51
|
Szabo G, Preheim SP, Kauffman KM, David LA, Shapiro J, Alm EJ, Polz MF. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton. ISME JOURNAL 2012. [PMID: 23178668 DOI: 10.1038/ismej.2012.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics.
Collapse
Affiliation(s)
- Gitta Szabo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Wang L, Ling Y, Jiang H, Qiu Y, Qiu J, Chen H, Yang R, Zhou D. AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol 2012; 160:245-51. [PMID: 23290231 DOI: 10.1016/j.ijfoodmicro.2012.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 11/03/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022]
Abstract
AphA is a small PadR-family DNA-binding regulator in vibrios. AphA has been shown to be involved in transcriptional auto-repression, intestinal colonization and lethality in mice, biofilm formation, and quorum sensing in Vibrio cholerae. The AphA protein of Vibrio parahaemolyticus has 85% identity to that of V. cholerae with the same number of amino acids. In this work, the aphA null mutant was constructed from a wild-type pandemic strain of V. parahaemolyticus for characterization of the phenotypic changes. AphA is required for biofilm formation in V. parahaemolyticus, and a decreased production of biofilm exopolysaccharide matrix in the aphA mutant relative to the wild-type parent strain accounts for its reduced biofilm formation. AphA is also necessary for the optimal swimming and swarming motility of V. parahaemolyticus. In addition, AphA is essential for lethality in mice and cytotoxic activity, but the aphA deletion did not have effect on enterotoxicity.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Molecular characterization of direct target genes and cis-acting consensus recognized by quorum-sensing regulator AphA in Vibrio parahaemolyticus. PLoS One 2012; 7:e44210. [PMID: 22984476 PMCID: PMC3440409 DOI: 10.1371/journal.pone.0044210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/30/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AphA is the master quorum-sensing (QS) regulator operating at low cell density in vibrios. Molecular regulation of target genes by AphA has been characterized in Vibrio harveyi and V. cholerae, but it is still poorly understood in V. parahaemolyticus. METHODOLOGY/PRINCIPAL FINDINGS The AphA proteins are extremely conserved in V. parahaemolyticus, Vibrio sp. Ex25, Vibrio sp. EJY3, V. harveyi, V. vulnificus, V. splendidus, V. anguillarum, V. cholerae, and V. furnissii. The above nine AphA orthologs appear to recognize conserved cis-acting DNA signals which can be represented by two consensus constructs, a 20 bp box sequence and a position frequency matrix. V. parahaemolyticus AphA represses the transcription of ahpA, qrr4, and opaR through direct AphA-target promoter DNA association, while it inhibits the qrr2-3 transcription in an indirect manner. Translation and transcription starts, core promoter elements for sigma factor recognition, Shine-Dalgarno sequences for ribosome recognition, and AphA-binding sites (containing corresponding AphA box-like sequences) were determined for the three direct AphA targets ahpA, qrr4, and opaR in V. parahaemolyticus. CONCLUSIONS/SIGNIFICANCE AphA-mediated repression of ahpA, qrr2-4, and opaR was characterized in V. parahaemolyticus by using multiple biochemical and molecular experiments. The computational promoter analysis indicated the conserved mechanism of transcriptional regulation of QS regulator-encoding genes ahpA, qrr4, and opaR in vibrios.
Collapse
|
54
|
Kahlke T, Goesmann A, Hjerde E, Willassen NP, Haugen P. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation. BMC Genomics 2012; 13:179. [PMID: 22574681 PMCID: PMC3464603 DOI: 10.1186/1471-2164-13-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/12/2012] [Indexed: 01/05/2023] Open
Abstract
Background The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. Results The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. Conclusion The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Tim Kahlke
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
55
|
Macpherson HL, Bergh Ø, Birkbeck TH. An aerolysin-like enterotoxin from Vibrio splendidus may be involved in intestinal tract damage and mortalities in turbot, Scophthalmus maximus (L.), and cod, Gadus morhua L., larvae. JOURNAL OF FISH DISEASES 2012; 35:153-167. [PMID: 22233514 DOI: 10.1111/j.1365-2761.2011.01331.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vibrio splendidus is a pathogen that can cause major losses during the early stages of larval turbot rearing when live feed (rotifers or Artemia) is used. As haemolytic bacteria have often been associated with larval rearing losses, we studied the role of the V. splendidus haemolysin in infection of larvae. From a bank of over 10,000 transposon mutants of V. splendidus, two different types of haemolysin-negative mutants were obtained. Both had lost virulence for larval fish, and immunohistochemistry showed that the transposon mutant studied colonized the turbot larval intestinal tract at a similar level to the wild-type organism but did not cause damage or signs of enteritis found with the wild-type organism. One transposon insertion site was located within a gene with high homology to aerolysin, the cytolytic toxin produced by several Aeromonas spp. The haemolysin, which we have termed vibrioaerolysin, had properties similar to aerolysin and osmotic protection studies showed that it formed pores in the membranes of erythrocytes of similar diameter to those of aerolysin. The Tn10 insertion site of the second transposon mutant was in an adjacent ToxR-like gene, suggesting that this might control expression of the vibrioaerolysin. The gastroenteritis caused by Aeromonas spp. in humans is considered to be due to production of aerolysin causing cyclic AMP-dependent chloride secretion in cells of the gastrointestinal tract. Damage to the intestinal tract of marine fish larvae could occur in a similar way, and it is possible that several Vibrio spp. found in the developing bacterial flora of the larval fish gut can secrete aerolysin-like toxins leading to death of larvae in the early rearing stages. Routine bacteriological screening on blood agar plates of live feed is recommended with measures to reduce the concentrations of haemolytic bacteria in rearing systems.
Collapse
Affiliation(s)
- H L Macpherson
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
56
|
Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS Genet 2012; 8:e1002472. [PMID: 22253612 PMCID: PMC3257285 DOI: 10.1371/journal.pgen.1002472] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/24/2011] [Indexed: 01/10/2023] Open
Abstract
Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome. This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae mutants with various genome configurations: one with a single chromosome, one with two chromosomes of equal size, and one with both chromosomes controlled by identical origins. We used these synthetic strains to address several biological questions--the specific case of the essentiality of Dam methylation in V. cholerae and the general question concerning bacteria carrying circular chromosomes--by looking at the effect of chromosome size on topological issues. In this article, we show that Dam, RctB, and ParA2/ParB2 are strictly essential for chrII origin maintenance, and we formally demonstrate that the formation of chromosome dimers increases exponentially with chromosome size.
Collapse
|
57
|
Smith CB, Johnson CN, King GM. Assessment of polyaromatic hydrocarbon degradation by potentially pathogenic environmental Vibrio parahaemolyticus isolates from coastal Louisiana, USA. MARINE POLLUTION BULLETIN 2012; 64:138-143. [PMID: 22063191 DOI: 10.1016/j.marpolbul.2011.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/29/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
A presumed Vibrio parahaemolyticus isolate from Chesapeake Bay, Maryland, USA was previously reported to grow on phenanthrene, a polyaromatic hydrocarbon (PAH) found in crude oil. Following the Deepwater Horizon oil spill in the Gulf of Mexico, concerns were raised that PAH-degrading V. parahaemolyticus could increase in abundance, leading to elevated risks of disease derived from shellfish consumption. To assess this possibility, we examined responses to naphthalene and phenanthrene of 17 coastal Louisiana environmental V. parahaemolyticus isolates representing five distinct genotypes. Isolates were obtained immediately after the spill began and after oil had reached the Louisiana coast. None of the isolates grew on or oxidized either substrate and a naphthalene degradation product, 1-naphthol, substantially inhibited growth of some isolates. The use of PAH by V. parahaemolyticus is unusual, and an increase in human health risks due to stimulation of V. parahaemolyticus growth by oil-derived PAH under in situ conditions appears unlikely.
Collapse
Affiliation(s)
- Conor B Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States; Department of Environmental Science, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Crystal N Johnson
- Department of Environmental Science, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Gary M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
58
|
Quinolone induction of qnrVS1 in Vibrio splendidus and plasmid-carried qnrS1 in Escherichia coli, a mechanism independent of the SOS system. Antimicrob Agents Chemother 2011; 55:5942-5. [PMID: 21930884 DOI: 10.1128/aac.05142-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-carried qnrS1 is derived from Vibrio splendidus chromosomal qnrVS1. qnrVS1 transcripts increased 21- to 34-fold with subinhibitory concentrations of ciprofloxacin but much less with mitomycin. No LexA binding sites were upstream of qnrS1 or qnrVS1, and similar induction levels were observed in lexA-positive and lexA-negative Escherichia coli strains with native qnrS1 plasmid pMG306 but not with pUC18-cloned qnrS1 or qnrVS1. Thus, qnrS1 induction by quinolones is independent of the SOS system and requires sequence besides that of the structural gene.
Collapse
|
59
|
Merging taxonomy with ecological population prediction in a case study of Vibrionaceae. Appl Environ Microbiol 2011; 77:7195-206. [PMID: 21873482 DOI: 10.1128/aem.00665-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We synthesized population structure data from three studies that assessed the fine-scale distribution of Vibrionaceae among temporally and spatially distinct environmental categories in coastal seawater and animals. All studies used a dynamic model (AdaptML) to identify phylogenetically cohesive and ecologically distinct bacterial populations and their predicted habitats without relying on a predefined genetic cutoff or relationships to previously named species. Across the three studies, populations were highly overlapping, displaying similar phylogenetic characteristics (identity and diversity), and were predominantly congruent with taxonomic Vibrio species previously characterized as genotypic clusters by multilocus sequence analysis (MLSA). The environmental fidelity of these populations appears high, with 9 out of 12 reproducibly associating with the same predicted (micro)habitats when similar environmental categories were sampled. Overall, this meta-analysis provides information on the habitat predictability and structure of previously described species, demonstrating that MLSA-based taxonomy can, at least in some cases, serve to approximate ecologically cohesive populations.
Collapse
|
60
|
Wildschutte H, Preheim SP, Hernandez Y, Polz MF. O-antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol 2011; 12:2977-87. [PMID: 20629700 DOI: 10.1111/j.1462-2920.2010.02274.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The O-antigen is a highly diverse structure expressed on the outer surface of Gram-negative bacteria. The products responsible for O-antigen synthesis are encoded in the wbe region, which exhibits extensive genetic diversity. While heterogeneous O-antigens are observed within Vibrio species, characterization of these structures has been devoted almost exclusively to pathogens. Here, we investigate O-antigen diversity among coastal marine Vibrio splendidus-like isolates. The wbe region was first identified and characterized using the sequenced genomes of strains LGP32, 12B01 and Med222. These regions were genetically diverse, reflective of their expressed O-antigen. Additional isolates from physically distinct habitats in Plum Island Estuary (MA, USA), including within animal hosts and on suspended particles, were further characterized based on multilocus sequence analysis (MLSA) and O-antigen profiles. Results showed serotype diversity within an ecological setting. Among 48 isolates which were identical in three MLSA genes, 41 showed gpm genetic diversity, a gene closely linked to the wbe locus, and at least 12 expressed different O-antigen profiles further suggesting wbe genetic diversity. Our results demonstrate O-antigen hyper-variability among these environmental strains and suggest that frequent lateral gene transfer generates wbe extensive diversity among V. splendidus and its close relatives.
Collapse
Affiliation(s)
- Hans Wildschutte
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
61
|
Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 2011; 7:460. [PMID: 21245845 PMCID: PMC3049409 DOI: 10.1038/msb.2010.115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/06/2010] [Indexed: 01/01/2023] Open
Abstract
Chromosome 1 of Vibrio vulnificus tends to contain larger portion of essential or housekeeping genes on the basis of the genomic analysis and gene knockout experiments performed in this study, while its chromosome 2 seems to have originated and evolved from a plasmid. The genome-scale metabolic network model of V. vulnificus was reconstructed based on databases and literature, and was used to identify 193 essential metabolites. Five essential metabolites finally selected after the filtering process are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA), which were predicted to be essential in V. vulnificus, absent in human, and are consumed by multiple reactions. Chemical analogs of the five essential metabolites were screened and a hit compound showing the minimal inhibitory concentration (MIC) of 2 μg/ml and the minimal bactericidal concentration (MBC) of 4 μg/ml against V. vulnificus was identified.
Discovering new antimicrobial targets and consequently new antimicrobials is important as drug resistance of pathogenic microorganisms is becoming an increasingly serious problem in human healthcare management (Fischbach and Walsh, 2009). There clearly exists a gap between genomic studies and drug discovery as the accumulation of knowledge on pathogens at genome level has not successfully transformed into the development of effective drugs (Mills, 2006; Payne et al, 2007). In this study, we dissected the genome of a microbial pathogen in detail, and subsequently developed a systems biological strategy of employing genome-scale metabolic modeling and simulation together with metabolite essentiality analysis for effective drug targeting and discovery. This strategy was used for identifying new drug targets in an opportunistic pathogen Vibrio vulnificus CMCP6 as a model. V. vulnificus is a Gram-negative halophilic bacterium that is found in estuarine waters, brackish ponds, or coastal areas, and its Biotype 1 is an opportunistic human pathogen that can attack immune-compromised patients, and causes primary septicemia, necrotized wound infections, and gastroenteritis. We previously found that many metabolic genes were specifically induced in vivo, suggesting that specific metabolic pathways are essential for in vivo survival and virulence of this pathogen (Kim et al, 2003; Lee et al, 2007). These results motivated us to carry out systems biological analysis of the genome and the metabolic network for new drug target discovery. V. vulnificus CMCP6 has two chromosomes. We first re-sequenced genomic regions assembled in low quality and low depth, and subsequently re-annotated the whole genome of V. vulnificus. Horizontal gene transfer was suspected to be responsible for the diversification of each chromosome of V. vulnificus, and the presence of metabolic genes was more biased to chromosome 1 than chromosome 2. Further studies on V. vulnificus genome revealed that chromosome 2 is more prone to diversification for better adaptation to the environment than its chromosome 1, while chromosome 1 tends to expand their genetic repertoire while maintaining the core genes at a constant level. Next, a genome-scale metabolic network VvuMBEL943 was reconstructed based on literature, databases and experiments for systematic studies on the metabolism of this pathogen and prediction of drug targets. The VvuMBEL943 model is composed of 943 reactions and 765 metabolites, and covers 673 genes. The model was validated by comparing its simulated cell growth phenotype obtained by constraints-based flux analysis with the V. vulnificus-specific experimental data previously reported in the literature. In this study, constraints-based flux analysis is an optimization-based simulation method that calculates intracellular fluxes under the specific genetic and environmental condition (Kim et al, 2008). As a result, 17 growth phenotypes were correctly predicted out of 18 cases, which demonstrate the validity of VvuMBEL943. The main objective of constructing VvuMBEL943 in this study is to predict potential drug targets by system-wide analysis of the metabolic network for the effective treatment of V. vulnificus. To achieve this goal, a set of drug target candidates was predicted by taking a metabolite-centric approach. Metabolite essentiality analysis is a concept recently introduced for the study of cellular robustness to complement conventional reaction or gene-centric approach (Kim et al, 2007b). Metabolite essentiality analysis observes changes in flux distribution by removing each metabolite from the in silico metabolic network. Hence, metabolite essentiality predicts essential metabolites whose absence causes cell death. By selecting essential metabolites, it is possible to directly screen only their structural analogs, which substantially reduces the number of chemical compounds to screen from the chemical compound library. As a result of implementing this approach, 193 metabolites were initially identified to be essential to the cell. These essential metabolites were then further filtered based on the predetermined criteria, mainly organism specificity and multiple connectivity associated with each metabolite, in order to reduce the number of initial target candidates towards identifying the most effective ones. Five essential metabolites finally selected are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA). Enzymes that consume these essential metabolites were experimentally verified to be essential, which indeed demonstrates the essentiality of these five metabolites. On the basis of the structural information of these five essential metabolites, whole-cell screening assay was performed using their analogs for possible antibacterial discovery. We screened 352 chemical analogs of the essential metabolites selected from the chemical compound library, and found a hit compound 24837, which shows the minimal inhibitory concentration (MIC) of 2 μg/ml and minimal bactericidal concentration (MBC) of 4 μg/ml, showing good antibacterial activity without further structural modification. Although this study demonstrates a proof-of-concept, the approaches and their rationale taken here should serve as a general strategy for discovering novel antibiotics and drugs based on systems-level analysis of metabolic networks. Although the genomes of many microbial pathogens have been studied to help identify effective drug targets and novel drugs, such efforts have not yet reached full fruition. In this study, we report a systems biological approach that efficiently utilizes genomic information for drug targeting and discovery, and apply this approach to the opportunistic pathogen Vibrio vulnificus CMCP6. First, we partially re-sequenced and fully re-annotated the V. vulnificus CMCP6 genome, and accordingly reconstructed its genome-scale metabolic network, VvuMBEL943. The validated network model was employed to systematically predict drug targets using the concept of metabolite essentiality, along with additional filtering criteria. Target genes encoding enzymes that interact with the five essential metabolites finally selected were experimentally validated. These five essential metabolites are critical to the survival of the cell, and hence were used to guide the cost-effective selection of chemical analogs, which were then screened for antimicrobial activity in a whole-cell assay. This approach is expected to help fill the existing gap between genomics and drug discovery.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011; 2:6. [PMID: 21529368 PMCID: PMC3108266 DOI: 10.1186/1759-8753-2-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Collapse
Affiliation(s)
- Guillaume Cambray
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Émilie Guerin
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Sandra Da Re
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria, and VISAVET, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie-Cécile Ploy
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Jordi Barbé
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| |
Collapse
|
63
|
De Decker S, Saulnier D. Vibriosis induced by experimental cohabitation in Crassostrea gigas: evidence of early infection and down-expression of immune-related genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:691-699. [PMID: 21195769 DOI: 10.1016/j.fsi.2010.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/12/2010] [Accepted: 12/24/2010] [Indexed: 05/30/2023]
Abstract
The understanding of reciprocal interactions between Crassostrea gigas and Vibrio sp., whether these be virulent or avirulent, is vital for the development of methods to improve the health status of cultured oysters. We describe an original non-invasive experimental infection technique using cohabitation, designed to explore these interactions. Using real-time PCR techniques we examined the dynamics of virulent and avirulent Vibrio sp. in oyster hemolymph and tank seawater, and made a parallel study of the expression of four genes involved in oyster immune defense: Cg-BPI, Cg-EcSOD, Cg-IκB, Cg-TIMP. No mortality occurred in control animals, but oysters put in cohabitation for 2-48 h with animals previously infected by two Vibrio pathogens suffered mortalities from 2 to 16 days post-cohabitation. Our results show that virulent Vibrio infect healthy individuals after only 2 h of cohabitation, with values ranging from 4.5 x 10² to 2 x 10⁴ cells ml⁻¹ hemolymph. Simultaneously, an approximate ten-fold increase of the total Vibrio population was observed in control animals, with a 6.6-78.5-fold up-expression of targeted genes. In contrast, oysters exposed to harmful bacteria had mean expression levels strongly down-regulated by a factor of 9.2-29 (depending on the gene) compared with control animals. Although oysters were still found to be infected by virulent Vibrio after 6-48 h of cohabitation, no significant differences were noted when comparing levels of each transcript in control and infected oysters at the same sampling times during this period: the important differences were noted before 6 h cohabitation. Taken together, our data support (1) the hypothesis that virulent Vibrio disturbs the immune response of this invertebrate host both rapidly and significantly, although this occurs specifically during an early and transient period during the first 6 h of cohabitation challenge, and that (2) expression of targeted genes is not correlated with vibriosis resistance.
Collapse
Affiliation(s)
- Sophie De Decker
- Laboratoire de Génétique et Pathologie, Ifremer, Av du Mus de Loup, 17390 La Tremblade, France
| | | |
Collapse
|
64
|
Casas SM, Comesaña P, Cao A, Villalba A. Comparison of antibacterial activity in the hemolymph of marine bivalves from Galicia (NW Spain). J Invertebr Pathol 2011; 106:343-5. [DOI: 10.1016/j.jip.2010.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/20/2010] [Accepted: 11/27/2010] [Indexed: 11/28/2022]
|
65
|
Le Roux F, Labreuche Y, Davis BM, Iqbal N, Mangenot S, Goarant C, Mazel D, Waldor MK. Virulence of an emerging pathogenic lineage of Vibrio nigripulchritudo is dependent on two plasmids. Environ Microbiol 2011; 13:296-306. [PMID: 20825454 PMCID: PMC3020234 DOI: 10.1111/j.1462-2920.2010.02329.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/18/2010] [Indexed: 11/27/2022]
Abstract
Vibrioses are the predominant bacterial infections in marine shrimp farms. Vibrio nigripulchritudo is an emerging pathogen of the cultured shrimp Litopenaeus stylirostris in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have revealed that recent pathogenic V. nigripulchritudo isolates from New Caledonia all cluster into a monophyletic clade and contain a small plasmid, pB1067. Here, we report that a large plasmid, pA1066 (247 kb), can also serve as a marker for virulent V. nigripulchritudo, and that an ancestral version of this plasmid was likely acquired prior to other virulence-linked markers. Additionally, we demonstrate that pA1066 is critical for the full virulence of V. nigripulchritudo in several newly developed experimental models of infection. Plasmid pB1067 also contributes to virulence; only strains containing both plasmids induced the highest level of shrimp mortality. Thus, it appears that these plasmids, which are absent from non-pathogenic isolates, may be driving forces, as well as markers, for the emergence of a pathogenic lineage of V. nigripulchritudo.
Collapse
Affiliation(s)
- Frédérique Le Roux
- Laboratoire de Génétique et Pathologie, IFREMER, 3790 La Tremblade, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus. Proc Natl Acad Sci U S A 2011; 108:2993-8. [PMID: 21282662 DOI: 10.1073/pnas.1015326108] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OmpU porins are increasingly recognized as key determinants of pathogenic host Vibrio interactions. Although mechanisms remain incompletely understood, various species, including the human pathogen Vibrio cholera, require OmpU for host colonization and virulence. We have shown previously that OmpU is essential for virulence in the oyster pathogen Vibrio splendidus LGP32. Here, we showed that V. splendidus LGP32 invades the oyster immune cells, the hemocytes, through subversion of host-cell actin cytoskeleton. In this process, OmpU serves as an adhesin/invasin required for β-integrin recognition and host cell invasion. Furthermore, the major protein of oyster plasma, the extracellular superoxide dismutase Cg-EcSOD, is used as an opsonin mediating the OmpU-promoted phagocytosis through its RGD sequence. Finally, the endocytosed bacteria were found to survive intracellularly, evading the host defense by preventing acidic vacuole formation and limiting reactive oxygen species production. We conclude that (i) V. splendidus is a facultative intracellular pathogen that manipulates host defense mechanisms to enter and survive in host immune cells, and (ii) that OmpU is a major determinant of host cell invasion in Vibrio species, used by V. splendidus LGP32 to attach and invade oyster hemocytes through opsonisation by the oyster plasma Cg-EcSOD.
Collapse
|
67
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
68
|
Jackson RW, Johnson LJ, Clarke SR, Arnold DL. Bacterial pathogen evolution: breaking news. Trends Genet 2010; 27:32-40. [PMID: 21047697 DOI: 10.1016/j.tig.2010.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
The immense social and economic impact of bacterial pathogens, from drug-resistant infections in hospitals to the devastation of agricultural resources, has resulted in major investment to understand the causes and consequences of pathogen evolution. Recent genome sequencing projects have provided insight into the evolution of bacterial genome structures; revealing the impact of mobile DNA on genome restructuring and pathogenicity. Sequencing of multiple genomes of related strains has enabled the delineation of pathogen evolution and facilitated the tracking of bacterial pathogens globally. Other recent theoretical and empirical studies have shown that pathogen evolution is significantly influenced by ecological factors, such as the distribution of hosts within the environment and the effects of co-infection. We suggest that the time is ripe for experimentalists to use genomics in conjunction with evolutionary ecology experiments to further understanding of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK.
| | | | | | | |
Collapse
|
69
|
Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics 2010; 11:369. [PMID: 20537180 PMCID: PMC2890568 DOI: 10.1186/1471-2164-11-369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.
Collapse
|
70
|
Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C. A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. MICROBIAL ECOLOGY 2010; 59:787-798. [PMID: 20012275 DOI: 10.1007/s00248-009-9620-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.
Collapse
Affiliation(s)
- Denis Saulnier
- Laboratoire de Génétique et Pathologie, IFREMER, BP 33, av. du Mus de Loup, 17390, La Tremblade, France.
| | | | | | | | | | | |
Collapse
|
71
|
Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, Smith GW, Weil E, Moeller PDR, Morris PJ. Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. MICROBIAL ECOLOGY 2010; 59:646-657. [PMID: 20309538 DOI: 10.1007/s00248-010-9644-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/10/2010] [Indexed: 05/29/2023]
Abstract
Vibrio coralliilyticus is a global marine pathogen that has been found to cause disease in several marine organisms, including corals. This study is the first report of the isolation of V. coralliilyticus from a diseased Caribbean octocoral, Pseudopterogorgia americana. Five sister phylotypes were positively identified using 16S rRNA gene sequencing, recA probes specific for V. coralliilyticus, and rep-PCR fingerprinting. The antimicrobial resistance was compared between pathogenic strains of V. coralliilyticus and the Caribbean strains. First, the antimicrobial resistance of V. coralliilyticus-type strain ATCC BAA-450 was determined using an agar-overlay antimicrobial bioassay at 24 degrees C and 27 degrees C, temperatures which are relevant to its known temperature-dependent virulence. From 108 distinct bacteria isolated from P. americana, 12 inhibited the V. coralliilyticus-type strain at 24 degrees C and five at 27 degrees C. Next, the phenotypic comparison of two Caribbean phylotypes and three V. coralliilyticus reference strains against a subset of 30 bacteria demonstrated a similar resistance trend. At both temperatures, the reference strains were inhibited by three bacteria isolates, while the Caribbean strains were inhibited by four to nine bacteria. Additionally, V. coralliilyticus-type strain ATCC BAA-450 and one of the Caribbean strains were inhibited by a higher number of bacteria at 24 degrees C compared with 27 degrees C. Together, these results highlight that V. coralliilyticus strains have antimicrobial resistance to the majority of coral-associated bacteria tested, which may be temperature-dependent in some strains. Furthermore, all V. coralliilyticus strains tested showed multi-drug resistance to a range of 11-16 (out of 26) commercial antibiotics. This study establishes V. coralliilyticus in association with a Caribbean octocoral and demonstrates its resistance to the antimicrobial activity of coral-associated bacteria and to commercial antibiotics.
Collapse
Affiliation(s)
- Maria I Vizcaino
- Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC 29412, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Duperthuy M, Binesse J, Le Roux F, Romestand B, Caro A, Got P, Givaudan A, Mazel D, Bachère E, Destoumieux-Garzón D. The major outer membrane protein OmpU of Vibrio splendidus contributes to host antimicrobial peptide resistance and is required for virulence in the oyster Crassostrea gigas. Environ Microbiol 2010; 12:951-63. [DOI: 10.1111/j.1462-2920.2009.02138.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
73
|
Vesth T, Wassenaar TM, Hallin PF, Snipen L, Lagesen K, Ussery DW. On the origins of a Vibrio species. MICROBIAL ECOLOGY 2010; 59:1-13. [PMID: 19830476 PMCID: PMC2807590 DOI: 10.1007/s00248-009-9596-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/17/2009] [Indexed: 05/28/2023]
Abstract
Thirty-two genome sequences of various Vibrionaceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed; this fraction roughly doubles for gene families conserved within the species V. cholerae. Of these, approximately 200 gene families that cluster on various locations of the genome are not found in other sequenced Vibrionaceae; these are possibly unique to the V. cholerae species. By comparing gene family content of the analysed genomes, the relatedness to a particular species is identified for two unspeciated genomes. Conversely, two genomes presumably belonging to the same species have suspiciously dissimilar gene family content. We are able to identify a number of genes that are conserved in, and unique to, V. cholerae. Some of these genes may be crucial to the niche adaptation of this species.
Collapse
Affiliation(s)
- Tammi Vesth
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
| | - Trudy M. Wassenaar
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | - Peter F. Hallin
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Lars Snipen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Biostatistics, Department of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Karin Lagesen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Oslo, Norway
| | - David W. Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
74
|
Grimes DJ, Johnson CN, Dillon KS, Flowers AR, Noriea NF, Berutti T. What genomic sequence information has revealed about Vibrio ecology in the ocean--a review. MICROBIAL ECOLOGY 2009; 58:447-460. [PMID: 19727929 DOI: 10.1007/s00248-009-9578-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
To date, the genomes of eight Vibrio strains representing six species and three human pathogens have been fully sequenced and reported. This review compares genomic information revealed from these sequencing efforts and what we can infer about Vibrio biology and ecology from this and related genomic information. The focus of the review is on those attributes that allow the Vibrios to survive and even proliferate in their ocean habitats, which include seawater, plankton, invertebrates, fish, marine mammals, plants, man-made structures (surfaces), and particulate matter. Areas covered include general information about the eight genomes, each of which is distributed over two chromosomes; a discussion of expected and unusual genes found; attachment sites and mechanisms; utilization of particulate and dissolved organic matter; and conclusions.
Collapse
Affiliation(s)
- Darrell Jay Grimes
- Department of Coastal Sciences, Gulf Coast Research Laboratory, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Differential in vivo response of soft-shell clam hemocytes against two strains of Vibrio splendidus: Changes in cell structure, numbers and adherence. J Invertebr Pathol 2009; 102:50-6. [DOI: 10.1016/j.jip.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 11/15/2022]
|
76
|
Presence of dfr6 gene cassette in superintegron of non-O1/non-O139 strain of Vibrio cholerae. Antimicrob Agents Chemother 2009; 53:4959-60. [PMID: 19704128 DOI: 10.1128/aac.00540-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|