51
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
52
|
Ravi SK, Narasingappa RB, Vincent B. Neuro-nutrients as anti-alzheimer's disease agents: A critical review. Crit Rev Food Sci Nutr 2018; 59:2999-3018. [PMID: 29846084 DOI: 10.1080/10408398.2018.1481012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is characterized by a massive neuronal death causing memory loss, cognitive impairment and behavioral alteration that ultimately lead to dementia and death. AD is a multi-factorial pathology controlled by molecular events such as oxidative stress, protein aggregation, mitochondrial dysfunction and neuro inflammation. Nowadays, there is no efficient disease-modifying treatment for AD and epidemiological studies have suggested that diet and nutrition have a significant impact on the development of this disorder. Indeed, some nutrients can protect all kind of cells, including neurons. As prevention is better than cure, life style improvement, with a special emphasis on diet, should seriously be considered as an anti-AD track and intake of nutrients promoting neuronal health is the need of the hour. Diets rich in unsaturated fatty acids, polyphenols and vitamins have been shown to protect against AD, whereas saturated fatty acids-containing diets deprived of polyphenols promote the development of the disease. Thus, Mediterranean diets, mainly composed of fruits, vegetables and omega-3 fatty acids, stand as valuable, mild and preventive anti-AD agents. This review focuses on our current knowledge in the field and how one can fight this devastating neurodegenerative disorder through the simple proper modification of our life style.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Ramesh B Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand.,Centre National de la Recherche Scientifique , Paris , France
| |
Collapse
|
53
|
Chen BW, Li WX, Wang GH, Li GH, Liu JQ, Zheng JJ, Wang Q, Li HJ, Dai SX, Huang JF. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants. PeerJ 2018; 6:e4756. [PMID: 29770277 PMCID: PMC5951129 DOI: 10.7717/peerj.4756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
Background Alzheimer’ disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. Methods We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. Results A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Discussion Natural compounds from TCM provide a broad prospect for the screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.
Collapse
Affiliation(s)
- Bi-Wen Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guang-Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Qian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui-Juan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China
| |
Collapse
|
54
|
Kim SH, Park YM, Choi BY, Kim MK, Roh S, Kim K, Yang YJ. Associations of serum levels of vitamins A, C, and E with the risk of cognitive impairment among elderly Koreans. Nutr Res Pract 2018; 12:160-165. [PMID: 29629033 PMCID: PMC5886968 DOI: 10.4162/nrp.2018.12.2.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES Korea is quickly becoming an aged society. Dementia is also becoming a vital public health problem in Korea. Cognitive impairment as a pre-stage of dementia shares most risk factors for dementia. The aim of the present study was to determine associations of serum levels of vitamins A, C, and E with the risk of cognitive impairment among elderly Koreans. SUBJECTS/METHODS In this cross-sectional study, a total of 230 participants aged 60-79 years from Yangpyeong cohort were included. Cognitive function was assessed by the Korean version of the Mini-Mental State Examination for Dementia Screening. The logistic multivariable regression model was applied to determine the effect of serum vitamins A, C, and E on the risk of cognitive impairment. RESULTS There was no significant association between the risk of cognitive impairment and serum levels of vitamin A and vitamin C. There was a significant odd ratio when the second tertile group of beta-gamma tocopherol level was compared to the first tertile group [odds ratio (OR) = 0.37, 95% confidence interval (CI) = 0.14-0.98, P for trend = 0.051]. In subgroup analyses, there were significant negative associations between beta-gamma tocopherol level and the risk of cognitive impairment in men (OR = 0.17, 95% CI = 0.03-0.87, P for trend = 0.028), non-drinkers or former drinkers (OR = 0.13, 95% CI = 0.02-0.66, P for trend = 0.025), and non-smokers or former smokers (OR = 0.27, 95% CI = 0.09-0.82, P for trend = 0.017). CONCLUSION Serum beta-gamma tocopherol levels tended to be inversely associated with the risk of cognitive impairment. Further prospective large-scaled studies are needed to examine this association.
Collapse
Affiliation(s)
- Sung Hee Kim
- Department of Clinical Nutrition, School of Public Health, Dongduk Women's University, Seoul 02748, Korea
| | - Yeong Mi Park
- Department of Foods and Nutrition, College of Natural Sciences, Dongduk Women's University, 60, Hwarang-ro 13-gil, Seongbuk-gu, Seoul 02748, Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, Hanyang University, Seoul 04763, Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Hanyang University, Seoul 04763, Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Kyunga Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Yoon Jung Yang
- Department of Foods and Nutrition, College of Natural Sciences, Dongduk Women's University, 60, Hwarang-ro 13-gil, Seongbuk-gu, Seoul 02748, Korea
| |
Collapse
|
55
|
Mu Q, Yu W, Zheng S, Shi H, Li M, Sun J, Wang D, Hou X, Liu L, Wang X, Zhao Z, Liang R, Zhang X, Dong W, Zeng C, Guo J. RIP140/PGC-1α axis involved in vitamin A-induced neural differentiation by increasing mitochondrial function. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:806-816. [PMID: 29513101 DOI: 10.1080/21691401.2018.1436552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 10/17/2022]
Abstract
Vitamin A deficiency and mitochondrial dysfunction are both associated with neural differentiation-related disorders, such as Alzheimer's disease (AD) and Down syndrome (DS). The mechanism of vitamin A-induced neural differentiation and the notion that vitamin A can regulate the morphology and function of mitochondria in its induction of neural differentiation through the RIP140/PGC-1α axis are unclear. The aim of this study was to investigate the roles and underlying mechanisms of RIP140/PGC-1α axis in vitamin A-induced neural differentiation. Human neuroblastoma cells (SH-SY5Y) were used as a model of neural stem cells, which were incubated with DMSO, 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (at-RA). Neural differentiation of SH-SY5Y was evaluated by Sandquist calculation, combined with immunofluorescence and real-time polymerase chain reaction (PCR) of neural markers. Mitochondrial function was estimated by ultrastructure assay using transmission electron microscopy (TEM) combined with the expression of PGC-1α and NEMGs using real-time PCR. The participation of the RA signaling pathway was demonstrated by adding RA receptor antagonists. Vitamin A derivatives are able to regulate mitochondrial morphology and function, and furthermore to induce neural differentiation through the RA signaling pathway. The RIP140/PGC-1α axis is involved in the regulation of mitochondrial function in vitamin A derivative-induced neural differentiation.
Collapse
Affiliation(s)
- Qing Mu
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Weidong Yu
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Shuying Zheng
- c Department of Electron Microscope Lab , Peking University People's Hospital , Beijing , China
| | - Hongxia Shi
- c Department of Electron Microscope Lab , Peking University People's Hospital , Beijing , China
| | - Mei Li
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Jie Sun
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Di Wang
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Xiaoli Hou
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Ling Liu
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Xinjuan Wang
- b Department of Central Laboratory & Institute of Clinical Molecular Biology , Peking University People's Hospital , Beijing , China
| | - Zhuran Zhao
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Rong Liang
- d Department of Obstetrics and Gynecology , Peking University People's Hospital , Beijing , China
| | - Xue Zhang
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Wei Dong
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Chaomei Zeng
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| | - Jingzhu Guo
- a Department of Pediatric , Peking University People's Hospital , Beijing , China
| |
Collapse
|
56
|
Informatics for Nutritional Genetics and Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1005:143-166. [PMID: 28916932 DOI: 10.1007/978-981-10-5717-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While traditional nutrition science is focusing on nourishing population, modern nutrition is aiming at benefiting individual people. The goal of modern nutritional research is to promote health, prevent diseases, and improve performance. With the development of modern technologies like bioinformatics, metabolomics, and molecular genetics, this goal is becoming more attainable. In this chapter, we will discuss the new concepts and technologies especially in informatics and molecular genetics and genomics, and how they have been implemented to change the nutrition science and lead to the emergence of new branches like nutrigenomics, nutrigenetics, and nutritional metabolomics.
Collapse
|
57
|
Yang BY, Tan JY, Liu Y, Liu B, Jin S, Guo HW, Kuang HX. A UPLC-TOF/MS-based metabolomics study of rattan stems ofSchisandra chinensiseffects on Alzheimer's disease rats model. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Jin-Yan Tan
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Bo Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Shuang Jin
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Hong-Wei Guo
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| |
Collapse
|
58
|
Deckert-Gaudig T, Deckert V. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin. Sci Rep 2016; 6:39622. [PMID: 28008970 PMCID: PMC5180225 DOI: 10.1038/srep39622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
Fibril formation implies the conversion of a protein's native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.
Collapse
Affiliation(s)
- Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einsteinstr. 9, D-07745 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einsteinstr. 9, D-07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena and Abbe Center of Photonics, Helmholtzweg 4, D-07743 Jena, Germany
| |
Collapse
|
59
|
Bhatti AB, Usman M, Ali F, Satti SA. Vitamin Supplementation as an Adjuvant Treatment for Alzheimer's Disease. J Clin Diagn Res 2016; 10:OE07-11. [PMID: 27656493 DOI: 10.7860/jcdr/2016/20273.8261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/19/2016] [Indexed: 01/15/2023]
Abstract
Alzheimer's Disease (AD) is a slowly progressing neurodegenerative disorder representing a major health concern worldwide. This disorder is characterised by progressive dementia and cognitive decline. The pathological hallmarks of AD include the presence of Aβ plaques and tau neurofibrils. Research has shown that oxidative stress represents a major risk factor associated with AD pathology. Accumulation of Aβ plaques and relative lack of antioxidant defence mechanisms, including cellular antioxidant enzymes and dietary antioxidants like vitamins, assist in the exacerbation of oxidative stress. Reactive Oxygen Species (ROS) produced as the result of oxidative stress, that increase structural and functional abnormalities in brain neurons, which then manifests as dementia and decline in cognition. Data from numerous epidemiological studies suggests that nutrition is one of the most important yet modifiable risk factors for AD. Since oxidative stress contributes a great deal in the development and progression of AD, anything that could attenuate oxidative stress would help in decreasing the prevalence and incidence of AD. There is increasing evidence that supports the use of different antioxidant as an adjuvant treatment for AD. Vitamins are one such antioxidant that can be used as an adjuvant in AD treatment. This paper will focus on the evidence, based on current literature, linking the use of vitamin supplementations as an adjuvant treatment for AD.
Collapse
Affiliation(s)
- Adnan Bashir Bhatti
- Research Fellow, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| | - Muhammad Usman
- Research Fellow, Department of Medicine, Jinnah Hospital Lahore (JHL)/Allama Iqbal Medical College (AIMC) , Lahore, Pakistan
| | - Farhan Ali
- Associate Professor, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| | - Siddique Akbar Satti
- Professor Head, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| |
Collapse
|
60
|
Molecular Approaches to Genetically Improve the Accumulation of Health-Promoting Secondary Metabolites in Staple Crops-A Case Study: The Lipoxygenase-B1 Genes and Regulation of the Carotenoid Content in Pasta Products. Int J Mol Sci 2016; 17:ijms17071177. [PMID: 27455242 PMCID: PMC4964548 DOI: 10.3390/ijms17071177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites, also known as phytochemicals, represent a large subset of plant molecules that include compounds with health-promoting effects. Indeed, a number of epidemiological studies have shown that, when taken regularly and in adequate amounts, these molecules can have long-term beneficial effects on human health, through reduction of the incidence of degenerative diseases, such as cardiovascular diseases, obesity, diabetes, and cancer. As the dietary intake of these phytochemicals is often inadequate, various strategies are in use to improve their content in staple crops, and the end-products thereof. One of the most effective strategies is crop improvement through genetic approaches, as this is the only way to generate new cultivars in which the high accumulation of a given phytochemical is stably fixed. Efforts to genetically improve quality traits are rapidly evolving, from classical breeding to molecular-assisted approaches; these require sound understanding of the molecular bases underlying the traits, to identify the genes/alleles that control them. This can be achieved through global analysis of the metabolic pathway responsible for phytochemical accumulation, to identify the link between phytochemical content and the activities of key enzymes that regulate the metabolic pathway, and between the key enzymes and their encoding genes/alleles. Once these have been identified, they can be used as markers for selection of new improved genotypes through biotechnological approaches. This review provides an overview of the major health-promoting properties shown to be associated with the dietary intake of phytochemicals, and describes how molecular approaches provide means for improving the health quality of edible crops. Finally, a case study is illustrated, of the identification in durum wheat of the Lipoxygenase-B1 genes that control the final carotenoid content in semolina-based foods, such as pasta products.
Collapse
|
61
|
The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex. Neural Plast 2016; 2016:3707406. [PMID: 26881107 PMCID: PMC4735929 DOI: 10.1155/2016/3707406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.
Collapse
|
62
|
Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 2016; 51:7-21. [PMID: 26271515 PMCID: PMC4707056 DOI: 10.1007/s12020-015-0715-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
Abstract
Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Cloyce L Stetson
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrzej T Slominski
- Department of Dermatology, VA Medical Center, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
63
|
Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids 2015; 103:72-88. [PMID: 25988614 PMCID: PMC4631694 DOI: 10.1016/j.steroids.2015.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
The mammalian skin is a heterogeneous organ/tissue covering our body, showing regional variations and endowed with neuroendocrine activities. The latter is represented by its ability to produce and respond to neurotransmitters, neuropeptides, hormones and neurohormones, of which expression and phenotypic activities can be modified by ultraviolet radiation, chemical and physical factors, as well as by cytokines. The neuroendocrine contribution to the responses of skin to stress is served, in part, by local synthesis of all elements of the hypothalamo-pituitary-adrenal axis. Skin with subcutis can also be classified as a steroidogenic tissue because it expresses the enzyme, CYP11A1, which initiates steroid synthesis by converting cholesterol to pregnenolone, as in other steroidogenic tissues. Pregnenolone, or steroidal precursors from the circulation, are further transformed in the skin to corticosteroids or sex hormones. Furthermore, in the skin CYP11A1 acts on 7-dehydrocholesterol with production of 7-dehydropregnolone, which can be further metabolized to other Δ7steroids, which after exposure to UVB undergo photochemical transformation to vitamin D like compounds with a short side chain. Vitamin D and lumisterol, produced in the skin after exposure to UVB, are also metabolized by CYP11A1 to several hydroxyderivatives. Vitamin D hydroxyderivatives generated by action of CYP11A1 are biologically active and are subject to further hydroxylations by CYP27B1, CYP27A1 and CP24A. Establishment of which intermediates are produced in the epidermis in vivo and whether they circulate on the systemic level represent a future research challenge. In summary, skin is a neuroendocrine organ endowed with steroid/secosteroidogenic activities.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, VA Medical Center, Birmingham, AL, USA.
| | - Pulak R Manna
- Department of immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
64
|
Al-Assaf AS, Denton DA, Abraham RP, Rutjes AWS, Chong LY, Anderson JL, Malik MA, Tabet N. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - John L Anderson
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
65
|
Denton DA, Abraham RP, Al-Assaf AS, Rutjes AWS, Chong LY, Anderson JL, Malik MA, Tabet N. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid life. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - John L Anderson
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
66
|
Abraham RP, Denton DA, Al-Assaf AS, Rutjes AWS, Chong LY, Malik MA, Tabet N. Vitamin and mineral supplementation for prevention of dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rajesh P Abraham
- Cognitive Treatment and Research Unit, Sussex Partnership NHS Foundation Trust; Old Age Psychiatry; Grove House Southfield Road Crowborough UK TN6 1HB
| | - David A Denton
- Sussex Partnership NHS Foundation Trust; Specialist Older People's Services; Uckfield Community Hosptial Framfield Road Uckfield UK TN22 5AW
| | - Aalya S Al-Assaf
- Brighton and Sussex Medical School, University of Brighton; Division of Medical Education; Mayfield House Falmer UK BN1 9PH
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | | | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of Brighton; Department of Medical Education (Postgraduate); Room 341, Mayfield House Falmer UK BN1 9PH
| | - Naji Tabet
- Brighton and Sussex Medical School; Postgraduate Medicine; Mayfield House, University of Brighton Falmer Brighton UK BN1 9PH
| |
Collapse
|
67
|
Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct Funct 2015; 221:3315-26. [PMID: 26374207 PMCID: PMC4920859 DOI: 10.1007/s00429-015-1102-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2–7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2–7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.
Collapse
|
68
|
Up-regulation of steroid biosynthesis by retinoid signaling: Implications for aging. Mech Ageing Dev 2015; 150:74-82. [PMID: 26303142 DOI: 10.1016/j.mad.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/14/2015] [Accepted: 08/15/2015] [Indexed: 11/24/2022]
Abstract
Retinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We have reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter. Herein we demonstrate that retinoids are capable of enhancing StAR protein, P-StAR, and steroid production in granulosa, adrenocortical, glial, and epidermal cells. Whereas transient expression of RARα and RXRα enhanced 9-cis RA induced StAR gene transcription, silencing of RXRα with siRNA, decreased StAR and steroid levels. An oligonucleotide probe encompassing an LXR-RXR/RAR motif bound to adrenocortical and epidermal keratinocyte nuclear proteins in EMSAs. ChIP studies revealed association of RARα and RXRα with the StAR proximal promoter. Further studies demonstrated that StAR mRNA levels decreased in diseased and elderly men and women skin tissues and that atRA could restore steroidogenesis in epidermal keratinocytes of aged individuals. These findings provide novel insights into the relevance of retinoid signaling in the up-regulation of steroid biosynthesis in various target tissues, and indicate that retinoid therapy may have important implications in age-related complications and diseases.
Collapse
|
69
|
Wang R, Chen S, Liu Y, Diao S, Xue Y, You X, Park EA, Liao FF. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 2015; 290:22532-42. [PMID: 26240147 DOI: 10.1074/jbc.m115.662908] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance and neuroinflammation have emerged as two likely key contributors in the pathogenesis of Alzheimer disease (AD), especially in those sporadic AD cases compromised by diabetes or cardiovascular disease. Amyloid-β (Aβ) deposition and its associated inflammatory response are hallmarks in sporadic AD brains. Elevated expression and activity of β-secretase 1 (BACE1), the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides, are also observed in sporadic AD brains. Previous studies have suggested that there is therapeutic potential for retinoic acid in treating neurodegeneration based on decreased Aβ. Here we discovered that BACE1 expression is elevated in the brains of both Tg2576 transgenic mice and mice on high fat diets. These conditions are associated with a neuroinflammatory response. We found that administration of all-trans-retinoic acid (atRA) down-regulated the expression of BACE1 in the brains of Tg2576 mice and in mice fed a high fat diet. Moreover, in LPS-treated mice and cultured neurons, BACE1 expression was repressed by the addition of atRA, correlating with the anti-inflammatory efficacy of atRA. Mutations of the NFκB binding site in BACE1 promoter abolished the suppressive effect of atRA. Furthermore, atRA disrupted LPS-induced nuclear translocation of NFκB and its binding to BACE1 promoter as well as promoting the recruitment of the corepressor NCoR. Our findings indicate that atRA represses BACE1 gene expression under inflammatory conditions via the modulation of NFκB signaling.
Collapse
Affiliation(s)
- Ruishan Wang
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163,
| | - Shaoya Chen
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Yingchun Liu
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shiyong Diao
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Yueqiang Xue
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Xiaoqing You
- the Division of Cell Biology and Genetics, Fujian Medical University, Fuzhou 350004, China
| | - Edwards A Park
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, the Department of Veterans Affairs Medical Center, Memphis, Tennessee 38163, and
| | - Francesca-Fang Liao
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163,
| |
Collapse
|
70
|
Abstract
Population aging is a worldwide demographic trend. Consequently, the prevalence of chronic age-related conditions such as clinically diagnosed neurological diseases, cognitive decline, and dementia will significantly increase in the near future. The important role of diets and healthy lifestyle as preventative of neurodegenerative diseases is widely accepted nowadays, and it may provide preventive strategies in very early, non-symptomatic phases of dementia well, especially because there are still no effective treatments for it. In this article, we review the known effects of selected micronutrients on the aging brain and we propose strategies for dietary improvements.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Emma Burgos-Ramos
- Laboratory of Functional Foods, IMDEA-Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
71
|
Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Ronowska A, Pawełczyk T. Retinoic acid as a therapeutic option in Alzheimer's disease: a focus on cholinergic restoration. Expert Rev Neurother 2015; 15:239-49. [PMID: 25683350 DOI: 10.1586/14737175.2015.1008456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a potential therapeutic agent in neurodegenerative diseases including Alzheimer's disease. Retinoic acid was found to exert particularly strong enhancing effects on acetylcholine transmitter functions in brain cholinergic neurons, loss of which is tightly linked to the development of cognitive and memory deficits in course of different cholinergic encephalopathies. Here, we review cholinotrophic properties of retinoic acid and its derivatives, which may justify their application in the management of Alzheimer's disease and the related neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
72
|
Abstract
Older adults are becoming a significant percentage of the world's population. A multitude of factors, from the normal aging process to the progression of chronic disease, influence the nutrition needs of this very diverse group of people. Appropriate micronutrient intake is of particular importance but is often suboptimal. Here we review the available data regarding micronutrient needs and the consequences of deficiencies in the ever growing aged population.
Collapse
Affiliation(s)
- Stephanie C Montgomery
- Division of General Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stephanie M Streit
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mara Lee Beebe
- Digestive Disease Center, Medical University of South Carolina, Charleston, South Carolina
| | - Pinckney J Maxwell
- Division of Gastrointestinal and Laparoscopic Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
73
|
Dhingra D, Bansal Y. Antidepressant-like activity of beta-carotene in unstressed and chronic unpredictable mild stressed mice. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
74
|
Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F. Cellular uptake of β-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization-evaporation method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1096-1104. [PMID: 24422504 DOI: 10.1021/jf404073c] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With a homogenization-evaporation method, β-carotene (BC) loaded nanoparticles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cellular uptake by Caco-2 cells. The particle diameters of the BC loaded nanoparticles with 0.75% SC or 1.0% WPI emulsifiers were 75 and 90 nm, respectively. Mean particle diameters of three BC loaded nanoparticle nanoemulsions increased less than 10% at 4 °C while they increased more at 25 °C (10-76%) during 30 days of storage. The oxidative stability of BC loaded nanoparticles encapsulated by proteins decreased in the following order: SC > WPI > SPI. The retention rates of BC in nanoparticles were 63.5%, 60.5%, and 41.8% for SC, WPI, and SPI, respectively, after 30 days of storage at 25 °C. The BC's chemical stability was improved by increasing the concentration of protein. Both the rate of particle growth and the total BC loss at 25 °C were larger than at 4 °C. The color of BC loaded nanoparticles decreased with increasing storage in the dark without oxygen, similar to the decrease in BC content of nanoparticles at 4 and 25 °C. Almost no cytotoxicity due to BC loaded nanoparticles cellular uptake was observed, especially when diluted 10 times or more. The uptake of BC was significantly improved through nanoparticle delivery systems by 2.6-, 3.4-, and 1.7-fold increase, respectively, for SC, WPI, and SPI, as compared to the free BC. The results of this study indicate that protein stabilized, BC loaded nanoparticles can improve stability and uptake of BC.
Collapse
Affiliation(s)
- Jiang Yi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
75
|
Abstract
Alzheimer’s disease (AD) is a progressive brain disease that leads to an irreversible loss of neurons and cognition. It is the most common cause of dementia and can be considered as a major public health problem. At the histological level, AD is characterized by senile plaques and neurofibrillary tangles. Numerous studies involving genomic, transcriptomic and proteomic approaches have been published in order to understand the molecular mechanisms involved in AD, and to find new biomarkers. Metabolomics, and in particular lipidomics, have recently offered new possibilities due to the development of robust and sensitive analytical methods, such as LC–MS. This review aims to illustrate how lipidomics can help understand the biological mechanisms inherent to AD and how lipids can be considered as relevant biomarkers of AD at early stages.
Collapse
|
76
|
Woods JL, Iuliano-Burns S, Walker KZ. Immunological and nutritional factors in elderly people in low-level care and their association with mortality. IMMUNITY & AGEING 2013; 10:32. [PMID: 23915335 PMCID: PMC3751476 DOI: 10.1186/1742-4933-10-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/10/2013] [Indexed: 02/02/2023]
Abstract
Background This study examines associations between markers of nutritional status and lymphocyte subsets and seeks to determine if lymphocyte profile is predictive of survival in elderly Australians residing in aged care facilities. Aged yet still ambulatory subjects (n = 88, 73% female) living in low-level care and requiring minimal assistance were studied for 143 weeks. At baseline when participants were aged (mean ± SD) 86.0 ± 5.9 years, dietary intake was determined by 3-day weighed food record, body composition was assessed by dual energy X-ray absorptiometry (DXA) and a venous blood sample was taken. Results At baseline assessment, study participants were consuming nutrient-poor diets and most had symptoms of chronic disease. Although overweight, 40% exhibited sarcopenia. Markers of nutritional status did not relate closely to immune cell numbers (absolute or relative), which on average were within the normal range. Men had lower numbers of CD3+CD4+ cells (CD4+ T cells), a higher proportion of CD3− CD16± CD56± (natural killer (NK) cells) and a higher ratio of NK: CD4+ T cells than women (all P < 0.05). The main age-related changes evident were decreased T cells, particularly low CD4+ T cell counts, and increased numbers of CD19+ (B-cell) and NK cells. During the 143 week duration of follow-up, about one quarter of the study participants died, with death more likely in men than women (P < 0.01). Poor survival was predicted by the presence of decreased numbers of CD4+ T cells (hazard ratio (HR) 0.919, P < 0.01) and expanded numbers of NK cells (HR 1.085, P < 0.05) in the blood, and therefore the presence of a high NK: CD4+ T cell ratio (HR 30.521, P < 0.01). Conclusions The NK: CD4+ T cell ratio may potentially have clinical utility for predicting longevity in elderly populations. Further studies are needed in other elderly populations to confirm this finding.
Collapse
Affiliation(s)
- Julie L Woods
- Nutrition and Dietetics Department, Monash University, Melbourne, Australia
| | - Sandra Iuliano-Burns
- Endocrine Centre of Excellence, Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Karen Z Walker
- Nutrition and Dietetics Department, Monash University, Melbourne, Australia ; Department of Nutrition and Dietetics, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| |
Collapse
|
77
|
Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L. Nutrition and the risk of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:524820. [PMID: 23865055 PMCID: PMC3705810 DOI: 10.1155/2013/524820] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the major cause of dementia, and the increasing worldwide prevalence of AD is a major public health concern. Increasing epidemiological studies suggest that diet and nutrition might be important modifiable risk factors for AD. Dietary supplementation of antioxidants, B vitamins, polyphenols, and polyunsaturated fatty acids are beneficial to AD, and consumptions of fish, fruits, vegetables, coffee, and light-to-moderate alcohol reduce the risk of AD. However, many of the results from randomized controlled trials are contradictory to that of epidemiological studies. Dietary patterns summarizing an overall diet are gaining momentum in recent years. Adherence to a healthy diet, the Japanese diet, and the Mediterranean diet is associated with a lower risk of AD. This paper will focus on the evidence linking many nutrients, foods, and dietary patterns to AD.
Collapse
Affiliation(s)
- Nan Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
| | - Ying-Li Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
| | - Lei Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
78
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
79
|
Fragoso YD, Campos NS, Tenrreiro BF, Guillen FJ. Systematic review of the literature on vitamin A and memory. Dement Neuropsychol 2012; 6:219-222. [PMID: 29213801 PMCID: PMC5619333 DOI: 10.1590/s1980-57642012dn06040005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Over the last 30 years, a variety of studies reporting the effects of vitamin
A on memory have been published. Objective To perform a rigorous systematic review of the literature on vitamin A and
memory in order to organize evidence-based data on the subject. Methods Four authors carried out the systematic review in accordance with strict
guidelines. The terms "vitamin A" OR "retinol" OR "retinoic acid" AND
"memory" OR "cognition" OR "Alzheimer" were searched in virtually all
medical research databases. Results From 236 studies containing the key words, 44 were selected for this review,
numbering 10 reviews and 34 original articles. Most studies used animal
models for studying vitamin A and cognition. Birds, mice and rats were more
frequently employed whereas human studies accounted for only two reports on
brain tissue from autopsies and one on the role of isotretinoin in cognition
among individuals taking this medication to treat acne. Conclusion Vitamin A may be an important and viable complement in the treatment and
prevention of Alzheimer's disease. Clinical trials are imperative and, at
present, there is no evidence-based data to recommend vitamin A
supplementation for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Head of the Department of Neurology, Universidade Metropolitana de Santos, SP, Brazil
| | | | | | | |
Collapse
|