1007/s11064-012-0703-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
54
|
Hayashi M, Miyata R, Tanuma N. Oxidative Stress in Developmental Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:278-90. [DOI: 10.1007/978-1-4614-0653-2_21] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol 2011; 256:369-78. [PMID: 21354197 DOI: 10.1016/j.taap.2011.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 01/31/2023]
Abstract
The aims of this study were to characterize the expression of paraoxonase 2 (PON2) in mouse brain and to assess its antioxidant properties. PON2 levels were highest in the lung, intestine, heart and liver, and lower in the brain; in all tissues, PON2 expression was higher in female than in male mice. PON2 knockout [PON2(-/-)] mice did not express any PON2, as expected. In the brain, the highest levels of PON2 were found in the substantia nigra, the nucleus accumbens and the striatum, with lower levels in the cerebral cortex, hippocampus, cerebellum and brainstem. A similar regional distribution of PON2 activity (measured by dihydrocoumarin hydrolysis) was also found. PON3 was not detected in any brain area, while PON1 was expressed at very low levels, and did not show any regional difference. PON2 levels were higher in astrocytes than in neurons isolated from all brain regions, and were highest in cells from the striatum. PON2 activity and mRNA levels followed a similar pattern. Brain PON2 levels were highest around birth, and gradually declined. Subcellular distribution experiments indicated that PON2 is primarily expressed in microsomes and in mitochondria. The toxicity in neurons and astrocytes of agents known to cause oxidative stress (DMNQ and H(2)O(2)) was higher in cells from PON2(-/-) mice than in the same cells from wild-type mice, despite similar glutathione levels. These results indicate that PON2 is expressed in the brain, and that higher levels are found in dopaminergic regions such as the striatum, suggesting that this enzyme may provide protection against oxidative stress-mediated neurotoxicity.
Collapse
Affiliation(s)
- Gennaro Giordano
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
56
|
Whittle N, Li L, Chen WQ, Yang JW, Sartori SB, Lubec G, Singewald N. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 2011; 40:1231-48. [DOI: 10.1007/s00726-010-0758-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 01/22/2023]
|
57
|
Júnior HVN, de França Fonteles MM, Mendes de Freitas R. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:130-7. [PMID: 20592767 PMCID: PMC2763238 DOI: 10.4161/oxim.2.3.8488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 01/30/2023]
Abstract
Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine.
Collapse
|
58
|
Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J, Darie CC. Mass Spectrometry for Proteomics-Based Investigation of Oxidative Stress and Heat Shock Proteins. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Izabela Sokolowska
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Alisa G. Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jessica Wagner
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jeannette Dorler
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Kelly Wormwood
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| |
Collapse
|
59
|
Oxidative stress in children affected by epileptic encephalopathies. J Neurol Sci 2011; 300:103-6. [DOI: 10.1016/j.jns.2010.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/28/2010] [Accepted: 09/14/2010] [Indexed: 12/30/2022]
|
60
|
Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:347-62. [PMID: 20429032 DOI: 10.1007/s10545-010-9075-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/28/2010] [Accepted: 03/05/2010] [Indexed: 12/19/2022]
Abstract
Although neurodegenerative diseases are most prevalent in the elderly, in rare cases, they can also affect children. Lysosomal storage diseases (LSDs) are a group of inherited metabolic neurodegenerative disorders due to deficiency of a specific protein integral to lysosomal function, such as enzymes or lysosomal components, or to errors in enzyme trafficking/targeting and defective function of nonenzymatic lysosomal proteins, all preventing the complete degradation and recycling of macromolecules. This primary metabolic event determines a cascade of secondary events, inducing LSD's pathology. The accumulation of intermediate degradation affects the function of lysosomes and other cellular organelles. Accumulation begins in infancy and progressively worsens, often affecting several organs, including the central nervous system (CNS). Affected neurons may die through apoptosis or necrosis, although neuronal loss usually does not occur before advanced stages of the disease. CNS pathology causes mental retardation, progressive neurodegeneration, and premature death. Many of these features are also found in adult neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. However, the nature of the secondary events and their exact contribution to mental retardation and dementia remains largely unknown. Recently, lysosomal involvement in the pathogenesis of these disorders has been described. Improved knowledge of secondary events may have impact on diagnosis, staging, and follow-up of affected children. Importantly, new insights may provide indications about possible disease reversal upon treatment. A discussion about the CNS pathophysiology involvement in LSDs is the aim of this review. The lysosomal involvement in adult neurodegenerative diseases will also be briefly described.
Collapse
Affiliation(s)
- Cinzia Maria Bellettato
- Department of Paediatrics, Centre for Rare Diseases, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | | |
Collapse
|
61
|
Yoon JH, Lee MS, Kang JH. Reaction of ferritin with hydrogen peroxide induces lipid peroxidation. BMB Rep 2010; 43:219-24. [PMID: 20356464 DOI: 10.5483/bmbrep.2010.43.3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid peroxidation is known to be an important factor in the pathologies of many diseases associated with oxidative stress. We assessed the lipid peroxidation induced by the reaction of ferritin with H2O2. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with ferritin and H2O2, lipid peroxidation increased in the presence of ferritin and H2O2 in a concentration-dependent manner. The hydroxyl radical scavengers, azide and thiourea, prevented lipid peroxidation induced by the ferritin/H2O2 system. The iron specific chelator desferoxamine also prevented ferritin/H2O2 systemmediated lipid peroxidation. These results demonstrate the possible role of iron in ferritin/H2O2 system-mediated lipid peroxidation. Carnosine is involved in many cellular defense processes, including free radical detoxification. In this study, carnosine, homocarnosine, and anserine were shown to significantly prevent ferritin/H2O2 system-mediated lipid peroxidation and also inhibited the free radical-generation activity of ferritin. These results indicated that carnosine and related compounds may prevent ferritin/H2O2 system-mediated lipid peroxidation via free radical scavenging.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, Korea
| | | | | |
Collapse
|
62
|
Consiglio AR, Ramos ALLP, Henriques JAP, Picada JN. DNA brain damage after stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:652-6. [PMID: 20226828 DOI: 10.1016/j.pnpbp.2010.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 03/06/2010] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this study was to verify the presence of DNA brain lesion after acute stress in rats. METHOD Adult male Wistar rats were divided into 3 groups according to the stressor (control, forced swimming or restraint), and sampled at 2 time points: immediately or 1week after stress. Trunk blood and the brain areas (prefrontal cortex, amygdala and hippocampus) were extracted for DNA analysis by the comet assay. The cells were classified according to the damage index and damage frequency based on the comet tail size. RESULTS Immediately after the stress, DNA damage was detected in the amygdala area and in the hippocampus after restraint and forced swimming. In the prefrontal cortex, DNA was damaged after forced swimming. However, no alteration was seen in blood. Seven days after the stress, DNA damage was still identified in the hippocampus after forced swimming and restraint, whereas no alteration was detected in the other brain areas or in blood. CONCLUSION One week after a single stressful event, a reversible DNA damage was identified in the prefrontal cortex and in the amygdala, whereas DNA damage in the hippocampus still remained.
Collapse
Affiliation(s)
- A R Consiglio
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
63
|
Oba D, Hayashi M, Minamitani M, Hamano S, Uchisaka N, Kikuchi A, Kishimoto H, Takagi M, Morio T, Mizutani S. Autopsy study of cerebellar degeneration in siblings with ataxia-telangiectasia-like disorder. Acta Neuropathol 2010; 119:513-20. [PMID: 20087742 DOI: 10.1007/s00401-010-0639-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 12/27/2022]
Abstract
Ataxia-telangiectasia-like disorder (ATLD) is caused by mutations of the MRE11 gene and is characterized by cerebellar ataxia, increased frequency of chromosomal translocations and hypersensitivity to ionizing radiation. ATLD is a rare genetic disease and the associated pathological changes in the brain are unclear. Here, we report the neuropathological findings in the first cases of genetically confirmed ATLD in a pair of Japanese male siblings. Magnetic resonance imaging studies performed during infancy revealed that both subjects had cerebellar atrophy. They died of pulmonary cancer at 9 and 16 years. The siblings had the same compound heterozygous mutations of the MRE11 gene. Brain autopsy demonstrated mild and severe cerebellar atrophy in the vermis and medial part of the hemispheres, oral to the horizontal fissure, respectively. Nuclear immunoreactivity for MRE11 was absent in neurons of cerebellar cortex, cerebral cortex, basal ganglia and midbrain, whereas being widespread in normal control brains. Immunoreactivity for the DNA oxidative stress marker, 8-hydroxy-2'-deoxyguanosine, was identified in nuclei of granule cells and Bergmann glial cells. The combination of MRE11 deficiency and DNA oxidative injury might have led to selective cerebellar degeneration.
Collapse
Affiliation(s)
- Daiju Oba
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama, Saitama 339-8551, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
López V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AK, Calvo MI. Neuroprotective and neurochemical properties of mint extracts. Phytother Res 2009; 24:869-74. [DOI: 10.1002/ptr.3037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Santos ÍMS, da Rocha Tomé A, Saldanha GB, Ferreira PMP, Militão GCG, de Freitas RM. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:214-21. [PMID: 20716907 PMCID: PMC2763259 DOI: 10.4161/oxim.2.4.8876] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 11/28/2022]
Abstract
Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong protective effect could be achieved using ascorbic acid.
Collapse
|
66
|
Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 2009; 29:8828-38. [PMID: 19587290 DOI: 10.1523/jneurosci.1779-09.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death.
Collapse
|
67
|
Weidenheim KM, Dickson DW, Rapin I. Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev 2009; 130:619-36. [PMID: 19647012 DOI: 10.1016/j.mad.2009.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Global growth and development failure, premature, accelerated, pathologic aging, and neurodegeneration characterize Cockayne syndrome (CS) and the cerebro-oculo-facial-skeletal and xeroderma pigmentosum/CS syndromes which overlap CS partially in their genetic, somatic, and neuropathologic features. Mutations of CSA or CSB genes jeopardize transcription-coupled repair of damaged nuclear and mitochondrial DNA and resumption of replication and transcription. Resultant defective proteins or gene silencing eventuate in profound dwarfism and micrencephaly, cachexia, vasculopathy, and neurodegeneration. Cellular effects are highly selective. Purkinje cells may die by apoptosis and have grossly dystrophic dendrites. Neuronal death and axonal spheroids indexing neuronal pathology predominate in, but are not limited to, the cerebellum. Progressive loss of retinal, cochlear, and vestibular sensory receptors foster degeneration of ganglion cells and transneuronal brain degeneration. Some proliferating astrocytes are multinucleated and bizarre. Primary damage of oligodendrocytes and Schwann cells may - or may not - explain severe patchy myelin loss ("tigroid leukodystrophy") and segmental demyelinating peripheral neuropathy. Age-related changes are minor in the brain, although precocious severe athero- and arteriolosclerosis are responsible for occasional strokes. Vasculopathology may contribute to myelin loss and to dystrophic mineralization of neurons and vessels, especially in basal ganglia and cerebellum. Understanding the genetics, biochemical, and cellular pathophysiology of these disorders remains fragmentary.
Collapse
Affiliation(s)
- Karen M Weidenheim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | |
Collapse
|