51
|
Liu WYY, Ridgway HJ, James TK, James EK, Chen WM, Sprent JI, Young JPW, Andrews M. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils. MICROBIAL ECOLOGY 2014; 68:542-555. [PMID: 24801964 DOI: 10.1007/s00248-014-0427-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.
Collapse
Affiliation(s)
- Wendy Y Y Liu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
52
|
H. Youseif S, H. Abd El- F, A. Khalifa M, A. Saleh S. Symbiotic Effectiveness of Rhizobium (Agrobacterium) Compared to Ensifer (Sinorhizobium) and Bradyrhizobium Genera for Soybean Inoculation under Field Conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jm.2014.151.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
53
|
Complete Genome Sequence of the Sesbania Symbiont and Rice Growth-Promoting Endophyte Rhizobium sp. Strain IRBG74. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00934-13. [PMID: 24265489 PMCID: PMC3837170 DOI: 10.1128/genomea.00934-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhizobium sp. strain IRBG74 is the first known nitrogen-fixing symbiont in the Agrobacterium/Rhizobium clade that nodulates the aquatic legume Sesbania sp. and is also a growth-promoting endophyte of wetland rice. Here, we present the sequence of the IRBG74 genome, which is composed of a circular chromosome, a linear chromosome, and a symbiotic plasmid, pIRBG74a.
Collapse
|
54
|
Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, dos Reis Junior FB, Perigolo N, Tripathi AK, Sprent JI, Young JPW, James EK, Gyaneshwar P. An invasive Mimosa in India does not adopt the symbionts of its native relatives. ANNALS OF BOTANY 2013; 112:179-96. [PMID: 23712450 PMCID: PMC3690997 DOI: 10.1093/aob/mct112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/05/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. METHODS Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. KEY RESULTS Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. CONCLUSIONS The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.
Collapse
Affiliation(s)
- Hukam Singh Gehlot
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Nisha Tak
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Muskan Kaushik
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Shubhajit Mitra
- Biological Sciences, University of Wisconsin Milwaukee, 3209 N Maryland Ave, Milwaukee, WI 53211, USA
| | - Wen-Ming Chen
- Laboratory of Microbiology, Dept. of Seafood Science, National Kaohsiung Marine University, Kaohsiung City 811, Taiwan
| | - Nicole Poweleit
- Biological Sciences, University of Wisconsin Milwaukee, 3209 N Maryland Ave, Milwaukee, WI 53211, USA
| | - Dheeren Panwar
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Neetu Poonar
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Rashmita Parihar
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Alkesh Tak
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Indu Singh Sankhla
- BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur-342001, India
| | - Archana Ojha
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Marcelo F. Simon
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, 70770-901, DF, Brazil
| | | | - Natalia Perigolo
- Departamento de Botânica, Universidade de Brasília, Brasília, 70910-900, DF, Brazil
| | - Anil K. Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Janet I. Sprent
- Division of Plant Sciences, University of Dundee at JHI, Dundee DD2 5DA, UK
| | - J. Peter W. Young
- Department of Biology 3, University of York, PO Box 373, York YO10 5YW, UK
| | - Euan K. James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Prasad Gyaneshwar
- Biological Sciences, University of Wisconsin Milwaukee, 3209 N Maryland Ave, Milwaukee, WI 53211, USA
| |
Collapse
|
55
|
Bournaud C, de Faria SM, dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E, James EK, Prin Y, Moulin L. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One 2013; 8:e63478. [PMID: 23691052 PMCID: PMC3655174 DOI: 10.1371/journal.pone.0063478] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Gross
- Depto de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | | | - Yves Prin
- CIRAD, UMR LSTM, Montpellier, France
| | | |
Collapse
|
56
|
Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 2013; 8:e63666. [PMID: 23675499 PMCID: PMC3652814 DOI: 10.1371/journal.pone.0063666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/06/2013] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.
Collapse
Affiliation(s)
- Lorena Setten
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
| | - Matteo Mozzicafreddo
- School of Biosciences and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Ana Romina Fox
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
| | - Christian Lisi
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | | | - Mauro Angeletti
- School of Biosciences and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Elba Pagano
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Antonio Díaz-Paleo
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Nicolás Daniel Ayub
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
57
|
Bomfeti CA, Ferreira PAA, Carvalho TS, De Rycke R, Moreira FMS, Goormachtig S, Holsters M. Nodule development on the tropical legume Sesbania virgata under flooded and non-flooded conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:93-8. [PMID: 22672666 DOI: 10.1111/j.1438-8677.2012.00592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The interaction between the Brazilian pioneer legume Sesbania virgata and its microsymbiont Azorhizobium doebereinerae leads to the formation of nitrogen-fixing nodules on roots that grow either in well-aerated soils or in wetlands. We studied the initiation and development of nodules under these alternative conditions. To this end, light and fluorescence microscopy were used to follow the bacterial colonisation and invasion into the host and, by means of transmission electron microscopy, we could observe the intracellular entry. Under hydroponic conditions, intercellular invasion took place at lateral root bases and mature nodules were round and determinate. However, on roots grown in vermiculite that allows aerated growth, bacteria also entered via root hair invasion and nodules were both of the determinate and indeterminate type. Such versatility in entry and developmental plasticity, as previously described in Sesbania rostrata, enables efficient nodulation in both dry and wet environments and are an important adaptive feature of this group of semi-tropical plants that grow in temporarily flooded habitats.
Collapse
Affiliation(s)
- C A Bomfeti
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otani Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
58
|
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 2012; 7:e52891. [PMID: 23285218 PMCID: PMC3532110 DOI: 10.1371/journal.pone.0052891] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
A three year field study (2007–2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted using the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. Fertility management appeared to have little impact on both diazotrophic and total bacterial communities. However, copy numbers of the nifH gene did appear to be negatively impacted by conventional crop protection measures across all years suggesting diazotrophs may be particularly sensitive to pesticides. Impacts of crop management were greatly overshadowed by the influence of temporal effects with diazotrophic communities changing on a year by year basis and from season to season. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions.
Collapse
|
59
|
Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579-2588. [DOI: 10.1099/ijs.0.035097-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus
Microvirga
, with ≥96.1 % sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6T and WSM3557T was
Microvirga flocculans
TFBT, with 97.6–98.0 % similarity, while WSM3693T was most closely related to
Microvirga aerilata
5420S-16T, with 98.8 % similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6T, WSM3557T and WSM3693T within the genus
Microvirga
. DNA–DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6T, WSM3557T and WSM3693T from each other and from other
Microvirga
species with validly published names. The nodA sequence of Lut6T was placed in a clade that contained strains of
Rhizobium
,
Mesorhizobium
and
Sinorhizobium
, while the 100 % identical nodA sequences of WSM3557T and WSM3693T clustered with
Bradyrhizobium
,
Burkholderia
and
Methylobacterium
strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6T, WSM3557T and WSM3693T were most closely related to that of
Rhizobium etli
CFN42T
nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of
Microvirga
are proposed: Microvirga lupini sp. nov. (type strain Lut6T = LMG 26460T = HAMBI 3236T), Microvirga lotononidis sp. nov. (type strain WSM3557T = LMG 26455T = HAMBI 3237T) and Microvirga zambiensis sp. nov. (type strain WSM3693T = LMG 26454T = HAMBI 3238T).
Collapse
Affiliation(s)
- Julie K. Ardley
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Matthew A. Parker
- Department of Biological Sciences, State University of New York, Binghamton, 4400 Vestal Parkway, Vestal, NY 13850, USA
| | - Sofie E. De Meyer
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - Robert D. Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Wayne G. Reeve
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Ron J. Yates
- Department of Agriculture Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Michael J. Dilworth
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Anne Willems
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - John G. Howieson
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
60
|
Tan HW, Weir BS, Carter N, Heenan PB, Ridgway HJ, James EK, Sprent JI, Young JPW, Andrews M. Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC genes are symbionts of New Zealand Carmichaelinae. PLoS One 2012; 7:e47677. [PMID: 23118889 PMCID: PMC3485278 DOI: 10.1371/journal.pone.0047677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus) produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae.
Collapse
Affiliation(s)
- Heng Wee Tan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Bevan S. Weir
- Systematics Group, Landcare Research, Auckland, New Zealand
| | - Noel Carter
- Faculty of Applied Sciences, University of Sunderland, Sunderland, United Kingdom
| | - Peter B. Heenan
- Allan Herbarium, Landcare Research, Lincoln, Christchurch, New Zealand
| | - Hayley J. Ridgway
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Euan K. James
- Ecological Sciences, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Janet I. Sprent
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- * E-mail:
| |
Collapse
|
61
|
|
62
|
|
63
|
Li L, Sinkko H, Montonen L, Wei G, Lindström K, Räsänen LA. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol 2012; 79:46-68. [PMID: 22066910 DOI: 10.1111/j.1574-6941.2011.01198.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A total of 159 endophytic bacteria were isolated from surface-sterilized root nodules of wild perennial Glycyrrhiza legumes growing on 40 sites in central and northwestern China. Amplified fragment length polymorphism (AFLP) genomic fingerprinting and sequencing of partial 16S rRNA genes revealed that the collection mainly consisted of Mesorhizobium, Rhizobium, Sinorhizobium, Agrobacterium and Paenibacillus species. Based on symbiotic properties with the legume hosts Glycyrrhiza uralensis and Glycyrrhiza glabra, we divided the nodulating species into true and sporadic symbionts. Five distinct Mesorhizobium groups represented true symbionts of the host plants, the majority of strains inducing N2-fixing nodules. Sporadic symbionts consisted of either species with infrequent occurrence (Rhizobium galegae, Rhizobium leguminosarum) or species with weak (Sinorhizobium meliloti, Rhizobium gallicum) or no N2 fixation ability (Rhizobium giardinii, Rhizobium cellulosilyticum, Phyllobacterium sp.). Multivariate analyses revealed that the host plant species and geographic location explained only a small part (14.4%) of the total variation in bacterial AFLP patterns, with the host plant explaining slightly more (9.9%) than geography (6.9%). However, strains isolated from G. glabra were clearly separated from those from G. uralensis, and strains obtained from central China were well separated from those originating from Xinjiang in the northwest, indicating both host preference and regional endemism.
Collapse
Affiliation(s)
- Li Li
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
64
|
Salem S, Saidi S, Chihaoui SA, Mhamdi R. Inoculation of Phaseolus vulgaris, Medicago laciniata and Medicago polymorpha with Agrobacterium sp. strain 10C2 may enhance nodulation and shoot dry weight but does not affect host range specificity. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0439-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
65
|
Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 2012; 35:98-109. [DOI: 10.1016/j.syapm.2011.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 11/23/2022]
|
66
|
Abstract
Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.
Collapse
|
67
|
Djedidi S, Yokoyama T, Ohkama-Ohtsu N, Risal CP, Abdelly C, Sekimoto H. Stress tolerance and symbiotic and phylogenic features of root nodule bacteria associated with Medicago species in different bioclimatic regions of Tunisia. Microbes Environ 2011; 26:36-45. [PMID: 21487201 DOI: 10.1264/jsme2.me10138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thirty two rhizobial isolates were obtained from different bioclimatic regions of Tunisia using as trap plants, Medicago sativa, Medicago ciliaris, Medicago polymorpha and Medicago minima. To study their diversity and characterize them in relation to Mediterranean conditions, abiotic stress resistance, symbiotic properties and genetic diversity in terms of 16S rRNA and nodA sequences were assessed. Five isolates from M. sativa, three from M. ciliaris and three from M. minima could grow at 45°C. Only two isolates from M. sativa grew at 4% NaCl. The most stress tolerant isolates were obtained from arid soils. A phylogenetic analysis of 16S rRNA genes revealed 29 isolates to be closely related to Ensifer including one (Pl.3-9) that showed a 16S rRNA sequence similar to that of Ensifer meliloti and nodA sequence similar to that of Ensifer medicae. However, three isolates were categorized into Agrobacterium containing the nodA of Ensifer. Furthermore, these isolates developed nodules on original hosts. The results for the four isolates suggest horizontal gene transfer between the species.
Collapse
Affiliation(s)
- Salem Djedidi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96-104. [DOI: 10.1016/j.syapm.2010.11.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/24/2010] [Accepted: 11/27/2010] [Indexed: 11/27/2022]
|
69
|
Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 2010; 77:911-9. [PMID: 21131514 DOI: 10.1128/aem.01250-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agricultural soils are heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, the molecular ecology of the total bacterial and free-living nitrogen-fixing communities in soils from the Nafferton Factorial Systems Comparison (NFSC) study in northeast England were examined. The field experiment was factorial in design, with organic versus conventional crop rotation, crop protection, and fertility management factors. Soils were sampled on three dates (March, June, and September) in 2007. Total RNA was extracted from all soil samples and reverse transcribed. Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were used to analyze nifH and 16S rRNA genes in order to study free-living diazotrophs and the total bacterial community, respectively. Crop rotation was shown to have a significant effect on total bacterial diversity (and that of free-living N fixers) (P ≤ 0.001). On all three dates, nifH activity was higher in the conventional crop rotation. In contrast, qPCR analysis of free-living N fixers indicated significantly higher levels of activity in conventionally fertilized plots in June (P = 0.0324) and in plots with organic crop protection in September (P = 0.0143). To our knowledge, the effects of organic and conventional farming systems on free-living diazotrophs have never been studied. An increased understanding of the impacts of management practices on free-living N fixers could allow modifications in soil management practices to optimize the activity of these organisms.
Collapse
|
70
|
Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 2010; 33:468-77. [DOI: 10.1016/j.syapm.2010.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022]
|