51
|
Chidambaran V, Zhang X, Martin LJ, Ding L, Weirauch MT, Geisler K, Stubbeman BL, Sadhasivam S, Ji H. DNA methylation at the mu-1 opioid receptor gene ( OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:157-168. [PMID: 28533693 PMCID: PMC5432115 DOI: 10.2147/pgpm.s132691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction The perioperative pain experience shows great interindividual variability and is difficult to predict. The mu-1 opioid receptor gene (OPRM1) is known to play an important role in opioid-pain pathways. Since deoxyribonucleic acid (DNA) methylation is a potent repressor of gene expression, DNA methylation was evaluated at the OPRM1 promoter, as a predictor of preoperative, acute, and chronic postsurgical pain (CPSP). Methods A prospective observational cohort study was conducted in 133 adolescents with idiopathic scoliosis undergoing spine fusion under standard protocols. Data regarding pain, opioid consumption, anxiety, and catastrophizing (using validated questionnaires) were collected before and 2–3 months postsurgery. Outcomes evaluated were preoperative pain, acute postoperative pain (area under curve [AUC] for pain scores over 48 hours), and CPSP (numerical rating scale >3/10 at 2–3 months postsurgery). Blood samples collected preoperatively were analyzed for DNA methylation by pyrosequencing of 22 CpG sites at the OPRM1 gene promoter. The association of each pain outcome with the methylation percentage of each CpG site was assessed using multivariable regression, adjusting for significant (P<0.05) nongenetic variables. Results Majority (83%) of the patients reported no pain preoperatively, while CPSP occurred in 36% of the subjects (44/121). Regression on dichotomized preoperative pain outcome showed association with methylation at six CpG sites (1, 3, 4, 9, 11, and 17) (P<0.05). Methylation at CpG sites 4, 17, and 18 was associated with higher AUC after adjusting for opioid consumption and preoperative pain score (P<0.05). After adjusting for postoperative opioid consumption and preoperative pain score, methylation at CpG sites 13 and 22 was associated with CPSP (P<0.05). Discussion Novel CPSP biomarkers were identified in an active regulatory region of the OPRM1 gene that binds multiple transcription factors. Inhibition of binding by DNA methylation potentially decreases the OPRM1 gene expression, leading to a decreased response to endogenous and exogenous opioids, and an increased pain experience.
Collapse
Affiliation(s)
| | - Xue Zhang
- Division of Human Genetics.,Pyrosequencing Core for Genomic and Epigenomic Research
| | - Lisa J Martin
- Department of Pediatrics.,Division of Human Genetics
| | - Lili Ding
- Division of Biostatistics and Epidemiology
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology.,Division of Biomedical Informatics.,Division of Developmental Biology
| | | | | | | | - Hong Ji
- Pyrosequencing Core for Genomic and Epigenomic Research.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
52
|
Chidambaran V, Ding L, Moore DL, Spruance K, Cudilo EM, Pilipenko V, Hossain M, Sturm P, Kashikar-Zuck S, Martin LJ, Sadhasivam S. Predicting the pain continuum after adolescent idiopathic scoliosis surgery: A prospective cohort study. Eur J Pain 2017; 21:1252-1265. [PMID: 28346762 DOI: 10.1002/ejp.1025] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic postsurgical pain (CPSP) affects half a million children annually in the United States, with dire socioeconomic consequences, including long-term disability into adulthood. The few studies of CPSP in children are limited by sample size, follow-up duration, non-homogeneity of surgical procedure and factors evaluated. METHODS In a prospective study of 144 adolescents undergoing a single major surgery (spine fusion), we evaluated demographic, perioperative, surgical and psychosocial factors as predictors of a continuum of postsurgical pain: immediate, pain maintenance at 2-3 months (chronic pain/CP) and persistence of pain a year (persistent pain/PP) after surgery. RESULTS We found an incidence of 37.8% and 41.8% for CP and PP. CP and acute pain were both significant predictors for developing PP (p-value <0.001 and 0.003). Preoperative pain and higher postoperative opioid requirement was significantly associated with CP (p = 0.015, p = 0.002), while Childhood Anxiety Sensitivity Index (p = 0.002) and surgical duration (p = 0.014) predicted PP. The final regression models had reasonable predictive accuracy (c-statistic of 0.73 and 0.83 for CP and PP, respectively). Anxiety scores and catastrophizing for child and parent were found to be significantly correlated (p = 0.005, p = 0.013 respectively). Pain trajectories revealed that 65% of patients who developed PP reported CP and high pain trends; however, 33% of those who developed PP could not be identified using solely pain criteria. CONCLUSION Persistent postsurgical pain in children is a significant problem. It can be predicted in part by combinations of psychological and clinical variables, which may provide evidence-based measures to prevent development of CPSP in the future. SIGNIFICANCE In a homogeneous cohort of adolescents undergoing spine fusion, we report a high incidence of persistent postsurgical pain (41.8%) predicted by child anxiety, perioperative pain, and surgical duration. Our results stress timely preventive and therapeutic strategies.
Collapse
Affiliation(s)
- V Chidambaran
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, USA
| | - L Ding
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, USA
| | - D L Moore
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, USA
| | - K Spruance
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, USA
| | - E M Cudilo
- Pediatric Anesthesia Associates Medical Group Fresno, CA
| | - V Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital, USA
| | - M Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, USA
| | - P Sturm
- Division of Orthopedic Surgery, Cincinnati Children's Hospital Medical Center, USA
| | - S Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, USA
| | - L J Martin
- Division of Human Genetics, Cincinnati Children's Hospital, USA
| | - S Sadhasivam
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, USA
| |
Collapse
|
53
|
Abstract
All chronic pain begins at some discrete point in time. Significant strides in the understanding of mechanisms and risk factors associated with the transition from a new, or acute, pain experience to a chronic pain condition have been made over the past 20 years. These insights provide the hope of one day being able to modify or even halt this pathophysiologic progression. This article reviews some of the current knowledge of this transition as well as the evidence currently available to best prevent and treat it using persistent surgical pain as a model.
Collapse
Affiliation(s)
- Ignacio J Badiola
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Pain Medicine Center, 1840 South Street, Philadelphia, PA 19146, USA.
| |
Collapse
|
54
|
Yadav R, Weng HR. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 2017; 349:106-117. [PMID: 28257897 DOI: 10.1016/j.neuroscience.2017.02.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 01/10/2023]
Abstract
Alteration in gene expression along the pain signaling pathway is a key mechanism contributing to the genesis of neuropathic pain. Accumulating studies have shown that epigenetic regulation plays a crucial role in nociceptive process in the spinal dorsal horn. In this present study, we investigated the role of enhancer of zeste homolog-2 (EZH2), a subunit of the polycomb repressive complex 2, in the spinal dorsal horn in the genesis of neuropathic pain in rats induced by partial sciatic nerve ligation. EZH2 is a histone methyltransferase, which catalyzes the methylation of histone H3 on K27 (H3K27), resulting in gene silencing. We found that levels of EZH2 and tri-methylated H3K27 (H3K27TM) in the spinal dorsal horn were increased in rats with neuropathic pain on day 3 and day 10 post nerve injuries. EZH2 was predominantly expressed in neurons in the spinal dorsal horn under normal conditions. The number of neurons with EZH2 expression was increased after nerve injury. More strikingly, nerve injury drastically increased the number of microglia with EZH2 expression by more than sevenfold. Intrathecal injection of the EZH2 inhibitor attenuated the development and maintenance of mechanical and thermal hyperalgesia in rats with nerve injury. Such analgesic effects were concurrently associated with the reduced levels of EZH2, H3K27TM, Iba1, GFAP, TNF-α, IL-1β, and MCP-1 in the spinal dorsal horn in rats with nerve injury. Our results highly suggest that targeting the EZH2 signaling pathway could be an effective approach for the management of neuropathic pain.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical and Biomedical Sciences, the University of Georgia, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, the University of Georgia, USA.
| |
Collapse
|
55
|
Khangura RK, Bali A, Jaggi AS, Singh N. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol 2017; 795:36-42. [DOI: 10.1016/j.ejphar.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|
56
|
Chan M, Peyton P, Myles P, Leslie K, Buckley N, Kasza J, Paech M, Beattie W, Sessler D, Forbes A, Wallace S, Chen Y, Tian Y, Wu W. Chronic postsurgical pain in the Evaluation of Nitrous Oxide in the Gas Mixture for Anaesthesia (ENIGMA)-II trial. Br J Anaesth 2016; 117:801-811. [DOI: 10.1093/bja/aew338] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
|
57
|
James S. The Genetics of Pain. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Negrete R, García Gutiérrez MS, Manzanares J, Maldonado R. Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 2016; 116:315-327. [PMID: 27567942 DOI: 10.1016/j.neuropharm.2016.08.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Joint pain is a major clinical problem mainly associated to osteoarthritis, and characterized by articular cartilage degradation resulting in a complex chronic pain state that includes nociceptive, emotional and cognitive manifestations. Memory impairment, depressive- and anxiety-like symptoms have been reported to be associated with chronic pain, leading to a decrease of life quality. In this study, we evaluated the involvement of the endogenous dynorphin/kappa opioid receptor (KOR) system on the nociceptive, emotional, cognitive, neurochemical and epigenetic manifestations of joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for KOR (KOR-KO), prodynorphin (PDYN-KO) and their wild-type (WT) littermates. KOR-KO and PDYN-KO mice developed mechanical allodynia after intra-articular injection of MIA. This allodynia was significantly increased in both KOR-KO and PDYN-KO when compared to WT mice. Accordingly, both mutants showed increased microglial activation on the lumbar section of the spinal cord after MIA. The emotional responses were evaluated by measuring anxiety-like behaviour in the elevated plus maze and anhedonia as depressive-like behaviour, and cognitive alterations in the object recognition paradigm. Emotional and cognitive impairments after joint pain were differently modified in KOR-KO and PDYN-KO mice. Alterations of corticotropin-releasing factor (CRF) on the amygdala and hippocampus and down regulation of histone 3 acetylation on the amygdala suggest a possible mechanism to explain these emotional and cognitive manifestations. Our results reveal a specific involvement of the dynorphin/KOR system on joint pain manifestations that are usually associated to osteoarthritis.
Collapse
Affiliation(s)
- Roger Negrete
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
59
|
A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity. Pain 2016; 157:2747-2757. [DOI: 10.1097/j.pain.0000000000000694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
60
|
Low-Dose Tramadol and Non-Steroidal Anti-Inflammatory Drug Combination Therapy Prevents the Transition to Chronic Low Back Pain. Asian Spine J 2016; 10:685-9. [PMID: 27559448 PMCID: PMC4995251 DOI: 10.4184/asj.2016.10.4.685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/10/2015] [Accepted: 12/27/2015] [Indexed: 11/25/2022] Open
Abstract
Study Design Retrospective study. Purpose To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Overview of Literature Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Methods Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. Results No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (p<0.001). Conclusions Low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy might decrease the incidence of adverse events and prevent the transition of acute low back pain to chronic low back pain.
Collapse
|
61
|
Rasche D, Tronnier VM. Clinical Significance of Invasive Motor Cortex Stimulation for Trigeminal Facial Neuropathic Pain Syndromes. Neurosurgery 2016; 79:655-666. [DOI: 10.1227/neu.0000000000001353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
BACKGROUND:
Invasive neuromodulation of the cortical surface for various chronic pain syndromes has been performed for >20 years. The significance of motor cortex stimulation (MCS) in chronic trigeminal neuropathic pain (TNP) syndromes remains unclear. Different techniques are performed worldwide in regard to operative procedure, stimulation parameters, test trials, and implanted materials.
OBJECTIVE:
To present the clinical experiences of a single center with MCS, surgical approach, complications, and follow-up as a prospective, noncontrolled clinical trial.
METHODS:
The implantation of epidural leads over the motor cortex was performed via a burr hole technique with neuronavigation and intraoperative neurostimulation. Special focus was placed on a standardized test trial with an external stimulation device and the implementation of a double-blinded or placebo test phase to identify false-positive responders.
RESULTS:
A total of 36 patients with TNP were operated on, and MCS was performed. In 26 of the 36 patients (72%), a significant pain reduction from a mean of 8.11 to 4.58 (on the visual analog scale) during the test trial was achieved (P <.05). Six patients were identified as false-positive responders (17%). At the last available follow-up of 26 patients (mean, 5.6 years), active MCS led to a significant pain reduction compared with the preoperative pain ratings (mean visual analog scale score, 5.01; P <.05).
CONCLUSION:
MCS is an additional therapeutic option for patients with refractory chronic TNP, and significant long-term pain suppression can be achieved. Placebo or double-blinded testing is mandatory.
Collapse
Affiliation(s)
- Dirk Rasche
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Volker M. Tronnier
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
62
|
Wang W, Cui SS, Lu R, Zhang H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res Bull 2016; 125:44-52. [PMID: 27090944 DOI: 10.1016/j.brainresbull.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Chronic pain is a complex clinical condition that reduces the quality of life for billions of people. In recent years, the role of epigenetic modulation in the control of long-term neuronal plasticity has attracted the attention of pain researchers. The epigenetic mechanisms include covalent modifications of DNA and/or histone proteins. Mounting evidence suggests that the activity of histone deacetylases (HDACs) and levels of histone acetylation are dynamic and that these enzymes modulate pain-related synaptic plasticity. Therefore, HDACs play essential roles in chronic pain development and maintenance. In this mini review, we will discuss the role of HDACs in the pathogenesis of chronic pain and will consider the therapeutic value of HDAC inhibitors in treating chronic pain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Shan-Shan Cui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan 430071, China.
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
63
|
Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2016; 357:84-93. [PMID: 26787772 DOI: 10.1124/jpet.115.231670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 08/30/2023] Open
Abstract
Chronic pain is a multifaceted and complex condition. Broadly classified into somatic, visceral, or neuropathic pain, it is poorly managed despite its prevalence. Current drugs used for the treatment of chronic pain are limited by tolerance with long-term use, abuse potential, and multiple adverse side effects. The persistent nature of pain suggests that epigenetic machinery may be a critical factor driving chronic pain. In this review, we discuss the latest insights into epigenetic processes, including DNA methylation, histone modifications, and microRNAs, and we describe their involvement in the pathophysiology of chronic pain and whether epigenetic modifications could be applied as future therapeutic targets for chronic pain. We provide evidence from experimental models and translational research in human tissue that have enhanced our understanding of epigenetic processes mediating nociception, and we then speculate on the potential future use of more specific and selective agents that target epigenetic mechanisms to attenuate pain.
Collapse
Affiliation(s)
- Casey O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| | - Rachel D Moloney
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| |
Collapse
|
64
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
65
|
Caneiro JP, Labie C, Sulley E, Briggs AM, Straker LM, Burnett AF, O'Sullivan PB. An exploration of familial associations of two movement pattern-derived subgroups of chronic disabling low back pain; a cross-sectional cohort study. ACTA ACUST UNITED AC 2015; 22:202-10. [PMID: 26874816 DOI: 10.1016/j.math.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Altered movement patterns with pain have been demonstrated in children, adolescents and adults with chronic disabling low back pain (CDLBP). A previously developed classification system has identified different subgroups including active extension and multidirectional patterns in patients with CDLBP. While familial associations have been identified for certain spinal postures in standing, it is unknown whether a familial relationship might exist between movement pattern-derived subgroups in families with CDLBP. OBJECTIVES This study explored whether familial associations in movement pattern-derived subgroups within and between members of families with CDLBP existed. DESIGN Cross-sectional cohort study. METHOD 33 parents and 28 children with CDLBP were classified into two subgroups based on clinical analysis of video footage of postures and functional movements, combined with aggravating factors obtained from Oswestry Disability Questionnaire. Prevalence of subgroups within family members was determined, associations between parent and child's subgroup membership was evaluated using Fisher's exact test, and spearman's correlation coefficient was used to determine the strength of association between familial dyads. RESULTS The majority of parents were classified as active extenders, sons predominately multidirectional and daughters were evenly distributed between the two subgroups. No significant association was found when comparing subgroups in nine parent-child relationships. CONCLUSIONS The exploration of a small cohort of family dyads in this study demonstrated that children's movement pattern-derived subgroups could not be explained by their parents' subgroup membership. These results cannot be generalised to the CLBP population due to this study's small sample. Larger sample studies are needed to further elucidate this issue.
Collapse
Affiliation(s)
- Joao Paulo Caneiro
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Céline Labie
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Emma Sulley
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Andrew M Briggs
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia; Arthritis and Osteoporosis Victoria, Australia.
| | - Leon M Straker
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Angus F Burnett
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar; School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Peter B O'Sullivan
- School of Physiotherapy and Exercise Science, Faculty of Health Science, Curtin University of Technology, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| |
Collapse
|
66
|
Pessoa BL, Escudeiro G, Nascimento OJM. Emerging Treatments for Neuropathic Pain. Curr Pain Headache Rep 2015; 19:56. [DOI: 10.1007/s11916-015-0530-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
67
|
Abstract
Human pain causes untold misery and suffering, with major impact on functioning and resources. Recent advances in genetics have revealed that subtle changes in DNA could partly explain the variation in individual differences in pain. Various genes encoding for receptors are now known to play a major role in the sensitivity, perception and expression of pain. The fields of epigenetics and proteomics hold promises in the way pain could be treated and managed in future.
Collapse
Affiliation(s)
- Sabu James
- Department of Anaesthesia, Monklands Hospital, Airdrie, UK
| |
Collapse
|
68
|
Inage K, Sakuma Y, Yamauchi K, Suganami A, Orita S, Kubota G, Oikawa Y, Sainoh T, Sato J, Fujimoto K, Shiga Y, Takahashi K, Ohtori S, Tamura Y. Longitudinal evaluation of local muscle conditions in a rat model of gastrocnemius muscle injury using an in vivo imaging system. J Orthop Res 2015; 33:1034-8. [PMID: 25731883 DOI: 10.1002/jor.22832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the time course of local changes during the acute phase of gastrocnemius muscle strain, in a rat model, using an in vivo imaging system. Thirty-eight, 8-week-old Sprague-Dawley male rats were used in our study. Experimental injury of the right gastrocnemius muscle was achieved using the drop-mass method. After inducing muscle injury, a liposomally formulated indocyanine green derivative (LP-iDOPE, 7 mg/kg) was injected intraperitoneally. We evaluated the muscle injuries using in vivo imaging, histological examinations, and enzyme-linked immunosorbent assays. The fluorescence peaked approximately 18 h after the injury, and decreased thereafter. Histological examinations revealed that repair of the injured tissue occurred between 18 and 24 h after injury. Quantitative analyses for various cytokines demonstrated significant elevations of interleukin-6 and tumor necrosis factor-α at 3 and 18 h post-injury, respectively. The time course of fluorescence intensity, measured using in vivo imaging, demonstrated that the changes in cytokine levels and histopathologic characteristics were consistent. Specifically, these changes reached peaked 18 h post-injury, followed by trends toward recovery.
Collapse
Affiliation(s)
- Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Go Kubota
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Takeshi Sainoh
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Sato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
69
|
Pergolizzi JV, Taylor R, Raffa RB. The Potential Role of an Extended-Release, Abuse-Deterrent Oxycodone/Acetaminophen Fixed-Dose Combination Product for the Treatment of Acute Pain. Adv Ther 2015; 32:485-95. [PMID: 26026272 PMCID: PMC4487354 DOI: 10.1007/s12325-015-0213-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 02/06/2023]
Abstract
Acute pain, prevalent as part of postoperative and traumatic pain, is often sub-optimally or inadequately treated. Fixed-dose combination analgesic products that combine a reduced amount of opioid with a nonopioid analgesic such as acetaminophen (paracetamol) in a single tablet offer potential pharmacodynamic and/or pharmacokinetic benefits, and may also result in an opioid-sparing effect. A new analgesic product (XARTEMIS™ XR, Mallinckrodt Brand Pharmaceuticals, Dublin, Ireland) combines oxycodone (7.5 mg) with acetaminophen (325 mg) in an immediate-release/extended-release (ER) formulation that is indicated for the treatment of acute pain. The ER formulation of this product provides stable serum drug concentrations that in this case lasts 12 h. Oxycodone/acetaminophen is a drug combination that offers safe and effective pain relief in a variety of acute pain syndromes such as postoperative pain. The combination formulation allows a smaller amount of oxycodone per tablet and the biphasic-layered matrix of the pill for ER may present obstacles to potential abusers. No opioid is totally abuse resistant, but the lower opioid content and tamper-resistant formulation of this product might discourage abuse. Clinicians must still be mindful of the acetaminophen part of this product in the patient’s overall daily intake (in light of acetaminophen hepatotoxicity). The new product appears to provide an important new choice in the armamentarium against acute pain.
Collapse
|
70
|
Lirk P, Fiegl H, Weber NC, Hollmann MW. Epigenetics in the perioperative period. Br J Pharmacol 2015; 172:2748-55. [PMID: 25073649 DOI: 10.1111/bph.12865] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 01/29/2023] Open
Abstract
The perioperative period is characterized by profound changes in the body's homoeostatic processes. This review seeks to address whether epigenetic mechanisms may influence an individual's reaction to surgery and anaesthesia. Evidence from animal and human studies suggests that epigenetic mechanisms can explain many facets of susceptibility to acute and chronic pain, making them potential therapeutic targets. Modern pain management is still based upon opiates, and both the developmental expression of opioid receptors and opioid-induced hyperalgesia have been linked to epigenetic mechanisms. In general, opiates seem to increase global DNA methylation levels. This is in contrast to local anaesthetics, which have been ascribed a global demethylating effect. Even though no direct investigations have been carried out, the potential influence of epigenetics on the inflammatory response that follows surgery seems a promising area for research. There is a considerable body of evidence that supports the involvement of epigenetics in the complex process of wound healing. Epigenetics is an important emerging research topic in perioperative medicine, with a huge potential to positively influence patient outcome.
Collapse
Affiliation(s)
- P Lirk
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - N C Weber
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M W Hollmann
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
71
|
Parental Neuropathic Pain Influences Emotion-Related Behavior in Offspring Through Maternal Feeding Associated with DNA Methylation of Amygdale in Rats. Neurochem Res 2015; 40:1179-87. [PMID: 25894685 DOI: 10.1007/s11064-015-1578-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Chronic neuropathic pain has currently become a remarkable public health concern, considerably damaging not only the physiological but also the psychological aspects of humans. This study investigated whether neuropathic pain affects maternal care and assessed the effect of parental neuropathic pain on the development of neuropathic pain and emotion among offspring. Our results showed that mother rats suffered from chronic constriction injury (CCI) exhibited defective maternal care. The offspring fed by CCI mother rats (own or cross-fed) showed a significant increase in anxiety and anxiety-related behavior compared with that fed by sham-operated mother rats. The offspring fed by CCI mother rats also displayed decreased oxytocin expression in their supraoptic nucleus than that fed by sham-operated mother rats. Moreover, DNA methyltransferase (DNMT)1 expression in the amygdale was increased, whereas DNMT3a and DNMT3b expressions remained the same in offspring fed by CCI mother rats, as detected with immunohistochemistry and western blot analysis. In addition, the total DNA methylation in amygdale was upregulated in offspring fed by CCI mother rats. Considering the above findings, the data of this study suggest that parental neuropathic pain influences emotion-related behavior in offspring through maternal feeding behavior rather than through genetic factors and pregnancy experience that was associated with DNA methylation of amygdale in offspring.
Collapse
|
72
|
Inage K, Sakuma Y, Yamauchi K, Suganami A, Orita S, Kubota G, Oikawa Y, Sainoh T, Sato J, Fujimoto K, Shiga Y, Takahashi K, Ohtori S, Tamura Y. Effect of photodynamic therapy on local muscle treatment in a rat muscle injury model: a controlled trial. J Orthop Surg Res 2015; 10:50. [PMID: 25900267 PMCID: PMC4406025 DOI: 10.1186/s13018-015-0193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Background Muscle injury is common and is thought to account for 10%–50% of all sports-related injuries. The use of rest, ice, compression, and elevation is common in clinical practice, but many treatments over a long period are required to produce a therapeutic effect. We evaluated the utility of photodynamic therapy as a new treatment option for the acute stage of muscle injury. Methods Twenty 8-week-old Sprague-Dawley male rats underwent experimental injury of the right gastrocnemius muscle with a drop-mass method. After muscle injury was induced, a liposomally formulated indocyanine green derivative (7 mg/kg) near-infrared laser irradiation was performed at 18 h after injury. Local time-dependent changes in the treatment (n = 14) and no treatment (n = 14) groups were evaluated with in vivo imaging, histologic examination, and enzyme-linked immunosorbent assay methods. Results In vivo imaging fluorescence values were significantly higher in the no treatment group, whereas interleukin-6 and tumor necrosis factor-α levels were significantly higher in the treatment group at 18 h after injury. Histologic examination results revealed that the treatment group had less bleeding and more degeneration repair processes than the no treatment group at 24 h and 1 week after muscle injury. Conclusions These findings suggest that photodynamic therapy promotes a tissue-repairing effect during the early stage of muscle injury.
Collapse
Affiliation(s)
- Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, National Hospital Organization Chiba Medical Center, 4 Chome-1-2 Tsubakimori, Chiba City, Chiba, Japan.
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, Japan.
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Go Kubota
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Chiba City, Chiba, Japan.
| | - Takeshi Sainoh
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Jun Sato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba, Japan.
| |
Collapse
|
73
|
Abstract
Chronic pain affects approximately 20 % of adults worldwide and is often associated with a decrease in the quality of life and various comorbidities. Conventional analgesic therapies are frequently insufficient and sometimes lead to severe side effects. Therefore, great efforts are still being made to elucidate the signalling pathways in pain and to develop new, safe and effective therapies. Epigenetic mechanisms which interfere with the regulation of gene expression are involved in the pathogenesis of several diseases and are gaining increasing impetus in medical research. As they are also involved in pain processing, a modulation of these mechanisms might represent a novel option for the therapy of pain patients.
Collapse
|
74
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
75
|
Hatfield LA. Neonatal pain: What's age got to do with it? Surg Neurol Int 2014; 5:S479-89. [PMID: 25506507 PMCID: PMC4253046 DOI: 10.4103/2152-7806.144630] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022] Open
Abstract
Background: The neurobiology of neonatal pain processing, especially in preterm infants, differs significantly from older infants, children, adolescence, and adults. Research suggests that strong painful procedures or repeated mild procedures may permanently modify individual pain processing. Acute injuries at critical developmental periods are risk factors for persistent altered neurodevelopment. The purpose of this narrative review is to present the seminal and current literature describing the unique physiological aspects of neonatal pain processing. Methods: Articles describing the structures and physiological processes that influence neonatal pain were identified from electronic databases Medline, PubMed, and CINAHL. Results: The representation of neonatal pain physiology is described in three processes: Local peripheral nervous system processes, referred to as transduction; spinal cord processing, referred to as transmission and modulation; and supraspinal processing and integration or perception of pain. The consequences of undermanaged pain in preterm infants and neonates are discussed. Conclusion: Although the process and pain responses in neonates bear some similarity to processes and pain responses in older infants, children, adolescence, and adults; there are some pain processes and responses that are unique to neonates rendering them at risk for inadequate pain treatment. Moreover, exposure to repeated painful stimuli contributes to adverse long-term physiologic and behavioral sequelae. With the emergence of studies showing that painful experiences are capable of rewiring the adult brain, it is imperative that we treat neonatal pain effectively.
Collapse
Affiliation(s)
- Linda A Hatfield
- Assistant Professor of Evidence-based Practice, Department of Family and Community Health University of Pennsylvania School of Nursing, Director of Research and Evidence-based practice, Pennsylvania Hospital, USA
| |
Collapse
|
76
|
Sueki DG, Dunleavy K, Puentedura EJ, Spielholz NI, Cheng MS. The role of associative learning and fear in the development of chronic pain – a comparison of chronic pain and post-traumatic stress disorder. PHYSICAL THERAPY REVIEWS 2014. [DOI: 10.1179/1743288x14y.0000000154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Abstract
PURPOSE OF REVIEW Chronic pain after surgery is a major public health problem and a major concern for perioperative physicians. Thoracic surgery presents a unique challenge, as thoracotomy is among the highest risk surgeries to develop persistent postsurgical pain. The purpose of this review is to discuss the relevance of research in pain epigenetics to patients with persistent pain after thoracic surgery. RECENT FINDINGS Recent advances have linked chronic pain states to genetic and epigenetic changes. Progress in our understanding of chronic pain has highlighted the importance of immune modulation of pain. It is possible that epigenetic changes driving chronic pain occur in the perioperative setting via histone modification and DNA methylation. SUMMARY The transition from acute to chronic pain after thoracic surgery may be mediated by epigenetics. Here, we discuss epigenetic modifications that have been discovered in animal models of chronic pain that may predispose patients to persistent neuropathic pain after thoracic surgery.
Collapse
|
78
|
Shipton EA. The transition of acute postoperative pain to chronic pain: Part 1 – Risk factors for the development of postoperative acute persistent pain. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2014. [DOI: 10.1016/j.tacc.2014.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Tony Buffington CA, Westropp JL, Chew DJ. From FUS to Pandora syndrome: where are we, how did we get here, and where to now? J Feline Med Surg 2014; 16:385-94. [PMID: 24794035 PMCID: PMC11104043 DOI: 10.1177/1098612x14530212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
UNLABELLED NEW CONCEPTS: Ideas about the causes of lower urinary tract signs (LUTS) in cats have changed significantly in the past 40 years. Recent research is challenging the conventional view that the bladder is always the perpetrator of LUTS, and suggests that the bladder can also be one victim of a systemic process associated with a sensitized central stress response system. AIM In this article the authors provide their perspective on the implications of these findings for the diagnosis and treatment of cats with LUTS, provide some historical context, and suggest ways that the veterinary profession might work together to better understand the disorders underlying these signs, and possibly reduce their prevalence.
Collapse
Affiliation(s)
- C A Tony Buffington
- 1Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | |
Collapse
|
80
|
Maldonado Bouchard S, Hook MA. Psychological stress as a modulator of functional recovery following spinal cord injury. Front Neurol 2014; 5:44. [PMID: 24782818 PMCID: PMC3988397 DOI: 10.3389/fneur.2014.00044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/23/2014] [Indexed: 12/28/2022] Open
Abstract
There is strong evidence indicating that the social environment triggers changes to the psychological stress response and glucocorticoid receptor function. Considerable literature links the subsequent changes in stress resiliency to physical health. Here, converging evidence for the modulatory role of chronic psychological stress in the recovery process following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI research, we are still unable to identify the causes of variability in patients' recovery following injury. We propose that individuals' past and present life experiences (in the form of stress exposure) may significantly modulate patients' outcome post-SCI. We propose a theoretical model to explain the negative impact of chronic psychological stress on physical and psychological recovery. The stress experienced in life prior to SCI and also as a result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and function, and contribute to high levels of inflammation and apoptosis post-SCI, decreasing the tissue remaining at the injury site and undermining recovery of function. Both stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to the theoretical understanding of the recovery process following injury, but also provides concrete testable hypotheses for future studies.
Collapse
Affiliation(s)
- Sioui Maldonado Bouchard
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| |
Collapse
|
81
|
Zhang Y, Guo J, Gao Y, Niu S, Yang C, Bai C, Yu X, Zhao Z. Genome-wide methylation changes are associated with muscle fiber density and drip loss in male three-yellow chickens. Mol Biol Rep 2014; 41:3509-16. [PMID: 24566679 DOI: 10.1007/s11033-014-3214-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
|
82
|
Prevention of chronic pain after surgery: new insights for future research and patient care. Can J Anaesth 2013; 61:101-11. [PMID: 24218192 DOI: 10.1007/s12630-013-0067-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022] Open
|
83
|
Lessans S, Dorsey SG. The role for epigenetic modifications in pain and analgesia response. Nurs Res Pract 2013; 2013:961493. [PMID: 24228176 PMCID: PMC3817675 DOI: 10.1155/2013/961493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022] Open
Abstract
Pain remains a poorly understood and managed symptom. A limited mechanistic understanding of interindividual differences in pain and analgesia response shapes current approaches to assessment and treatment. Opportunities exist to improve pain care through increased understanding of how dynamic epigenomic remodeling shapes injury, illness, pain, and treatment response. Tightly regulated alterations of the DNA-histone chromatin complex enable cells to control transcription, replication, gene expression, and protein production. Pathological alterations to chromatin shape the ability of the cell to respond to physiologic and environmental cues leading to disease and reduced treatment effectiveness. This review provides an overview of critical epigenetic processes shaping pathology and pain, highlights current research support for the role of epigenomic modification in the development of chronic pain, and summarizes the therapeutic potential to alter epigenetic processes to improve health outcomes.
Collapse
Affiliation(s)
- Sherrie Lessans
- School of Nursing, University of Maryland, Baltimore, USA
- Program in Neuroscience, University of Maryland, Baltimore, USA
| | - Susan G. Dorsey
- School of Nursing, University of Maryland, Baltimore, USA
- Program in Neuroscience, University of Maryland, Baltimore, USA
| |
Collapse
|
84
|
Gheinani AH, Burkhard FC, Monastyrskaya K. Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome. Cell Mol Life Sci 2013; 70:3773-89. [PMID: 23463234 PMCID: PMC11113193 DOI: 10.1007/s00018-013-1275-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Clinical Research, Urology Research Laboratory, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | | | - Katia Monastyrskaya
- Department of Clinical Research, Urology Research Laboratory, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| |
Collapse
|
85
|
Deumens R, Steyaert A, Forget P, Schubert M, Lavand’homme P, Hermans E, De Kock M. Prevention of chronic postoperative pain: Cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog Neurobiol 2013; 104:1-37. [DOI: 10.1016/j.pneurobio.2013.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 01/13/2023]
|
86
|
Seo S, Grzenda A, Lomberk G, Ou XM, Cruciani RA, Urrutia R. Epigenetics: a promising paradigm for better understanding and managing pain. THE JOURNAL OF PAIN 2013; 14:549-57. [PMID: 23602266 DOI: 10.1016/j.jpain.2013.01.772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/05/2012] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Epigenetic regulation of gene expression is a rapidly growing area of research. Considering the longevity and plasticity of neurons, the studies on epigenetic pathways in the nervous system should be of special interest for both epigeneticists and neuroscientists. Activation or inactivation of different epigenetic pathways becomes more pronounced when the cells experience rapid changes in their environment, and such changes can be easily caused by injury and inflammation, resulting in pain perception or distortion of pain perception (eg, hyperalgesia). Therefore, in this regard, the field of pain is at an advantage to study the epigenetic pathways. More importantly, understanding pain from an epigenetics point of view would provide a new paradigm for developing drugs or strategies for pain management. In this review, we introduce basic concepts of epigenetics, including chromatin dynamics, histone modifications, DNA methylation, and RNA-induced gene silencing. In addition, we provide evidence from published studies suggesting wide implication of different epigenetic pathways within pain pathways. PERSPECTIVE This article provides a brief overview of epigenetic pathways for gene regulation and highlights their involvement in pain. Our goal is to expose the readers to these concepts so that pain-related phenotypes can be investigated from the epigenetic point of view.
Collapse
Affiliation(s)
- Seungmae Seo
- Laboratory of Epigenetics and Chromatin Dynamics, Translational Epigenomic Program, Center for Individualized Medicine, GIH Division, Department of Medicine, Physiology, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
87
|
Gee BE. Biologic complexity in sickle cell disease: implications for developing targeted therapeutics. ScientificWorldJournal 2013; 2013:694146. [PMID: 23589705 PMCID: PMC3621302 DOI: 10.1155/2013/694146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials.
Collapse
Affiliation(s)
- Beatrice E Gee
- Department of Pediatrics, Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA.
| |
Collapse
|
88
|
Cohen SP, Mao J, Vu TN, Strassels SA, Gupta A, Erdek MA, Christo PJ, Kurihara C, Griffith SR, Buckenmaier CC, Chen L. Does Pain Score in Response to a Standardized Subcutaneous Local Anesthetic Injection Predict Epidural Steroid Injection Outcomes in Patients with Lumbosacral Radiculopathy? A Prospective Correlational Study. PAIN MEDICINE 2013; 14:327-35. [DOI: 10.1111/pme.12027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|