51
|
Ma YP, Cui J, Hu HJ, Pan ZH. Mammalian Retinal Bipolar Cells Express Inwardly Rectifying K+ Currents (IKir) With a Different Distribution Than That of Ih. J Neurophysiol 2003; 90:3479-89. [PMID: 14615436 DOI: 10.1152/jn.00426.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal bipolar cells comprise multiple subtypes that are well known for the diversity of their physiological properties. We investigated the properties and functional roles of the hyperpolarization-activated currents in mammalian retinal bipolar cells using whole cell patch-clamp recording techniques. We report that bipolar cells express inwardly rectifying K+ currents ( IKir) in addition to the hyperpolarization-activated cationic currents ( Ih) previously reported. Furthermore, these two currents are differentially expressed among different subtypes of bipolar cells. One group of cone bipolar cells in particular displayed mainly IKir. A second group of cone bipolar cells displayed both currents but with a much larger Ih. Rod bipolar cells, on the other hand, showed primarily Ih. Moreover, we showed that IKir and Ih differentially influence the voltage responses of bipolar cells: Ih facilitates and/or accelerates the membrane potential rebound, whereas IKir counteracts or prevents such rebound. The findings of the expression of IKir and the differential expression of Ih and IKir in bipolar cells may provide new insights into an understanding of the physiological properties of bipolar cells.
Collapse
Affiliation(s)
- Yu-Ping Ma
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
52
|
Abstract
The ability to see at night relies on the transduction of single photons by the rod photoreceptors and transmission of the resulting signals through the retina. Using paired patch-clamp recordings, we investigated the properties of the first stage of neural processing of the rod light responses: signal transfer from rods to bipolar and horizontal cells. Bypassing the relatively slow phototransduction process and directly modulating the rod voltage or current allowed us to characterize signal transfer over a wide range of temporal frequencies. We found that the rod to second-order cell synapse acts as a bandpass filter, preferentially transmitting signals with frequencies between 1.5 and 4 Hz while attenuating higher and lower frequency inputs. The similarity of the responses in different types of postsynaptic cell and the properties of miniature EPSCs (mEPSCs) recorded in OFF bipolar cells suggest that most of the bandpass filtering is mediated presynaptically. Modeling of the network of electrically coupled rod photoreceptors suggests that spread of the signal through the network contributed to the observed high-pass filtering but not to the low-pass filtering. Attenuation of low temporal frequencies at the first retinal synapse sharpens the temporal resolution of the light response; attenuation of high temporal frequencies removes voltage noise in the rod that threatens to swamp the light response.
Collapse
|
53
|
Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D. Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol 2003; 549:347-59. [PMID: 12702747 PMCID: PMC2342966 DOI: 10.1113/jphysiol.2002.027698] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
'Funny-' (f-) channels of cardiac sino-atrial node (SAN) cells are key players in the process of pacemaker generation and mediate the modulatory action of autonomic transmitters on heart rate. The molecular components of f-channels are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Of the four HCN isoforms known, two (HCN4 and HCN1) are expressed in the rabbit SAN at significant levels. However, the properties of f-channels of SAN cells do not conform to specific features of the two isoforms expressed locally. For example, activation kinetics and cAMP sensitivity of native pacemaker channels are intermediate between those reported for HCN1 and HCN4. Here we have explored the possibility that both HCN4 and HCN1 isoforms contribute to the native If in SAN cells by co-assembling into heteromeric channels. To this end, we used heterologous expression in human embryonic kidney (HEK) 293 cells to investigate the kinetics and cAMP response of the current generated by co-transfected (HCN4 + HCN1) and concatenated (HCN4-HCN1 (4-1) tandem or HCN1-HCN4 (1-4) tandem) rabbit constructs and compared them with those of the native f-current from rabbit SAN. 4-1 tandem, but not co-transfected, currents had activation kinetics approaching those of If; however, the activation range of 4-1 tandem channels was more negative than that of the f-channel and their cAMP sensitivity were poorer (although that of 1-4 tandem channels was normal). Co-transfection of 4-1 tandem channels with minK-related protein 1(MiRP1) did not alter their properties. HCN1 and HCN4 may contribute to native f-channels, but a 'context'-dependent mechanism is also likely to modulate the channel properties in native tissues.
Collapse
Affiliation(s)
- Claudia Altomare
- Department of General Physiology and Biochemistry, Laboratory of Molecular Physiology and Neurobiology, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Armstrong-Gold CE, Rieke F. Bandpass filtering at the rod to second-order cell synapse in salamander (Ambystoma tigrinum) retina. J Neurosci 2003; 23:3796-806. [PMID: 12736350 PMCID: PMC6742206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The ability to see at night relies on the transduction of single photons by the rod photoreceptors and transmission of the resulting signals through the retina. Using paired patch-clamp recordings, we investigated the properties of the first stage of neural processing of the rod light responses: signal transfer from rods to bipolar and horizontal cells. Bypassing the relatively slow phototransduction process and directly modulating the rod voltage or current allowed us to characterize signal transfer over a wide range of temporal frequencies. We found that the rod to second-order cell synapse acts as a bandpass filter, preferentially transmitting signals with frequencies between 1.5 and 4 Hz while attenuating higher and lower frequency inputs. The similarity of the responses in different types of postsynaptic cell and the properties of miniature EPSCs (mEPSCs) recorded in OFF bipolar cells suggest that most of the bandpass filtering is mediated presynaptically. Modeling of the network of electrically coupled rod photoreceptors suggests that spread of the signal through the network contributed to the observed high-pass filtering but not to the low-pass filtering. Attenuation of low temporal frequencies at the first retinal synapse sharpens the temporal resolution of the light response; attenuation of high temporal frequencies removes voltage noise in the rod that threatens to swamp the light response.
Collapse
Affiliation(s)
- Cecilia E Armstrong-Gold
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
55
|
Mao BQ, MacLeish PR, Victor JD. Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophys J 2003; 84:2756-67. [PMID: 12668483 PMCID: PMC1302841 DOI: 10.1016/s0006-3495(03)75080-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The intrinsic dynamics of bipolar cells and rod photoreceptors isolated from tiger salamanders were studied by a patch-clamp technique combined with estimation of effective impulse responses across a range of mean membrane voltages. An increase in external K(+) reduces the gain and speeds the response in bipolar cells near and below resting potential. High external K(+) enhances the inward rectification of membrane potential, an effect mediated by a fast, hyperpolarization-activated, inwardly rectifying potassium current (K(IR)). External Cs(+) suppresses the inward-rectifying effect of external K(+). The reversal potential of the current, estimated by a novel method from a family of impulse responses below resting potential, indicates a channel that is permeable predominantly to K(+). Its permeability to Na(+), estimated from Goldman-Hodgkin-Katz voltage equation, was negligible. Whereas the activation of the delayed-rectifier K(+) current causes bandpass behavior (i.e., undershoots in the impulse responses) in bipolar cells, activation of the K(IR) current does not. In contrast, a slow hyperpolarization-activated current (I(h)) in rod photoreceptors leads to pronounced, slow undershoots near resting potential. Differences in the kinetics and ion selectivity of hyperpolarization-activated currents in bipolar cells (K(IR)) and in rod photoreceptors (I(h)) confer different dynamical behavior onto the two types of neurons.
Collapse
Affiliation(s)
- Bu-Qing Mao
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Peter R. MacLeish
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Jonathan D. Victor
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
56
|
Borer JS, Fox K, Jaillon P, Lerebours G. Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation 2003; 107:817-23. [PMID: 12591750 DOI: 10.1161/01.cir.0000048143.25023.87] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart rate reduction should benefit patients with chronic stable angina by improving myocardial perfusion and reducing myocardial oxygen demand. This study evaluated the antianginal and antiischemic effects of ivabradine, a new heart rate-lowering agent that acts specifically on the sinoatrial node. METHODS AND RESULTS In a double-blind, placebo-controlled trial, 360 patients with a > or =3-month history of chronic stable angina were randomly assigned to receive ivabradine (2.5, 5, or 10 mg BID) or placebo for 2 weeks, followed by an open-label 2- or 3-month extension on ivabradine (10 mg BID) and a 1-week randomized withdrawal to ivabradine (10 mg BID) or placebo. Primary efficacy criteria were changes in time to 1-mm ST-segment depression and time to limiting angina during bicycle exercise (exercise tolerance tests), performed at trough of drug activity. In the per-protocol population (n=257), time to 1-mm ST-segment depression increased in the 5 and 10 mg BID groups (P<0.005); time to limiting angina increased in the 10 mg BID group (P<0.05). Deterioration in all exercise tolerance test parameters occurred in patients who received placebo during randomized withdrawal (all P<0.02) but not in those still receiving ivabradine. No rebound phenomena were observed on treatment cessation. CONCLUSIONS Ivabradine produces dose-dependent improvements in exercise tolerance and time to development of ischemia during exercise. These results suggest that ivabradine, representing a novel class of antianginal drugs, is effective and safe during 3 months of use; longer-term safety requires additional assessment.
Collapse
Affiliation(s)
- Jeffrey S Borer
- Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | |
Collapse
|
57
|
Abstract
Y-type retinal ganglion cells show a pronounced, nonlinear, frequency-doubling behavior in response to modulated sinewave gratings. This is not observed in X-type cells. The source of this spatial nonlinear summation is still under debate. We have designed a realistic biophysical model of the cat retina to test the influence of different retinal cell classes and subcircuits on the linearity of ganglion cell responses. The intraretinal connectivity consists of the fundamental feedforward pathway via bipolar cells, lateral horizontal cell connectivity, and two amacrine circuits. The wiring diagram of X- and Y-cells is identical apart from two aspects: (1) Y-cells have a wider receptive field and (2) they receive input from a nested amacrine circuit consisting of narrow- and wide-field amacrine cells. The model was tested with contrast-reversed gratings. First and second harmonic response components were determined to estimate the degree of nonlinearity. By means of circuit dissection, we found that a high degree of the Y-cell nonlinear behavior arises from the spatial integration of temporal photoreceptor nonlinearities. Furthermore, we found a weaker and less uniform influence of the nested amacrine circuit. Different sources of nonlinearities interact in a multiplicative manner, and the influence of the amacrine circuit is approximately 25% weaker than that of the photoreceptor. The model predicts that significant nonlinearities occur already at the level of horizontal cell responses. Pharmacological inactivation of the amacrine circuit is expected to exert a milder effect in reducing ganglion cell nonlinearity.
Collapse
|
58
|
Hennig MH, Funke K, Wörgötter F. The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. J Neurosci 2002; 22:8726-38. [PMID: 12351748 PMCID: PMC6757783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Y-type retinal ganglion cells show a pronounced, nonlinear, frequency-doubling behavior in response to modulated sinewave gratings. This is not observed in X-type cells. The source of this spatial nonlinear summation is still under debate. We have designed a realistic biophysical model of the cat retina to test the influence of different retinal cell classes and subcircuits on the linearity of ganglion cell responses. The intraretinal connectivity consists of the fundamental feedforward pathway via bipolar cells, lateral horizontal cell connectivity, and two amacrine circuits. The wiring diagram of X- and Y-cells is identical apart from two aspects: (1) Y-cells have a wider receptive field and (2) they receive input from a nested amacrine circuit consisting of narrow- and wide-field amacrine cells. The model was tested with contrast-reversed gratings. First and second harmonic response components were determined to estimate the degree of nonlinearity. By means of circuit dissection, we found that a high degree of the Y-cell nonlinear behavior arises from the spatial integration of temporal photoreceptor nonlinearities. Furthermore, we found a weaker and less uniform influence of the nested amacrine circuit. Different sources of nonlinearities interact in a multiplicative manner, and the influence of the amacrine circuit is approximately 25% weaker than that of the photoreceptor. The model predicts that significant nonlinearities occur already at the level of horizontal cell responses. Pharmacological inactivation of the amacrine circuit is expected to exert a milder effect in reducing ganglion cell nonlinearity.
Collapse
Affiliation(s)
- Matthias H Hennig
- Institute for Neuronal Computational Intelligence and Technology, Department of Psychology, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| | | | | |
Collapse
|
59
|
Demontis GC, Moroni A, Gravante B, Altomare C, Longoni B, Cervetto L, DiFrancesco D. Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. J Physiol 2002; 542:89-97. [PMID: 12096053 PMCID: PMC2290391 DOI: 10.1113/jphysiol.2002.017640] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gating of voltage-dependent conductances in retinal photoreceptors is the first step of a process leading to the enhancement of the temporal performance of the visual system. The molecular components underlying voltage-dependent gating in rods are presently poorly defined. In the present work we have investigated the isoform composition and the functional characteristics of hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) in rabbit rods. Using immunocytochemistry we show the expression in the inner segment and cell body of the isoform 1 (HCN1). Electrophysiological investigations show that hyperpolarisation-activated currents (I(h)) can be measured only from the cell regions where HCN1 is expressed. Half-activation voltage (-75.0 +/- 0.3 mV) and kinetics (t(1/2) of 101 +/- 8 ms at -110 mV and 20 degrees C) of the I(h) in rods are similar to those of the macroscopic current carried by homomeric rabbit HCN1 channels expressed in HEK 293 cells. The homomeric nature of HCN1 channels in rods is compatible with the observation that cAMP induces a small shift (2.3 +/- 0.8 mV) in the half-activation voltage of I(h). In addition, the observation that within the physiological range of membrane potentials, cAMP does not significantly affect the gain of the current-to-voltage conversion, may reflect the need to protect the first step in the processing of visual signals from changes in cAMP turnover.
Collapse
Affiliation(s)
- Gian Carlo Demontis
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno, 6-56126 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
60
|
Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 2002; 120:1-13. [PMID: 12084770 PMCID: PMC2238187 DOI: 10.1085/jgp.20028593] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Revised: 04/29/2002] [Accepted: 05/06/2002] [Indexed: 11/30/2022] Open
Abstract
"Funny" (f-) channels have a key role in generation of spontaneous activity of pacemaker cells and mediate autonomic control of cardiac rate; f-channels and the related neuronal h-channels are composed of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits. We have investigated the block of f-channels of rabbit cardiac sino-atrial node cells by ivabradine, a novel heart rate-reducing agent. Ivabradine is an open-channel blocker; however, block is exerted preferentially when channels deactivate on depolarization, and is relieved by long hyperpolarizing steps. These features give rise to use-dependent behavior. In this, the action of ivabradine on f-channels is similar to that reported of other rate-reducing agents such as UL-FS49 and ZD7288. However, other features of ivabradine-induced block are peculiar and do not comply with the hypothesis that the voltage-dependence of block is entirely attributable to either the sensitivity of ivabradine-charged molecules to the electrical field in the channel pore, or to differential affinity to different channel states, as has been proposed for UL-FS49 (DiFrancesco, D. 1994. Pflugers Arch. 427:64-70) and ZD7288 (Shin, S.K., B.S. Rotheberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101), respectively. Experiments where current flows through channels is modified without changing membrane voltage reveal that the ivabradine block depends on the current driving force, rather than voltage alone, a feature typical of block induced in inwardly rectifying K(+) channels by intracellular cations. Bound drug molecules do not detach from the binding site in the absence of inward current through channels, even if channels are open and the drug is therefore not "trapped" by closed gates. Our data suggest that permeation through f-channel pores occurs according to a multiion, single-file mechanism, and that block/unblock by ivabradine is coupled to ionic flow. The use-dependence resulting from specific features of I(f) block by ivabradine amplifies its rate-reducing ability at high spontaneous rates and may be useful to clinical applications.
Collapse
Affiliation(s)
- Annalisa Bucchi
- Department of General Physiology and Biochemistry, Laboratory of Molecular Physiology and Neurobiology, and INFM-Unità Milano Università, 20133 Milano, Italy
| | | | | |
Collapse
|
61
|
Demontis GC, Cervetto L. Vision: How to Catch Fast Signals With Slow Detectors. Physiology (Bethesda) 2002. [DOI: 10.1152/physiologyonline.2002.17.3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Gian Carlo Demontis
- Dipartimento di Psichiatria e Neurobiologia, Università di Pisa, I-56126 Pisa, Italy
| | - Luigi Cervetto
- Dipartimento di Psichiatria e Neurobiologia, Università di Pisa, I-56126 Pisa, Italy
| |
Collapse
|
62
|
Abstract
The visual system is equipped with highly sensitive but slow detectors, yet it can resolve light changes up to 60 Hz. Processes taking place in retinal circuits go beyond the intrinsic limits of the transduction machinery by an unconventional exploitation of voltage-dependent conductances, cleverly lined up to generate a cascade of band-pass amplification stages.
Collapse
Affiliation(s)
- Gian Carlo Demontis
- Dipartimento di Psichiatria e Neurobiologia, Università di Pisa, I-56126 Pisa, Italy
| | | |
Collapse
|
63
|
|
64
|
Chen S, Wang J, Siegelbaum SA. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 2001; 117:491-504. [PMID: 11331358 PMCID: PMC2233656 DOI: 10.1085/jgp.117.5.491] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and hippocampus that differ markedly in their biophysical properties, coassemble to generate heteromultimeric channels with novel properties. When expressed in Xenopus oocytes, HCN1 channels activate 5-10-fold more rapidly than HCN2 channels. HCN1 channels also activate at voltages that are 10-20 mV more positive than those required to activate HCN2. In cell-free patches, the steady-state activation curve of HCN1 channels shows a minimal shift in response to cAMP (+4 mV), whereas that of HCN2 channels shows a pronounced shift (+17 mV). Coexpression of HCN1 and HCN2 yields Ih currents that activate with kinetics and a voltage dependence that tend to be intermediate between those of HCN1 and HCN2 homomers, although the coexpressed channels do show a relatively large shift by cAMP (+14 mV). Neither the kinetics, steady-state voltage dependence, nor cAMP dose-response curve for the coexpressed Ih can be reproduced by the linear sum of independent populations of HCN1 and HCN2 homomers. These results are most simply explained by the formation of heteromeric channels with novel properties. The properties of these heteromeric channels closely resemble the properties of I(h) in hippocampal CA1 pyramidal neurons, cells that coexpress HCN1 and HCN2. Finally, differences in Ih channel properties recorded in cell-free patches versus intact oocytes are shown to be due, in part, to modulation of Ih by basal levels of cAMP in intact cells.
Collapse
Affiliation(s)
- Shan Chen
- Department of Pharmacology, Molecular, and Biophysical Studies
| | - Jing Wang
- Integrated Program in Cellular, Molecular, and Biophysical Studies
| | - Steven A. Siegelbaum
- Department of Pharmacology, Molecular, and Biophysical Studies
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| |
Collapse
|