51
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
52
|
Shonesy BC, Wang X, Rose KL, Ramikie TS, Cavener VS, Rentz T, Baucum AJ, Jalan-Sakrikar N, Mackie K, Winder DG, Patel S, Colbran RJ. CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat Neurosci 2013; 16:456-63. [PMID: 23502535 PMCID: PMC3636998 DOI: 10.1038/nn.3353] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/13/2013] [Indexed: 12/15/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses; however, the molecular regulation of 2-AG synthesis is not well understood. Here we identify a novel functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacts with the C-terminal domain of DGLα, phosphorylates two serine residues, and inhibits DGLα activity. Moreover, CaMKII inhibition augments short-term retrograde eCB signaling at striatal glutamatergic synapses. Consistent with an inhibitory role for CaMKII in synaptic 2-AG synthesis, in vivo genetic inhibition of CaMKII increases striatal DGL activity and basal 2-AG levels. Moreover, blockade of 2-AG breakdown using concentrations of JZL-184 that have no significant effect in wild type mice produces a hypo-locomotor response in mice with reduced CaMKII activity. These findings provide novel mechanistic insight into the molecular regulation of striatal eCB signaling with implications for physiological control of motor function.
Collapse
Affiliation(s)
- Brian C Shonesy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br J Nutr 2013; 109:1573-89. [PMID: 23433235 DOI: 10.1017/s000711451200579x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Of the environmental factors which have an impact on body weight, nutrients are most influential. Within normal limits, hypothalamic and related neuronal populations correct perturbations in energy metabolism, to return the body to its nutritional set-point, either through direct response to nutrients or indirectly via peripheral appetite signals. Excessive intake of certain macronutrients, such as simple carbohydrates and SFA, can lead to obesity and attendant metabolic dysfunction, also reflected in alterations in structural plasticity, and, intriguingly,neurogenesis, in some of these brain regions. Neurogenesis, previously thought to occur only in the embryo, is now known to take place in the adult brain, dependent on numerous stimulating and inhibiting factors, including dietary components. Because of classic associations between neurogenesis and the hippocampus, in learning and cognition, this brain region has also been the focus of attention in the study of links between diet and neurogenesis. Recently, however, a more complete picture of this relationship has been building: not only has the hypothalamus been shown to satisfy the criteria for a neurogenic niche, but appetite-related mediators, including circulating hormones, such as leptin and ghrelin, pro-inflammatory cytokines and the endocannabinoid intracellular messengers, are also being examined for their potential role in mediating neurogenic responses to macronutrients. The present review draws together these observations and investigates whether n-3 PUFA may exert their attenuating effects on body weight through the stimulation of adult neurogenesis. Exploration of the effects of nutraceuticals on neurogenic brain regions may encourage the development of new rational therapies in the fight against obesity.
Collapse
|
54
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
55
|
Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons. Proc Natl Acad Sci U S A 2013; 110:1935-40. [PMID: 23319656 DOI: 10.1073/pnas.1212563110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endocannabinoid, particularly 2-arachidonoyl glycerol (2-AG), signaling has recently emerged as a molecular determinant of neuronal migration and synapse formation during cortical development. However, the cell type specificity and molecular regulation of spatially and temporally confined morphogenic 2-AG signals remain unexplored. Here, we demonstrate that genetic and pharmacological manipulation of CB(1) cannabinoid receptors permanently alters cholinergic projection neuron identity and hippocampal innervation. We show that nerve growth factor (NGF), implicated in the morphogenesis and survival of cholinergic projection neurons, dose-dependently and coordinately regulates the molecular machinery for 2-AG signaling via tropomyosine kinase A receptors in vitro. In doing so, NGF limits the sorting of monoacylglycerol lipase (MGL), rate limiting 2-AG bioavailability, to proximal neurites, allowing cell-autonomous 2-AG signaling at CB(1) cannabinoid receptors to persist at atypical locations to induce superfluous neurite extension. We find that NGF controls MGL degradation in vitro and in vivo and identify the E3 ubiquitin ligase activity of breast cancer type 1 susceptibility protein (BRCA1) as a candidate facilitating MGL's elimination from motile neurite segments, including growth cones. BRCA1 inactivation by cisplatin or genetically can rescue and reposition MGL, arresting NGF-induced growth responses. These data indicate that NGF can orchestrate endocannabinoid signaling to promote cholinergic differentiation and implicate BRCA1 in determining neuronal morphology.
Collapse
|
56
|
Reisenberg M, Singh PK, Williams G, Doherty P. The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:3264-75. [PMID: 23108545 PMCID: PMC3481529 DOI: 10.1098/rstb.2011.0387] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diacylglycerol lipases (DAGLs) hydrolyse diacylglycerol to generate 2-arachidonoylglycerol (2-AG), the most abundant ligand for the CB(1) and CB(2) cannabinoid receptors in the body. DAGL-dependent endocannabinoid signalling regulates axonal growth and guidance during development, and is required for the generation and migration of new neurons in the adult brain. At developed synapses, 2-AG released from postsynaptic terminals acts back on presynaptic CB(1) receptors to inhibit the secretion of both excitatory and inhibitory neurotransmitters, with this DAGL-dependent synaptic plasticity operating throughout the nervous system. Importantly, the DAGLs have functions that do not involve cannabinoid receptors. For example, 2-AG is the precursor of arachidonic acid in a pathway that maintains the level of this essential lipid in the brain and other organs. This pathway also drives the cyclooxygenase-dependent generation of inflammatory prostaglandins in the brain, which has recently been implicated in the degeneration of dopaminergic neurons in Parkinson's disease. Remarkably, we still know very little about the mechanisms that regulate DAGL activity-however, key insights can be gleaned by homology modelling against other α/β hydrolases and from a detailed examination of published proteomic studies and other databases. These identify a regulatory loop with a highly conserved signature motif, as well as phosphorylation and palmitoylation as post-translational mechanisms likely to regulate function.
Collapse
Affiliation(s)
| | | | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 9RT, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 9RT, UK
| |
Collapse
|
57
|
Nunn A, Guy G, Bell JD. Endocannabinoids in neuroendopsychology: multiphasic control of mitochondrial function. Philos Trans R Soc Lond B Biol Sci 2012; 367:3342-52. [PMID: 23108551 PMCID: PMC3481535 DOI: 10.1098/rstb.2011.0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.
Collapse
Affiliation(s)
- Alistair Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | | | | |
Collapse
|
58
|
Hsu KL, Tsuboi K, Adibekian A, Pugh H, Masuda K, Cravatt BF. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat Chem Biol 2012; 8:999-1007. [PMID: 23103940 PMCID: PMC3513945 DOI: 10.1038/nchembio.1105] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/24/2012] [Indexed: 11/09/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLα and DAGLβ. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLβ in living systems. Optimized inhibitors showed high selectivity for DAGLβ over other serine hydrolases, including DAGLα (∼60-fold selectivity), and the limited off-targets, such as ABHD6, were also inhibited by the negative-control probe. Using these agents and Daglb(-/-) mice, we show that DAGLβ inactivation lowers 2-AG, as well as arachidonic acid and eicosanoids, in mouse peritoneal macrophages in a manner that is distinct and complementary to disruption of cytosolic phospholipase-A2. We observed a corresponding reduction in lipopolysaccharide-induced tumor necrosis factor-α release. These findings indicate that DAGLβ is a key metabolic hub within a lipid network that regulates proinflammatory responses in macrophages.
Collapse
Affiliation(s)
- Ku-Lung Hsu
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
59
|
Sütterlin P, Williams EJ, Chambers D, Saraf K, von Schack D, Reisenberg M, Doherty P, Williams G. The molecular basis of the cooperation between EGF, FGF and eCB receptors in the regulation of neural stem cell function. Mol Cell Neurosci 2012; 52:20-30. [PMID: 23085403 DOI: 10.1016/j.mcn.2012.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/18/2012] [Accepted: 10/10/2012] [Indexed: 01/29/2023] Open
Abstract
Adult neurogenesis relies on EGF and FGF receptor (EGFR/FGFR) function and endocannabinoid (eCB) signalling. Here we have used a neural stem cell (NSC) line to determine how these systems cooperate to regulate neurogenesis. The results show the EGFR to be solely responsible for maintaining PI3K activation explaining its dominant role in promoting NSC survival. The EGFR and FGFR synergistically regulate the ERK/MAPK pathway, and this explains the requirement for both for optimal cell proliferation. The eCB receptors did not contribute to activation of the PI3K or ERK/MAPK pathways, highlighting the importance of another major proliferation pathway. The EGFR plays the dominant role in maintaining the transcriptome, with significant changes in the expression of over 3500 transcripts seen within hours of inhibition or activation of this receptor. The FGFR has a more modest effect on transcription with evidence for nodal integration with EGFR signalling at the level of the ERK/MAPK pathway. A common set of transcripts are regulated by the CB1 and CB2 receptors, with cooperation between these receptors and the EGFR apparent in the regulation of a pool of transcripts, most likely representing signal integration downstream from an as yet to be identified node. Finally, a first level molecular analysis of the transcriptional response shows regulation of a number of key growth factors, growth factor receptors and GPCRs to be under the control of the EGFR.
Collapse
Affiliation(s)
- Philipp Sütterlin
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Consequences of essential fatty acids. Nutrients 2012; 4:1338-57. [PMID: 23112921 PMCID: PMC3475243 DOI: 10.3390/nu4091338] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/18/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022] Open
Abstract
Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy.
Collapse
|
61
|
Abstract
The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
Collapse
Affiliation(s)
- Raphael Mechoulam
- Institute for Drug Research, Hebrew University, Medical Faculty, Jerusalem 91120, Israel.
| | | |
Collapse
|
62
|
Identification of mRNA for endocannabinoid biosynthetic enzymes within hippocampal pyramidal cells and CA1 stratum radiatum interneuron subtypes using quantitative real-time polymerase chain reaction. Neuroscience 2012; 218:89-99. [PMID: 22609938 DOI: 10.1016/j.neuroscience.2012.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 11/22/2022]
Abstract
The hippocampus is required for short-term memory and contains both excitatory pyramidal cells and inhibitory interneurons. These cells exhibit various forms of synaptic plasticity, the mechanism underlying learning and memory. More recently, endocannabinoids were identified to be involved in synaptic plasticity. Our goal was to describe the distribution of endocannabinoid biosynthetic enzymes within CA1 stratum radiatum interneurons and CA3/CA1 pyramidal cells. We extracted mRNA from single interneurons and pyramidal cells and used real-time quantitative polymerase chain reaction (RT-PCR) to detect the presence of 12-lipoxygenase, N-acyl-phosphatidylethanolamine-specific phospholipase D, diacylglycerol lipase α, and type I metabotropic glutamate receptors, all known to be involved in endocannabinoid production and plasticity. We observed that the expression of endocannabinoid biosynthetic enzyme mRNA does occur within interneurons and that it is coexpressed with type I metabotropic glutamate receptors, suggesting interneurons have the potential to produce endocannabinoids. We also identified that CA3 and CA1 pyramidal cells express endocannabinoid biosynthetic enzyme mRNA. Our data provide the first molecular biological evidence for putative endocannabinoid production in interneurons, suggesting their potential ability to regulate endocannabinoid-mediated processes, such as synaptic plasticity.
Collapse
|
63
|
Harkany T. Molecular mechanisms of neuronal specification. Eur J Neurosci 2011; 34:1513-5. [PMID: 22103409 DOI: 10.1111/j.1460-9568.2011.07912.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|