51
|
Cushing BS. Estrogen Receptor Alpha Distribution and Expression in the Social Neural Network of Monogamous and Polygynous Peromyscus. PLoS One 2016; 11:e0150373. [PMID: 26959827 PMCID: PMC4784910 DOI: 10.1371/journal.pone.0150373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
In microtine and dwarf hamsters low levels of estrogen receptor alpha (ERα) in the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) play a critical role in the expression of social monogamy in males, which is characterized by high levels of affiliation and low levels of aggression. In contrast, monogamous Peromyscus males display high levels of aggression and affiliative behavior with high levels of testosterone and aromatase activity. Suggesting the hypothesis that in Peromyscus ERα expression will be positively correlated with high levels of male prosocial behavior and aggression. ERα expression was compared within the social neural network, including the posterior medial BST, MeA posterodorsal, medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and arcuate nucleus in two monogamous species, P. californicus and P. polionotus, and two polygynous species, P. leucopus and P. maniculatus. The results supported the prediction, with male P. polionotus and P. californicus expressing higher levels of ERα in the BST than their polygynous counter parts, and ERα expression was sexually dimorphic in the polygynous species, with females expressing significantly more than males in the BST in both polygynous species and in the MeA in P. leucopus. Peromyscus ERα expression also differed from rats, mice and microtines as in neither the MPOA nor the VMH was ERα sexually dimorphic. The results supported the hypothesis that higher levels of ERα are associated with monogamy in Peromyscus and that differential expression of ERα occurs in the same regions of the brains regardless of whether high or low expression is associated with social monogamy. Also discussed are possible mechanisms regulating this differential relationship.
Collapse
Affiliation(s)
- Bruce S. Cushing
- Department of Zoology, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
52
|
Abstract
Schizophrenia is a heterogeneous, debilitating disorder characterized by three distinct sets of clinical features: positive symptoms, negative symptoms, and cognitive deficits. Extant antipsychotic drugs have been most successful at treating the positive symptoms of patients with schizophrenia but have minimal therapeutic effects on negative symptoms and cognitive deficits, which are the symptoms that best predict the poor prognosis of these patients. Therefore, there has been a major effort towards identifying compounds that alleviate these symptoms. Oxytocin (OT) is a nonapeptide that regulates peripheral reproductive-relevant functions, and also acts as a neurotransmitter in the brain. Converging evidence from both preclinical and clinical research suggests that OT may have therapeutic efficacy for the positive symptoms, negative symptoms, and cognitive deficits of schizophrenia. In the majority of the small, randomized, placebo-controlled clinical trials conducted to date, OT has shown particular promise in its potential to treat the intractable negative symptoms and social cognitive deficits exhibited by most of the patients with this debilitating disorder. In this leading article, we summarize the clinical evidence relevant to (1) endogenous OT and schizophrenia, and (2) the putative therapeutic effects of OT on each of the three clinical domains.
Collapse
Affiliation(s)
- Paul D Shilling
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Feifel
- Department of Psychiatry, University of California, San Diego Medical Center, 200 West Arbor Drive, San Diego, CA, 92103-8218, USA.
| |
Collapse
|
53
|
|
54
|
Zhang HF, Li HX, Dai YC, Xu XJ, Han SP, Zhang R, Han JS. Electro-acupuncture improves the social interaction behavior of rats. Physiol Behav 2015; 151:485-93. [DOI: 10.1016/j.physbeh.2015.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
|
55
|
Wood RI, Knoll AT, Levitt P. Social housing conditions and oxytocin and vasopressin receptors contribute to ethanol conditioned social preference in female mice. Physiol Behav 2015; 151:469-77. [PMID: 26282397 DOI: 10.1016/j.physbeh.2015.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Social behavior modulates response to alcohol. Because oxytocin (OXT) and vasopressin (AVP) contribute to rewarding social behavior, the present study utilized a genetic strategy to determine whether OXT and AVP receptors (OXTR, AVPR1a) are essential for female mice to demonstrate a conditioned social preference for ethanol. The study compared wild-type (WT) and knock-out (KO) females lacking either Oxtr or Avpr1a in a conditioned social preference (CSP) test. KO females and WT females from Het-Het crosses were pair-housed: KO and WT(ko). WT females from Het-WT crosses were pair-housed: WT(wt). Test mice received 2g/kg ethanol or saline ip, and were paired four times each with one stimulus female (CS-) after saline, and with another female (CS+) following ethanol. After pairing, the time spent with CS+ and CS- females was measured. WT(wt) females showed conditioned preference for the CS+ female paired with ethanol, demonstrated by greater interaction time (p<0.05). In both KO lines, ethanol significantly reduced interaction with the CS+ female (p<0.05), and there was no change in interaction for WT(ko) females. Response to odors by habituation-dishabituation was unaffected in both KO lines, and the response to a hypnotic dose of ethanol also was the same as in WT mice. However, anxiety, measured as time on the open arms of the elevated plus maze, was reduced in KO(Oxtr) females compared with WT(wt). The results suggest that Oxtr and Avpr1a are required for conditioned effects of an ethanol-associated social stimulus. The lack of CSP in WT(ko) females suggests that the quality of social interactions during postnatal and postweaning life may modulate development and expression of normal social responses.
Collapse
Affiliation(s)
- Ruth I Wood
- Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, United States.
| | - Allison T Knoll
- Children's Hospital Los Angeles, Los Angeles, CA 90027, United States
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, United States; Children's Hospital Los Angeles, Los Angeles, CA 90027, United States
| |
Collapse
|
56
|
Maney DL, Horton BM, Zinzow-Kramer WM. Estrogen Receptor Alpha as a Mediator of Life-History Trade-offs. Integr Comp Biol 2015; 55:323-31. [PMID: 25855477 DOI: 10.1093/icb/icv005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trade-offs between competitive and parental strategies often are mediated by sex steroids. The mechanisms underlying steroid signaling and metabolism may therefore serve as targets of disruptive selection that leads to alternative behavioral phenotypes. White-throated sparrows exhibit two color morphs that differ in both competitive and parental behavior; white-striped (WS) birds engage in more territorial singing, whereas tan-striped (TS) birds provision nestlings more often. Although WS birds have higher levels of plasma testosterone (T) and estradiol than do TS birds, experimental equalization of these hormones does not abolish morph differences in singing. Neural sensitivity to sex steroids may differ between the morphs because the gene for estrogen receptor alpha (ERα) has been captured by a chromosomal rearrangement found only in the WS birds. We recently showed that expression of this gene differs between the morphs and may drive the behavioral polymorphism. First, the ERα promoter region contains fixed polymorphisms that affect transcription efficiency in vitro. Second, in a free-living population, local expression of ERα depends strongly on morph and predicts both territorial singing and parental provisioning. Differential ERα expression is particularly striking in the medial amygdala; WS birds have three times more ERα mRNA than do TS birds. This difference persists during the non-breeding season and is unaffected by exogenous T treatment. Finally, preliminary data generated by RNA-seq confirm that ERα expression in MeA is both differentially expressed and correlated with territorial singing. Together, these results suggest that ERα may be a target of disruptive selection that leads to alternative behavioral strategies. Our future directions include a more detailed analysis of the ERα promoter regions to determine the molecular basis of differential expression as well as gene network analyses to identify genes connected to ERα.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
57
|
Venerosi A, Tait S, Stecca L, Chiarotti F, De Felice A, Cometa MF, Volpe MT, Calamandrei G, Ricceri L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring - a mouse study. Environ Health 2015; 14:32. [PMID: 25889763 PMCID: PMC4448273 DOI: 10.1186/s12940-015-0019-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF) is one of the most widely used organophosphate pesticides worldwide. Epidemiological studies on pregnant women and their children suggest a link between in utero CPF exposure and delay in psychomotor and cognitive maturation. A large number of studies in animal models have shown adverse effects of CPF on developing brain and more recently on endocrine targets. Our aim was to determine if developmental exposure to CPF affects social responsiveness and associated molecular neuroendocrine markers at adulthood. METHOD Pregnant CD1 outbred mice were fed from gestational day 15 to lactation day 14 with either a CPF-added (equivalent to 6 mg/kg/bw/day during pregnancy) or a standard diet. We then assessed in the offspring the long-term effects of CPF exposure on locomotion, social recognition performances and gene expression levels of selected neurondocrine markers in amygdala and hypothalamus. RESULTS No sign of CPF systemic toxicity was detected. CPF induced behavioral alterations in adult offspring of both sexes: CPF-exposed males displayed enhanced investigative response to unfamiliar social stimuli, whereas CPF-exposed females showed a delayed onset of social investigation and lack of reaction to social novelty. In parallel, molecular effects of CPF were sex dimorphic: in males CPF increased expression of estrogen receptor beta in hypothalamus and decreased oxytocin expression in amygdala; CPF increased vasopressin 1a receptor expression in amygdala in both sexes. CONCLUSIONS These data indicate that developmental CPF affects mouse social behavior and interferes with development of sex-dimorphic neuroendocrine pathways with potential disruptive effects on neuroendocrine axes homeostasis. The route of exposure selected in our study corresponds to relevant human exposure scenarios, our data thus supports the view that neuroendocrine effects, especially in susceptible time windows, should deserve more attention in risk assessment of OP insecticides.
Collapse
Affiliation(s)
- Aldina Venerosi
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Stecca
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Flavia Chiarotti
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia De Felice
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Maria Teresa Volpe
- Department Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Gemma Calamandrei
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
58
|
Matsuzaki T, Iwasa T, Munkhzaya M, Tungalagsuvd A, Kawami T, Murakami M, Yamasaki M, Yamamoto Y, Kato T, Kuwahara A, Yasui T, Irahara M. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats. Int J Dev Neurosci 2015; 41:105-9. [PMID: 25637830 DOI: 10.1016/j.ijdevneu.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/16/2022] Open
Abstract
Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development.
Collapse
Affiliation(s)
- Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan.
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Takako Kawami
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Masahiro Murakami
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Mikio Yamasaki
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Toshiyuki Yasui
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho Tokushima 770-8503, Japan
| |
Collapse
|
59
|
Xu XJ, Zhang HF, Shou XJ, Li J, Jing WL, Zhou Y, Qian Y, Han SP, Zhang R, Han JS. Prenatal hyperandrogenic environment induced autistic-like behavior in rat offspring. Physiol Behav 2015; 138:13-20. [DOI: 10.1016/j.physbeh.2014.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/29/2014] [Indexed: 11/28/2022]
|
60
|
Alves E, Fielder A, Ghabriel N, Sawyer M, Buisman-Pijlman FTA. Early social environment affects the endogenous oxytocin system: a review and future directions. Front Endocrinol (Lausanne) 2015; 6:32. [PMID: 25814979 PMCID: PMC4356154 DOI: 10.3389/fendo.2015.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Endogenous oxytocin plays an important role in a wide range of human functions including birth, milk ejection during lactation, and facilitation of social interaction. There is increasing evidence that both variations in the oxytocin receptor (OXTR) and concentrations of oxytocin are associated with differences in these functions. The causes for the differences that have been observed in tonic and stimulated oxytocin release remain unclear. Previous reviews have suggested that across the life course, these differences may be due to individual factors, e.g., genetic variation (of the OXTR), age or sex, or be the result of early environmental influences, such as social experiences, stress, or trauma partly by inducing epigenetic changes. This review has three aims. First, we briefly discuss the endogenous oxytocin system, including physiology, development, individual differences, and function. Second, current models describing the relationship between the early life environment and the development of the oxytocin system in humans and animals are discussed. Finally, we describe research designs that can be used to investigate the effects of the early environment on the oxytocin system, identifying specific areas of research that need further attention.
Collapse
Affiliation(s)
- Emily Alves
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Emily Alves and Femke T.A. Buisman-Pijlman, Adelaide University, 30 Frome Road, Adelaide, SA 5000, Australia e-mail: ;
| | - Andrea Fielder
- School of Midwifery, University of South Australia, Adelaide, SA, Australia
| | - Nerelle Ghabriel
- School of Midwifery, University of South Australia, Adelaide, SA, Australia
- School of Psychology, University of South Australia, Adelaide, SA, Australia
| | - Michael Sawyer
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- Research and Evaluation Unit, Women’s and Children’s Health Network, Adelaide, SA, Australia
| | - Femke T. A. Buisman-Pijlman
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Emily Alves and Femke T.A. Buisman-Pijlman, Adelaide University, 30 Frome Road, Adelaide, SA 5000, Australia e-mail: ;
| |
Collapse
|
61
|
Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology 2014; 39:3027-35. [PMID: 24964815 PMCID: PMC4229574 DOI: 10.1038/npp.2014.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/15/2014] [Accepted: 06/19/2014] [Indexed: 01/02/2023]
Abstract
Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.
Collapse
|
62
|
Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci Biobehav Rev 2014; 47:410-30. [PMID: 25277283 PMCID: PMC4726659 DOI: 10.1016/j.neubiorev.2014.09.012] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/23/2014] [Accepted: 09/20/2014] [Indexed: 02/08/2023]
Abstract
Autism is a pervasive developmental disorder characterized by profound social and verbal communication deficits, stereotypical motor behaviors, restricted interests, and cognitive abnormalities. Autism affects approximately 1% of children in developing countries. Given this prevalence, identifying risk factors and therapeutic interventions are pressing objectives—objectives that rest on neurobiologically grounded and psychologically informed theories about the underlying pathophysiology. In this article, we review the evidence that autism could result from a dysfunctional oxytocin system early in life. As a mediator of successful procreation, not only in the reproductive system, but also in the brain, oxytocin plays a crucial role in sculpting socio-sexual behavior. Formulated within a (Bayesian) predictive coding framework, we propose that oxytocin encodes the saliency or precision of interoceptive signals and enables the neuronal plasticity necessary for acquiring a generative model of the emotional and social 'self.' An aberrant oxytocin system in infancy could therefore help explain the marked deficits in language and social communication—as well as the sensory, autonomic, motor, behavioral, and cognitive abnormalities—seen in autism.
Collapse
Affiliation(s)
- E Quattrocki
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
63
|
Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol 2014; 35:512-29. [PMID: 24813923 DOI: 10.1016/j.yfrne.2014.04.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
64
|
Tsuda MC, Yamaguchi N, Nakata M, Ogawa S. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation. Front Neurosci 2014; 8:274. [PMID: 25228857 PMCID: PMC4151037 DOI: 10.3389/fnins.2014.00274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University Nagakute, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
65
|
Hypothalamic oxytocin and vasopressin neurons exert sex-specific effects on pair bonding, gregariousness, and aggression in finches. Proc Natl Acad Sci U S A 2014; 111:6069-74. [PMID: 24711411 DOI: 10.1073/pnas.1322554111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antagonism of oxytocin (OT) receptors (OTRs) impairs the formation of pair bonds in prairie voles (Microtus ochrogaster) and zebra finches (Taenioypygia guttata), and also reduces the preference for the larger of two groups ("gregariousness") in finches. These effects tend to be stronger in females. The contributions of specific peptide cell groups to these processes remain unknown, however. This issue is complicated by the fact that OTRs in finches and voles bind not only forms of OT, but also vasopressin (VP), and >10 cell groups produce each peptide in any given species. Using RNA interference, we found that knockdown of VP and OT production in the paraventricular nucleus of the hypothalamus exerts diverse behavioral effects in zebra finches, most of which are sexually differentiated. Our data show that knockdown of VP production significantly reduces gregariousness in both sexes and exerts sex-specific effects on aggression directed toward opposite-sex birds (increases in males; decreases in females), whereas OT knockdown produces female-specific deficits in gregariousness, pair bonding, and nest cup ownership; reduces side-by-side perching in both sexes; modulates stress coping; and induces hyperphagia in males. These findings demonstrate that paraventricular neurons are major contributors to the effects of VP-OT peptides on pair bonding and gregariousness; reveal previously unknown effects of sex-specific peptide on opposite-sex aggression; and demonstrate a surprising lack of effects on same-sex aggression. Finally, the observed effects of OT knockdown on feeding and stress coping parallel findings in mammals, suggesting that OT modulation of these processes is evolutionarily conserved across the amniote vertebrate classes.
Collapse
|
66
|
Sandhu KV, Lang D, Müller B, Nullmeier S, Yanagawa Y, Schwegler H, Stork O. Glutamic acid decarboxylase 67 haplodeficiency impairs social behavior in mice. GENES BRAIN AND BEHAVIOR 2014; 13:439-50. [DOI: 10.1111/gbb.12131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/06/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022]
Affiliation(s)
- K. V. Sandhu
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - D. Lang
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - B. Müller
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - S. Nullmeier
- Institute of Anatomy; Otto-von-Guericke University Magdeburg; Magdeburg Germany
| | - Y. Yanagawa
- Department of Genetic and Behavioral Neuroscience; Gunma University Graduate School of Medicine and JST, CREST; Maebashi Japan
| | - H. Schwegler
- Institute of Anatomy; Otto-von-Guericke University Magdeburg; Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Germany
| | - O. Stork
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Germany
| |
Collapse
|
67
|
Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats. Physiol Behav 2014; 129:287-96. [PMID: 24631553 DOI: 10.1016/j.physbeh.2014.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/09/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors.
Collapse
|
68
|
Paul MJ, Terranova JI, Probst CK, Murray EK, Ismail NI, de Vries GJ. Sexually dimorphic role for vasopressin in the development of social play. Front Behav Neurosci 2014; 8:58. [PMID: 24616675 PMCID: PMC3937588 DOI: 10.3389/fnbeh.2014.00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/11/2014] [Indexed: 11/13/2022] Open
Abstract
Despite the well-established role of arginine vasopressin (AVP) in adult social behavior, its role in social development is relatively unexplored. In this paper, we focus on the most prominent social behavior of juvenile rats, social play. Previous pharmacological experiments in our laboratory suggested that AVP regulates play in a sex- and brain region-specific manner in juvenile rats. Here we investigate the role of specific AVP systems in the emergence of social play. We first characterize the development of play in male and female Wistar rats and then ask whether the development of AVP mRNA expression correlates with the emergence of play. Unexpectedly, play emerged more rapidly in weanling-aged females than in males, resulting in a sex difference opposite of that typically reported for older, juvenile rats. AVP mRNA and play were correlated in males only, with a negative correlation in the bed nucleus of the stria terminalis (BNST) and a positive correlation in the paraventricular nucleus of the hypothalamus (PVN). These findings support the hypothesis that AVP acts differentially on multiple systems in a sex-specific manner to regulate social play and suggest a role for PVN and BNST AVP systems in the development of play. Differential neuropeptide regulation of male and female social development may underlie well-documented sex differences in incidence, progression, and symptom severity of behavioral disorders during development.
Collapse
Affiliation(s)
- Matthew J Paul
- Neuroscience Institute, Georgia State University Atlanta, GA, USA
| | | | - Clemens K Probst
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, MA, USA
| | - Elaine K Murray
- Northern Ireland Centre for Stratified Medicine, University of Ulster Ulster, UK
| | | | - Geert J de Vries
- Neuroscience Institute, Georgia State University Atlanta, GA, USA
| |
Collapse
|
69
|
Kelly AM, Goodson JL. Personality is tightly coupled to vasopressin-oxytocin neuron activity in a gregarious finch. Front Behav Neurosci 2014; 8:55. [PMID: 24611041 PMCID: PMC3933816 DOI: 10.3389/fnbeh.2014.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022] Open
Abstract
Nonapeptides of the vasopressin-oxytocin family modulate social processes differentially in relation to sex, species, behavioral phenotype, and human personality. However, the mechanistic bases for these differences are not well understood, in part because multidimensional personality structures remain to be described for common laboratory animals. Based upon principal components (PC) analysis of extensive behavioral measures in social and nonsocial contexts, we now describe three complex dimensions of phenotype (“personality”) for the zebra finch, a species that exhibits a human-like social organization that is based upon biparental nuclear families embedded within larger social groups. These dimensions can be characterized as Social competence/dominance, Gregariousness, and Anxiety. We further demonstrate that the phasic Fos responses of nonapeptide neurons in the paraventricular nucleus of the hypothalamus and medial bed nucleus of the stria terminalis are significantly predicted by personality, sex, social context, and their interactions. Furthermore, the behavioral PCs are each associated with a distinct suite of neural PCs that incorporate both peptide cell numbers and their phasic Fos responses, indicating that personality is reflected in complex patterns of neuromodulation arising from multiple peptide cell groups. These findings provide novel insights into the mechanisms underlying sex- and phenotype-specific modulation of behavior, and should be broadly relevant, given that vasopressin-oxytocin systems are strongly conserved across vertebrates.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University Bloomington, IN, USA
| | - James L Goodson
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
70
|
Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc Natl Acad Sci U S A 2014; 111:1443-8. [PMID: 24474771 DOI: 10.1073/pnas.1317165111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of behavior relies on changes at the level of the genome; yet the ability to attribute a behavioral change to a specific, naturally occurring genetic change is rare in vertebrates. In the white-throated sparrow (Zonotrichia albicollis), a chromosomal polymorphism (ZAL2/2(m)) is known to segregate with a behavioral phenotype. Individuals with the ZAL2(m) haplotype engage in more territorial aggression and less parental behavior than individuals without it. These behaviors are thought to be mediated by sensitivity to sex steroids, and the chromosomal rearrangement underlying the polymorphism has captured a prime candidate gene: estrogen receptor 1 (ESR1), which encodes estrogen receptor α (ERα). We therefore hypothesized that the behavioral effects of the ZAL2(m) rearrangement are mediated by polymorphism in ESR1. We report here that (i) the ESR1 promoter region contains fixed polymorphisms distinguishing the ZAL2(m) and ZAL2 alleles; (ii); those polymorphisms regulate transcription efficiency in vitro and therefore potentially do the same in vivo (iii); the local expression of ERα in the brain depends strongly on genotype in a free-living population; and (iv) ERα expression in the medial amygdala and medial preoptic area may fully mediate the effects of genotype on territorial aggression and parenting, respectively. Thus, our study provides a rare glimpse of how a chromosomal polymorphism has affected the brain and social behavior in a vertebrate. Our results suggest that in this species, differentiation of ESR1 has played a causal role in the evolution of phenotypes with alternative life-history strategies.
Collapse
|
71
|
Xu XJ, Shou XJ, Li J, Jia MX, Zhang JS, Guo Y, Wei QY, Zhang XT, Han SP, Zhang R, Han JS. Mothers of autistic children: lower plasma levels of oxytocin and Arg-vasopressin and a higher level of testosterone. PLoS One 2013; 8:e74849. [PMID: 24086383 PMCID: PMC3783493 DOI: 10.1371/journal.pone.0074849] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Autism is a pervasive neurodevelopmental disorder,thought to be caused by a combination of genetic heritability and environmental risk factors. Some autistic-like traits have been reported in mothers of autistic children. We hypothesized that dysregulation of oxytocin (OXT), Arg-vasopressin (AVP) and sex hormones, found in autistic children, may also exist in their mothers. METHODS We determined plasma levels of OXT (40 in autism vs. 26 in control group), AVP (40 vs. 17) and sex hormones (61 vs. 47) in mothers of autistic and normal children by enzyme immunoassay and radioimmunoassay, respectively and investigated their relationships with the children's autistic behavior scores (Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC)). RESULTS Significantly lower plasma concentrations of OXT (p<0.001) and AVP (p<0.001), as well as a higher level of plasma testosterone (p<0.05), were found in mothers of autistic children vs. those of control. The children's autistic behavior scores were negatively associated with maternal plasma levels of OXT and AVP. CONCLUSIONS These results suggest that dysregulation of OXT, AVP and/or testosterone systems exist in mothers of autistic children, which may impact children's susceptibility to autism.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xiao-Jing Shou
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jin Li
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Mei-Xiang Jia
- Mental Health Institute, Peking University, Beijing, China
| | - Ji-Shui Zhang
- Department of Neurology and Center of Rehabilitation, Beijing Children’s Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yan Guo
- Department of ophthalmology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Qing-Yun Wei
- Beijing Yangguang Youyi Rehabilitation Center, Beijing, China
| | | | - Song-Ping Han
- HANS International Incorporated, Belle Mead, New Jersey, United States of America
| | - Rong Zhang
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Ji-Sheng Han
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| |
Collapse
|
72
|
Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N. Epigenetic findings in autism: new perspectives for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4261-73. [PMID: 24030655 PMCID: PMC3799534 DOI: 10.3390/ijerph10094261] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, Napoli 16-80138, Italy
- Centre for Autism—La Forza del Silenzio, Caserta 81036, Italy
- Cancellautismo—Non-Profit Association for Autism Care, Florence 50132, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-81-566-5880; Fax: +39-0-81-566-7503
| | - Alessandra Cirillo
- Institute of Protein Biochemistry, National Research Council of Italy; Naples 80128, Italy; E-Mail:
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari 70126, Italy; E-Mail:
| |
Collapse
|
73
|
Dumais KM, Bredewold R, Mayer TE, Veenema AH. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Horm Behav 2013; 64:693-701. [PMID: 24055336 DOI: 10.1016/j.yhbeh.2013.08.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022]
Abstract
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.
Collapse
Affiliation(s)
- Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | | | | | | |
Collapse
|
74
|
Montag C, Brockmann EM, Bayerl M, Rujescu D, Müller DJ, Gallinat J. Oxytocin and oxytocin receptor gene polymorphisms and risk for schizophrenia: a case-control study. World J Biol Psychiatry 2013; 14:500-8. [PMID: 22651577 DOI: 10.3109/15622975.2012.677547] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Dysfunctions of the "social brain" belong to the core features of schizophrenia. The neurohormone oxytocin (OXT), mediated through its specific receptor (OXTR), is involved in the regulation of social behaviour and social cognition. Previous research has suggested a role of OXT system genes in disorders of social reciprocity. Preliminary evidence points to an association of peripheral OXT levels as well as OXT and OXTR gene polymorphisms with psychotic symptoms and treatment response in schizophrenia. This study aims to determine a possible contribution of OXT and OXTR genetic variations to schizophrenia susceptibility. METHODS Using n = 406 individuals diagnosed with schizophrenia according to DSM-IV and n = 406 healthy controls matched for age and gender in a case-control design, two single nucleotide polymorphisms (SNPs) within the OXT gene (rs2740204, rs2740210) and four SNPs within the OXTR gene (rs53576, rs237880, rs237885, rs237902) that were previously investigated in other studies were genotyped. RESULTS Chi(2)-testing suggested significant associations of OXTR SNPs rs53576(A > G) (P = 0.008) and rs237885(T > G) (P = 0.025) with a diagnosis of schizophrenia. Post-hoc ANCOVA revealed significant associations of OXTR SNPs rs53576 with general psychopathology and rs237902 with negative symptom scores in schizophrenic patients. CONCLUSIONS Our findings support hypotheses about an involvement of oxytocinergic gene variants in schizophrenia vulnerability and warrant independent replication.
Collapse
Affiliation(s)
- Christiane Montag
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Mitte , Berlin , Germany
| | | | | | | | | | | |
Collapse
|
75
|
Litvin Y, Phan A, Hill MN, Pfaff DW, McEwen BS. CB1receptor signaling regulates social anxiety and memory. GENES BRAIN AND BEHAVIOR 2013; 12:479-89. [DOI: 10.1111/gbb.12045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - M. N. Hill
- Laboratory of Neuroendocrinology; The Rockefeller University; New York; NY; USA
| | | | - B. S. McEwen
- Laboratory of Neuroendocrinology; The Rockefeller University; New York; NY; USA
| |
Collapse
|
76
|
Otero-Garcia M, Martin-Sanchez A, Fortes-Marco L, Martínez-Ricós J, Agustin-Pavón C, Lanuza E, Martínez-García F. Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Struct Funct 2013; 219:1055-81. [PMID: 23625152 DOI: 10.1007/s00429-013-0553-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.
Collapse
Affiliation(s)
- Marcos Otero-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Depts. Biologia Funcional i Biologia Cel·lular, Fac. Ciències Biològiques, Univ. València, C. Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
77
|
Modabbernia A, Rezaei F, Salehi B, Jafarinia M, Ashrafi M, Tabrizi M, Hosseini SMR, Tajdini M, Ghaleiha A, Akhondzadeh S. Intranasal oxytocin as an adjunct to risperidone in patients with schizophrenia : an 8-week, randomized, double-blind, placebo-controlled study. CNS Drugs 2013; 27:57-65. [PMID: 23233269 DOI: 10.1007/s40263-012-0022-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Impairment of oxytocinergic function and/or oxytocin receptor genetic abnormalities has been demonstrated in patients with schizophrenia. Oxytocin reverses emotional recognition deficit and might restore sense of trust in patients with schizophrenia. Some short-term studies have shown efficacy and tolerability of oxytocin in patients with schizophrenia. However, there is a lack of evidence on the efficacy and tolerability of oxytocin in patients with schizophrenia beyond 3 weeks. OBJECTIVE The objective of this study was to assess the efficacy and tolerability of oxytocin intranasal spray (given as an adjuvant to risperidone) in patients with schizophrenia. STUDY DESIGN This was an 8-week, randomized, double-blind, placebo-controlled study. STUDY SETTING Inpatients of two large referral psychiatric hospitals in Iran were recruited for the study. PATIENTS Forty patients (male and female gender) aged 18-50 years with a diagnosis of schizophrenia (DSM-IV-TR) who were on a stable dose of risperidone for a minimum of 1 month and who were chronically partially responsive to antipsychotic monotherapy were included in the study. INTERVENTIONS The patients were randomly assigned to oxytocin intranasal spray (Syntocinon(®); Novartis, Basel, Switzerland) or placebo intranasal spray containing normal saline (ACER, Tehran, Iran) for 8 weeks. Oxytocin spray was administered as 20 IU (five sprays) twice a day for the first week followed by 40 IU (ten sprays) twice a day for the following 7 weeks. Placebo spray was administered at the same dose as the oxytocin spray. In addition, participants were on a stable dose of risperidone (5 or 6 mg/day). OUTCOMES The patients were assessed using Positive and Negative Syndrome Scale (PANSS) at baseline and at weeks 0, 2, 4, 6 and 8. Primary outcomes were the differences in the PANSS scores between the two groups at the end of the trial. Adverse effects were recorded using a checklist and the Extrapyramidal Symptom Rating Scale (ESRS) at baseline and at weeks 1, 2, 4, 6 and 8. RESULTS All patients had at least one post-baseline measurement and 37 patients (19 in the oxytocin and 18 in the placebo group) completed the study. Repeated measure analysis of variance showed significant effect for time X treatment interaction on the PANSS total [F(2.291,87.065) = 22.124, p < 0.001], positive [F(1.285,48.825) = 11.655, p = 0.001], negative [F(2.754,104.649) = 11.818, p < 0.001] and general psychopathology [F(1.627,61.839) = 4.022, p = 0.03] subscale scores. By week 8, patients in the oxytocin group showed significantly greater improvement on the positive (Cohen's d = 1.2, 20 % vs. 4 % reduction in score, p < 0.001), negative (Cohen's d = 1.4, 7 % vs. 2 % reduction in score, p < 0.001) and general psychopathology (Cohen's d = 0.8, 8 % vs. 2 % reduction in score, p = 0.021) subscales and total (Cohen's d = 1.9, 11 % vs. 2 % reduction in score, p < 0.001) PANSS scores than the placebo group. Adverse effects including the sodium concentration change were similar between the two groups. CONCLUSION Oxytocin as an adjunct to risperidone tolerably and efficaciously improves positive symptoms of schizophrenia. In addition, effects on negative and total psychopathology scores were statistically significant, but likely to be clinically insignificant. The interesting findings from the present pilot study need further replication in a larger population of patients.
Collapse
Affiliation(s)
- Amirhossein Modabbernia
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran, 13337, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Montag C, Brockmann EM, Lehmann A, Müller DJ, Rujescu D, Gallinat J. Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia. PLoS One 2012; 7:e51882. [PMID: 23284802 PMCID: PMC3527477 DOI: 10.1371/journal.pone.0051882] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 11/19/2022] Open
Abstract
The nonapeptide oxytocin (OXT) and its receptor (OXTR) have been implicated in social cognition, empathy, emotion and stress regulation in humans. Previous studies reported associations between OXT and OXTR genetic polymorphisms and risk for disorders characterized by impaired socio-emotional functioning, such as schizophrenia and autism. Here we investigate the influence of two single nucleotide polymorphisms (SNPs) within the OXTR gene on a measure of socio-emotional functioning in schizophrenic patients. OXTR SNPs that were previously investigated in other studies were genotyped in 145 patients diagnosed with schizophrenia according to DSM-IV and 145 healthy controls matched for age and gender. The Interpersonal Reactivity Index (IRI) was used to assess cognitive ('perspective taking'), affective ('empathic concern') and self-related ('personal distress') dimensions of empathy. No group differences in genotype frequencies were observed. MANCOVA revealed a significant main (F [1,282] = 10.464; p<0.01) and interaction effect (genotype by diagnosis: F [1,282] = 4.329; p<0.05) of OXTR SNP rs2254298(A>GG) with 'empathic concern'. Within the schizophrenia group, linear regression analysis determined OXTR rs2254298 genotype, PANSS negative and general symptom score, and age of disease onset as being significantly associated with 'empathic concern'. OXTR rs2254298 significantly impacted PANSS general psychopathology scores. No associations were found for OXTR rs53576, IRI 'perspective taking' or 'personal distress' ratings. Our preliminary findings support hypotheses about an involvement of OXTR rs2254298 in emotional empathy in schizophrenic and healthy individuals, warranting independent replication.
Collapse
Affiliation(s)
- Christiane Montag
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité University Medicine Berlin (Charité Universitätsmedizin Berlin), Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
de Jong TR, Korosi A, Harris BN, Perea-Rodriguez JP, Saltzman W. Individual Variation in Paternal Responses of Virgin Male California Mice (Peromyscus californicus): Behavioral and Physiological Correlates. Physiol Biochem Zool 2012; 85:740-51. [DOI: 10.1086/665831] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
80
|
Patisaul HB, Sullivan AW, Radford ME, Walker DM, Adewale HB, Winnik B, Coughlin JL, Buckley B, Gore AC. Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy. PLoS One 2012; 7:e43890. [PMID: 22957036 PMCID: PMC3434201 DOI: 10.1371/journal.pone.0043890] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Early life exposure to Bisphenol A (BPA), a component of polycarbonate plastics and epoxy resins, alters sociosexual behavior in numerous species including humans. The present study focused on the ontogeny of these behavioral effects beginning in adolescence and assessed the underlying molecular changes in the amygdala. We also explored the mitigating potential of a soy-rich diet on these endpoints. Wistar rats were exposed to BPA via drinking water (1 mg/L) from gestation through puberty, and reared on a soy-based or soy-free diet. A group exposed to ethinyl estradiol (50 µg/L) and a soy-free diet was used as a positive estrogenic control. Animals were tested as juveniles or adults for anxiety-like and exploratory behavior. Assessment of serum BPA and genistein (GEN), a soy phytoestrogen, confirmed that internal dose was within a human-relevant range. BPA induced anxiogenic behavior in juveniles and loss of sexual dimorphisms in adult exploratory behavior, but only in the animals reared on the soy-free diet. Expression analysis revealed a suite of genes, including a subset known to mediate sociosexual behavior, associated with BPA-induced juvenile anxiety. Notably, expression of estrogen receptor beta (Esr2) and two melanocortin receptors (Mc3r, Mc4r) were downregulated. Collectively, these results show that behavioral impacts of BPA can manifest during adolescence, but wane in adulthood, and may be mitigated by diet. These data also reveal that, because ERβ and melanocortin receptors are crucial to their function, oxytocin/vasopressin signaling pathways, which have previously been linked to human affective disorders, may underlie these behavioral outcomes.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
BACKGROUND The suggestion that the neurohormone oxytocin may have clinical application in the treatment of schizophrenia was first published in 1972. Since then, a considerable body of research on a variety of fronts--including several recent double-blind treatment trials-has buttressed these early reports, providing support for the assertion that the oxytocin system is a promising and novel therapeutic target for this devastating malady. Herein, we review the diverse, convergent lines of evidence supporting the therapeutic potential of oxytocin in psychotic illness. METHODS We performed a systematic review of preclinical and clinical literature pertaining to oxytocin's role in schizophrenia. RESULTS Multiple lines of evidence converge to support the antipsychotic potential of oxytocin. These include several animal models of schizophrenia, pharmacological studies examining the impact of antipsychotics on the oxytocin system, human trials in patients examining aspects of the oxytocin system, and several double-blind, placebo-controlled clinical treatment trials. CONCLUSIONS There exists considerable, convergent evidence that oxytocin has potential as a novel antipsychotic with a unique mechanism of action. Auspiciously, based on the few chronic trials to date, its safety profile and tolerability appear very good. That said, several critical clinical questions await investigation before widespread use is clinically warranted.
Collapse
Affiliation(s)
- Kai Macdonald
- University of California, San Diego Medical Center Department of Psychiatry
| | | |
Collapse
|
82
|
Choleris E, Clipperton-Allen AE, Phan A, Valsecchi P, Kavaliers M. Estrogenic involvement in social learning, social recognition and pathogen avoidance. Front Neuroendocrinol 2012; 33:140-59. [PMID: 22369749 DOI: 10.1016/j.yfrne.2012.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/25/2022]
Abstract
Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | |
Collapse
|
83
|
Filby AL, Paull GC, Searle F, Ortiz-Zarragoitia M, Tyler CR. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3472-3479. [PMID: 22360147 DOI: 10.1021/es204023d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Environmental estrogens have been shown to affect aspects of fish behavior that could potentially impact on wild populations, but the physiological mechanisms underpinning these effects are unknown. Using small colonies of zebrafish (Danio rerio), we evaluated the impacts of estrogen exposure on the aggression of dominant males, the associated implications for their social status and reproductive success, and their signaling mechanisms. The aggression of dominant males exposed to 17α-ethinylestradiol (EE(2); 10 ng/L nominal) was reduced significantly, and half of these fish subsequently lost their dominance, behavioral changes that were reflected in their reproductive success. Plasma androgen and the expression of genes involved in sex steroid production/signaling (cyp19a1b, cyp17, hsd11b2, hsd17b3, ar) and aggression (avplrv1b, tph1b, htr1a, sst1, sstr1, th, slc6a3, ar) were higher in control dominant versus subordinate males, but suppressed by EE(2) exposure, such that the differences between the social ranks were not retained. The expression levels of avpl (brain), which promotes aggression and dominance, and ar and cyp17 (gonad) were elevated in nonexposed males paired with EE(2)-exposed males. Our findings illustrate that disruptions of behaviors affecting social hierarchy, and in turn breeding outcome, as a consequence of exposure to an environmental estrogen are signaled through complex interconnecting gonadal and neurological control mechanisms that generally conform with those established in mammalian models. The extensive molecular, genetic, physiological, and behavioral toolbox now available for the zebrafish makes this species an attractive model for integrated analyses of chemical effects spanning behavior to molecular effect mechanisms.
Collapse
Affiliation(s)
- Amy L Filby
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | | | | | | | | |
Collapse
|
84
|
Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice. Physiol Behav 2011; 105:915-24. [PMID: 22079582 DOI: 10.1016/j.physbeh.2011.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/20/2022]
Abstract
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice.
Collapse
|