51
|
Guery D, Rheims S. Is the mechanism of action of antiseizure drugs a key element in the choice of treatment? Fundam Clin Pharmacol 2021; 35:552-563. [PMID: 33090514 DOI: 10.1111/fcp.12614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
About 25 antiseizure drugs are available for the treatment of patients with epilepsy. The choice of the most suited drug for a specific patient is primarily based on the results of the pivotal randomized clinical trials and on the patient's characteristics and comorbidities. Whether or not the mechanism of action of the antiseizure drugs should be also taken into account to better predict the patient's response to the treatment remains a matter of debate. Despite the apparent complexity and diversity of antiseizure drug mechanisms of action, the reality unfortunately remains that they are very close, in particular with regard to their relationship with the pathophysiology of epilepsy. With the only exception of the association between lamotrigine and sodium valproate, there are no clinical data that formally support a synergistic association between certain antiseizure drugs in terms of efficacy. However, anticipating risk of adverse events by limiting as far as possible the combination of drugs, which share the same mechanisms of action, is undoubtedly an important driver of daily therapeutic decisions.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France
- Epilepsy Institute, Lyon, France
| |
Collapse
|
52
|
Qaswal AB, Ababneh O, Khreesha L, Al-Ani A, Suleihat A, Abbad M. Mathematical Modeling of Ion Quantum Tunneling Reveals Novel Properties of Voltage-Gated Channels and Quantum Aspects of Their Pathophysiology in Excitability-Related Disorders. PATHOPHYSIOLOGY 2021; 28:116-154. [PMID: 35366274 PMCID: PMC8830480 DOI: 10.3390/pathophysiology28010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Voltage-gated channels are crucial in action potential initiation and propagation and there are many diseases and disorders related to them. Additionally, the classical mechanics are the main mechanics used to describe the function of the voltage-gated channels and their related abnormalities. However, the quantum mechanics should be considered to unravel new aspects in the voltage-gated channels and resolve the problems and challenges that classical mechanics cannot solve. In the present study, the aim is to mathematically show that quantum mechanics can exhibit a powerful tendency to unveil novel electrical features in voltage-gated channels and be used as a promising tool to solve the problems and challenges in the pathophysiology of excitability-related diseases. The model of quantum tunneling of ions through the intracellular hydrophobic gate is used to evaluate the influence of membrane potential and gating free energy on the tunneling probability, single channel conductance, and quantum membrane conductance. This evaluation is mainly based on graphing the mathematical relationships between these variables. The obtained mathematical graphs showed that ions can achieve significant quantum membrane conductance, which can affect the resting membrane potential and the excitability of cells. In the present work, quantum mechanics reveals original electrical properties associated with voltage-gated channels and introduces new insights and implications into the pathophysiology of excitability- related disorders. In addition, the present work sets a mathematical and theoretical framework that can be utilized to conduct experimental studies in order to explore the quantum aspects of voltage-gated channels and the quantum bioelectrical property of biological membranes.
Collapse
Affiliation(s)
- Abdallah Barjas Qaswal
- Department of Internship Program, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Omar Ababneh
- Department of Anesthesia and Intensive Care, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Lubna Khreesha
- Department of Special Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Abdallah Al-Ani
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Ahmad Suleihat
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| | - Mutaz Abbad
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| |
Collapse
|
53
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
54
|
Földi MC, Pesti K, Zboray K, Toth AV, Hegedűs T, Málnási-Csizmadia A, Lukacs P, Mike A. The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling. Br J Pharmacol 2021; 178:1200-1217. [PMID: 33450052 DOI: 10.1111/bph.15365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Collapse
Affiliation(s)
- Mátyás C Földi
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Lukacs
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
55
|
Binda F, Valente P, Marte A, Baldelli P, Benfenati F. Increased responsiveness at the cerebellar input stage in the PRRT2 knockout model of paroxysmal kinesigenic dyskinesia. Neurobiol Dis 2021; 152:105275. [PMID: 33515674 DOI: 10.1016/j.nbd.2021.105275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
PRoline-Rich Transmembrane protein-2 (PRRT2) is a recently described neuron-specific type-2 integral membrane protein with a large cytosolic N-terminal domain that distributes in presynaptic and axonal domains where it interacts with several presynaptic proteins and voltage-gated Na+ channels. Several PRRT2 mutations are the main cause of a wide and heterogeneous spectrum of paroxysmal disorders with a loss-of-function pathomechanism. The highest expression levels of PRRT2 in brain occurs in cerebellar granule cells (GCs) and cerebellar dysfunctions participate in the dyskinetic phenotype of PRRT2 knockout (KO) mice. We have investigated the effects of PRRT2 deficiency on the intrinsic excitability of GCs and the input-output relationships at the mossy fiber-GC synapses. We show that PRRT2 KO primary GCs display increased expression of Na+ channels, increased amplitude of Na+ currents and increased length of the axon initial segment, leading to an overall enhancement of intrinsic excitability. In acute PRRT2 KO cerebellar slices, GCs were more prone to action potential discharge in response to mossy fiber activation and exhibited an enhancement of transient and persistent Na+ currents, in the absence of changes at the mossy fiber-GC synapses. The results support a key role of PRRT2 expressed in GCs in the physiological regulation of the excitatory input to the cerebellum and are consistent with a major role of a cerebellar dysfunction in the pathogenesis of the PRRT2-linked paroxysmal pathologies.
Collapse
Affiliation(s)
- Francesca Binda
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
56
|
Jones LB, Peters CH, Rosch RE, Owers M, Hughes E, Pal DK, Ruben PC. The L1624Q Variant in SCN1A Causes Familial Epilepsy Through a Mixed Gain and Loss of Channel Function. Front Pharmacol 2021; 12:788192. [PMID: 34925043 PMCID: PMC8675213 DOI: 10.3389/fphar.2021.788192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Variants of the SCN1A gene encoding the neuronal voltage-gated sodium channel NaV1.1 cause over 85% of all cases of Dravet syndrome, a severe and often pharmacoresistent epileptic encephalopathy with mostly infantile onset. But with the increased availability of genetic testing for patients with epilepsy, variants in SCN1A have now also been described in a range of other epilepsy phenotypes. The vast majority of these epilepsy-associated variants are de novo, and most are either nonsense variants that truncate the channel or missense variants that are presumed to cause loss of channel function. However, biophysical analysis has revealed a significant subset of missense mutations that result in increased excitability, further complicating approaches to precision pharmacotherapy for patients with SCN1A variants and epilepsy. We describe clinical and biophysical data of a familial SCN1A variant encoding the NaV1.1 L1624Q mutant. This substitution is located on the extracellular linker between S3 and S4 of Domain IV of NaV1.1 and is a rare case of a familial SCN1A variant causing an autosomal dominant frontal lobe epilepsy. We expressed wild-type (WT) and L1642Q channels in CHO cells. Using patch-clamp to characterize channel properties at several temperatures, we show that the L1624Q variant increases persistent current, accelerates fast inactivation onset and decreases current density. While SCN1A-associated epilepsy is typically considered a loss-of-function disease, our results put L1624Q into a growing set of mixed gain and loss-of-function variants in SCN1A responsible for epilepsy.
Collapse
Affiliation(s)
- Laura B Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard E Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.,Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Maxine Owers
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Elaine Hughes
- Department of Paediatric Neurosciences, King's College Hospital, London, United Kingdom.,Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, United Kingdom
| | - Deb K Pal
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
57
|
Abstract
Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously1). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.
Collapse
Affiliation(s)
- Eric R. Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
58
|
Wasan H, Singh D, Kh R. Safinamide in neurological disorders and beyond: Evidence from preclinical and clinical studies. Brain Res Bull 2020; 168:165-177. [PMID: 33387637 DOI: 10.1016/j.brainresbull.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
The discovery and development of safinamide, an alpha-aminoamide, has been a valuable addition to the existing clinical management of Parkinson's disease (PD). The journey of safinamide dates back to the year 1983, when an alpha-aminoamide called milacemide showed a weak anticonvulsant activity. Milacemide was then structurally modified to give rise to safinamide, which in turn produced robust anticonvulsant activity. The underlying mechanism behind this action of safinamide is attributed to the inhibition of voltage gated calcium and sodium channels. Moreover, owing to the importance of ion channels in maintaining neuronal circuitry and neurotransmitter release, numerous studies explored the potential of safinamide in neurological diseases including PD, stroke, multiple sclerosis and neuromuscular disorders such as Duchenne muscular dystrophy and non-dystrophic myotonias. Nevertheless, evidence from multiple preclinical studies suggested a potent, selective and reversible inhibitory activity of safinamide against monoamine oxidase (MAO)-B enzyme which is responsible for degrading dopamine, a neurotransmitter primarily implicated in the pathophysiology of PD. Therefore, clinical studies were conducted to assess safety and efficacy of safinamide in PD. Indeed, results from various Phase 3 clinical trials suggested strong evidence of safinamide as an add-on therapy in controlling the exacerbation of PD. This review presents a thorough developmental history of safinamide in PD and provides comprehensive insight into plausible mechanisms via which safinamide can be explored in other neurological and muscular diseases.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Reeta Kh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
59
|
Jeong JH, Lee SH, Kho AR, Hong DK, Kang DH, Kang BS, Park MK, Choi BY, Choi HC, Lim MS, Suh SW. The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. Int J Mol Sci 2020; 21:ijms21217897. [PMID: 33114331 PMCID: PMC7663745 DOI: 10.3390/ijms21217897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood–brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Beom Seok Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Min Kyu Park
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Hui Chul Choi
- Department of Neurology, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Man-Sup Lim
- Department of Medical Education, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| |
Collapse
|
60
|
Lai MC, Wu SN, Huang CW. Telmisartan, an Antagonist of Angiotensin II Receptors, Accentuates Voltage-Gated Na + Currents and Hippocampal Neuronal Excitability. Front Neurosci 2020; 14:902. [PMID: 33013297 PMCID: PMC7499822 DOI: 10.3389/fnins.2020.00902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Telmisartan (TEL), a non-peptide blocker of the angiotensin II type 1 receptor, is a widely used antihypertensive agent. Nevertheless, its neuronal ionic effects and how they potentially affect neuronal network excitability remain largely unclear. With the aid of patch-clamp technology, the effects of TEL on membrane ion currents present in hippocampal neurons (mHippoE-14 cells) were investigated. For additional characterization of the effects of TEL on hippocampal neuronal excitability, we undertook in vivo studies on Sprague Dawley (SD) rats using pilocarpine-induced seizure modeling, a hippocampal histopathological analysis, and inhibitory avoidance testing. In these hippocampal neurons, TEL increased the peak amplitude of I Na , with a concomitant decline in the current inactivation rate. The TEL concentration dependently enhanced the peak amplitude of depolarization-elicited I Na and lessened the inactivation rate of I Na . By comparison, TEL was more efficacious in stimulating the peak I Na and in prolonging the inactivation time course of this current than tefluthrin or (-)-epicatechin-3-gallate. In the continued presence of pioglitazone, the TEL-perturbed stimulation of I Na remained effective. In addition, cell exposure to TEL shifted the steady-state inactivation I Na curve to fewer negative potentials with no perturbations of the slope factor. Unlike chlorotoxin, either ranolazine, eugenol, or KMUP-1 reversed TEL-mediated increases in the strength of non-inactivating I Na . In the cell-attached voltage-clamp recordings, TEL shortened the latency in the generation of action currents. Meanwhile, TEL increased the peak I Na , with a concurrent decrease in current inactivation in HEKT293T cells expressing SCN5A. Furthermore, although TEL did not aggravate pilocarpine-induced chronic seizures and tended to preserve cognitive performance, it significantly accentuated hippocampal mossy fiber sprouting. Collectively, TEL stimulation of peak I Na in combination with an apparent retardation in current inactivation could be an important mechanism through which hippocampal neuronal excitability is increased, and hippocampal network excitability is accentuated following status epilepticus, suggesting further attention to this finding.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
61
|
Encinas AC, Watkins JC, Longoria IA, Johnson JP, Hammer MF. Variable patterns of mutation density among NaV1.1, NaV1.2 and NaV1.6 point to channel-specific functional differences associated with childhood epilepsy. PLoS One 2020; 15:e0238121. [PMID: 32845893 PMCID: PMC7449494 DOI: 10.1371/journal.pone.0238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022] Open
Abstract
Variants implicated in childhood epilepsy have been identified in all four voltage-gated sodium channels that initiate action potentials in the central nervous system. Previous research has focused on the functional effects of particular variants within the most studied of these channels (NaV1.1, NaV1.2 and NaV1.6); however, there have been few comparative studies across channels to infer the impact of mutations in patients with epilepsy. Here we compare patterns of variation in patient and public databases to test the hypothesis that regions of known functional significance within voltage-gated sodium (NaV) channels have an increased burden of deleterious variants. We assessed mutational burden in different regions of the Nav channels by (1) performing Fisher exact tests on odds ratios to infer excess variants in domains, segments, and loops of each channel in patient databases versus public “control” databases, and (2) comparing the cumulative distribution of variant sites along DNA sequences of each gene in patient and public databases (i.e., independent of protein structure). Patient variant density was concordant among channels in regions known to play a role in channel function, with statistically significant higher patient variant density in S4-S6 and DIII-DIV and an excess of public variants in SI-S3, DI-DII, DII-DIII. On the other hand, channel-specific patterns of patient burden were found in the NaV1.6 inactivation gate and NaV1.1 S5-S6 linkers, while NaV1.2 and NaV1.6 S4-S5 linkers and S5 segments shared patient variant patterns that contrasted with those in NaV1.1. These different patterns may reflect different roles played by the NaV1.6 inactivation gate in action potential propagation, and by NaV1.1 S5-S6 linkers in loss of function and haploinsufficiency. Interestingly, NaV1.2 and NaV1.6 both lack amino acid substitutions over significantly long stretches in both the patient and public databases suggesting that new mutations in these regions may cause embryonic lethality or a non-epileptic disease phenotype.
Collapse
Affiliation(s)
- Alejandra C. Encinas
- Graduate Program in Genetics, University of Arizona, Tucson, Arizona, United States of America
| | - Joseph C. Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | - Iris Arenas Longoria
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | | | - Michael F. Hammer
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
62
|
Buckley CT, Waters OR, DeMaagd G. Cenobamate: A New Adjunctive Agent for Drug-Resistant Focal Onset Epilepsy. Ann Pharmacother 2020; 55:318-329. [PMID: 32623899 DOI: 10.1177/1060028020941113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To review the pharmacology, efficacy, and safety of oral cenobamate in the treatment of uncontrolled focal epilepsy. DATA SOURCES The PubMed database and ClinicalTrials.gov were searched using the following terms: cenobamate, Xcopri, and YKP3089. STUDY SELECTION AND DATA EXTRACTION Articles published in English between January 2000 and April 2020 related to pharmacology, safety, and clinical trials were assessed. DATA SYNTHESIS In a phase 2 trial, cenobamate reduced the median percentage change in seizure frequency from baseline by 56% compared with 22% for placebo (P < 0.0001). In another phase 2 trial of multiple cenobamate doses, cenobamate reduced seizure frequency by 36% (P = 0.0071) in the 100-mg group and 55% (P < 0.0001) in both the 200- and 400-mg groups, compared to 24% with placebo. Adverse effects of cenobamate appear to be similar to those of other antiseizure medications and primarily affect the neurological system. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE In patients taking antiseizure medications who continue to have focal seizures, cenobamate has efficacy at multiple doses and is generally well tolerated. Cenobamate may be distinguished from other antiseizure medications by high rates of seizure freedom not seen in previous placebo-controlled trials, which has the potential to significantly improve quality of life. However, despite this efficacy, Drug Reaction with Eosinophilia and Systemic Symptoms may remain a significant concern with cenobamate. CONCLUSION As seen in clinical trials, cenobamate as an adjunctive, once-daily treatment represents an efficacious and generally well-tolerated therapy for patients with drug-resistant focal epilepsy.
Collapse
|
63
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
64
|
Ou M, Zhao W, Liu J, Liang P, Huang H, Yu H, Zhu T, Zhou C. The General Anesthetic Isoflurane Bilaterally Modulates Neuronal Excitability. iScience 2020; 23:100760. [PMID: 31926429 PMCID: PMC6956953 DOI: 10.1016/j.isci.2019.100760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics induce hyperactivity during induction while producing anesthesia at higher concentrations. They also bidirectionally modulate many neuronal functions. However, the neuronal mechanism is unclear. The effects of isoflurane on sodium channel currents were analyzed in acute mouse brain slices, including sodium leak (NALCN) currents and voltage-gated sodium channels (Nav) currents. Isoflurane at sub-anesthetic concentrations increased the spontaneous firing rate of CA3 pyramidal neurons, whereas anesthetic concentrations of isoflurane decreased the firing rate. Isoflurane at sub-anesthetic concentrations enhanced NALCN conductance but minimally inhibited Nav currents. Isoflurane at anesthetic concentrations depressed Nav currents and action potential amplitudes. Isoflurane at sub-anesthetic concentrations depolarized resting membrane potential (RMP) of neurons, whereas hyperpolarized the RMP at anesthetic concentrations. Isoflurane at low concentrations induced hyperactivity in vivo, which was diminished in NALCN knockdown mice. In conclusion, enhancement of NALCN by isoflurane contributes to its bidirectional modulation of neuronal excitability and the hyperactivity during induction.
Collapse
Affiliation(s)
- Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.
| |
Collapse
|
65
|
Du J, Vegh V, Reutens DC. Persistent sodium current blockers can suppress seizures caused by loss of low-threshold D-type potassium currents: Predictions from an in silico study of K v1 channel disorders. Epilepsia Open 2020; 5:86-96. [PMID: 32140647 PMCID: PMC7049813 DOI: 10.1002/epi4.12379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Objective Ion channels belonging to subfamily A of voltage‐gated potassium channels (Kv1) are highly expressed on axons, where they play a key role in determining resting membrane potential, in shaping action potentials, and in modulating action potential frequency during repetitive neuronal firing. We aimed to study the genesis of seizures caused by mutations affecting Kv1 channels and searched for potential therapeutic targets. Methods We used a novel in silico model, the laminar cortex model (LCM), to examine changes in neuronal excitability and network dynamics associated with loss‐of‐function mutations in Kv1 channels. The LCM simulates the activities of a network of tens of thousands of interconnected neurons and incorporates the kinetics of 11 types of ion channel and three classes of neurotransmitter receptor. Changes in two types of potassium currents conducted by Kv1 channels were examined: slowly inactivating D‐type currents and rapidly inactivating A‐type currents. Effects on neuronal firing rate, action potential shape, and neuronal oscillation state were evaluated. A systematic parameter scan was performed to identify parameter changes that can reverse the effects of the changes. Results Reduced axonal D‐type currents led to lower firing threshold and widened action potentials, both lowering the seizure threshold. Two potential therapeutic targets for treating seizures caused by loss‐of‐function changes in Kv1 channels were identified: persistent sodium channels and NMDA receptors. Blocking persistent sodium channels restored the firing threshold and reduced action potential width. NMDA receptor antagonists reduced excitatory postsynaptic currents from excessive glutamate release related to widened action potentials. Significance Riluzole reduces persistent sodium currents and excitatory postsynaptic currents from NMDA receptor activation. Our results suggest that this FDA‐approved drug can be repurposed to treat epilepsies caused by mutations affecting axonal Kv1 channels.
Collapse
Affiliation(s)
- Jiaxin Du
- Centre for Advanced Imaging The University of Queensland St Lucia Qld Australia
| | - Viktor Vegh
- Centre for Advanced Imaging The University of Queensland St Lucia Qld Australia
| | - David C Reutens
- Centre for Advanced Imaging The University of Queensland St Lucia Qld Australia
| |
Collapse
|
66
|
Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020; 168:107966. [PMID: 32120063 DOI: 10.1016/j.neuropharm.2020.107966] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
67
|
Desroches M, Faugeras O, Krupa M, Mantegazza M. Modeling cortical spreading depression induced by the hyperactivity of interneurons. J Comput Neurosci 2019; 47:125-140. [PMID: 31620945 DOI: 10.1007/s10827-019-00730-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 01/30/2023]
Abstract
Cortical spreading depression (CSD) is a wave of transient intense neuronal firing leading to a long lasting depolarizing block of neuronal activity. It is a proposed pathological mechanism of migraine with aura. Some forms of migraine are associated with a genetic mutation of the Nav1.1 channel, resulting in its gain of function and implying hyperexcitability of interneurons. This leads to the counterintuitive hypothesis that intense firing of interneurons can cause CSD ignition. To test this hypothesis in silico, we developed a computational model of an E-I pair (a pyramidal cell and an interneuron), in which the coupling between the cells in not just synaptic, but takes into account also the effects of the accumulation of extracellular potassium caused by the activity of the neurons and of the synapses. In the context of this model, we show that the intense firing of the interneuron can lead to CSD. We have investigated the effect of various biophysical parameters on the transition to CSD, including the levels of glutamate or GABA, frequency of the interneuron firing and the efficacy of the KCC2 co-transporter. The key element for CSD ignition in our model was the frequency of interneuron firing and the related accumulation of extracellular potassium, which induced a depolarizing block of the pyramidal cell. This constitutes a new mechanism of CSD ignition.
Collapse
Affiliation(s)
- Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France.,Université Côte d'Azur, 06108, Nice Cedex 2, France
| | - Olivier Faugeras
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France.,Université Côte d'Azur, 06108, Nice Cedex 2, France
| | - Martin Krupa
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France. .,Université Côte d'Azur, 06108, Nice Cedex 2, France. .,JAD Laboratory, Université de Nice Sophia Antipolis, 06108, Nice Cedex 2, France.
| | - Massimo Mantegazza
- Université Côte d'Azur, 06108, Nice Cedex 2, France.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, 06560, Valbonne-Sophia Antipolis, France
| |
Collapse
|
68
|
Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH. The critical role of persistent sodium current in hippocampal gamma oscillations. Neuropharmacology 2019; 162:107787. [PMID: 31550457 DOI: 10.1016/j.neuropharm.2019.107787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 μM and 100 μM) and riluzole (10 μM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 μM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stefan L Sumsky
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabato Santaniello
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
69
|
Saba L, Viscomi MT, Martini A, Caioli S, Mercuri NB, Guatteo E, Zona C. Modified age-dependent expression of NaV1.6 in an ALS model correlates with motor cortex excitability alterations. Neurobiol Dis 2019; 130:104532. [PMID: 31302244 DOI: 10.1016/j.nbd.2019.104532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
Collapse
Affiliation(s)
- Luana Saba
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy
| | - Maria Teresa Viscomi
- Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy; Department of Motor Science and Wellness, University of Naples 'Parthenope', Via Medina 40, Naples 80133, Italy
| | - Cristina Zona
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
70
|
Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 2019; 158:107699. [PMID: 31278928 DOI: 10.1016/j.neuropharm.2019.107699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
SCN8A epileptic encephalopathy is a severe genetic epilepsy syndrome caused by de novo gain-of-function mutations of SCN8A encoding the voltage-gated sodium (Na) channel (VGSC) NaV1.6. Therapeutic management is difficult in many patients, leading to uncontrolled seizures and risk of sudden unexpected death in epilepsy (SUDEP). There is a need to develop novel anticonvulsants that can specifically target aberrant VGSC activity associated with SCN8A gain-of-function mutations. In this study, we investigate the effects of Prax330, a novel VGSC inhibitor, on the biophysical properties of wild-type (WT) NaV1.6 and the patient mutation p.Asn1768Asp (N1768D) in ND7/23 cells. The effects of Prax330 on persistent (INaP) and resurgent (INaR) Na currents and neuronal excitability in subiculum neurons from a knock-in mouse model of the Scn8a-N1768D mutation (Scn8aD/+) were also examined. In ND7/23 cells, Prax330 reduced INaP currents recorded from cells expressing Scn8a-N1768D and hyperpolarized steady-state inactivation curves. Recordings from brain slices demonstrated elevated INaP and INaR in subiculum neurons from Scn8aD/+ mutant mice and abnormally large action potential (AP) burst-firing events in a subset of neurons. Prax330 (1 μM) reduced both INaP and INaR and suppressed AP bursts, with a smaller effect on AP waveforms that had similar morphology to WT neurons. Prax330 (1 μM) also reduced synaptically-evoked APs in Scn8aD/+ subiculum neurons but not in WT neurons. Our results highlight the efficacy of targeting INaP and INaR and inactivation parameters in controlling subiculum excitability and suggest Prax330 as a promising novel therapy for SCN8A epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Anusha U Saga
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
71
|
Zhao W, Zhang M, Liu J, Liang P, Wang R, Hemmings HC, Zhou C. Isoflurane Modulates Hippocampal Cornu Ammonis Pyramidal Neuron Excitability by Inhibition of Both Transient and Persistent Sodium Currents in Mice. Anesthesiology 2019; 131:94-104. [PMID: 31166240 PMCID: PMC6586485 DOI: 10.1097/aln.0000000000002753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Volatile anesthetics inhibit presynaptic voltage-gated sodium channels to reduce neurotransmitter release, but their effects on excitatory neuron excitability by sodium current inhibition are unclear. The authors hypothesized that inhibition of transient and persistent neuronal sodium currents by the volatile anesthetic isoflurane contributes to reduced hippocampal pyramidal neuron excitability. METHODS Whole-cell patch-clamp recordings of sodium currents of hippocampal cornu ammonis pyramidal neurons were performed in acute mouse brain slices. The actions of isoflurane on both transient and persistent sodium currents were analyzed at clinically relevant concentrations of isoflurane. RESULTS The median inhibitory concentration of isoflurane for inhibition of transient sodium currents was 1.0 ± 0.3 mM (~3.7 minimum alveolar concentration [MAC]) from a physiologic holding potential of -70 mV. Currents from a hyperpolarized holding potential of -120 mV were minimally inhibited (median inhibitory concentration = 3.6 ± 0.7 mM, ~13.3 MAC). Isoflurane (0.55 mM; ~2 MAC) shifted the voltage-dependence of steady-state inactivation by -6.5 ± 1.0 mV (n = 11, P < 0.0001), but did not affect the voltage-dependence of activation. Isoflurane increased the time constant for sodium channel recovery from 7.5 ± 0.6 to 12.7 ± 1.3 ms (n = 13, P < 0.001). Isoflurane also reduced persistent sodium current density (median inhibitory concentration = 0.4 ± 0.1 mM, ~1.5 MAC) and resurgent currents. Isoflurane (0.55 mM; ~2 MAC) reduced action potential amplitude, and hyperpolarized resting membrane potential from -54.6 ± 2.3 to -58.7 ± 2.1 mV (n = 16, P = 0.001). CONCLUSIONS Isoflurane at clinically relevant concentrations inhibits both transient and persistent sodium currents in hippocampal cornu ammonis pyramidal neurons. These mechanisms may contribute to reductions in both hippocampal neuron excitability and synaptic neurotransmission.
Collapse
Affiliation(s)
- Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Mingyue Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Rurong Wang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Hugh C. Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medicine, New York, NY, 10065 USA
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| |
Collapse
|
72
|
Nakamura M, Cho JH, Shin H, Jang IS. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol 2019; 855:175-182. [PMID: 31063770 DOI: 10.1016/j.ejphar.2019.05.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/26/2022]
Abstract
New, more effective pharmacologic treatments for epilepsy are needed, as a substantial portion of patients (>30%) are refractory to currently available anti-epileptic drugs. Cenobamate (YKP3089) is an investigational anti-epileptic drug in clinical development. Two completed adequate and well-controlled studies demonstrated a significant reduction in focal seizures with cenobamate in patients with epilepsy. In this study, we characterized the effects of cenobamate on voltage-gated Na+ channels in acutely isolated rat hippocampal CA3 neurons using a whole-cell patch-clamp technique. While cenobamate had little effect on the peak component of transient Na+ current (INaT) induced by brief depolarizing step pulses, it potently inhibited the non-inactivating persistent component of INa (INaP). In addition, cenobamate potently inhibited the current by slow voltage-ramp stimuli. Cenobamate significantly shifted the steady-state fast inactivation relationship toward a hyperpolarizing range, indicating that cenobamate binds to voltage-gated Na+ channels at the inactivated state with a higher affinity. Cenobamate also accelerated the development of inactivation and retarded recovery from inactivation of voltage-gated Na+ channels. In current clamp experiments, cenobamate hyperpolarized membrane potentials in a concentration-dependent manner, and these effects were mediated by inhibiting the INaP. Cenobamate also increased the threshold for generation of action potentials, and decreased the number of action potentials elicited by depolarizing current injection. Given that the INaP plays a pivotal role in the repetitive and/or burst generation of action potentials, the cenobamate-mediated preferential blockade of INaP might contribute to anti-epileptic activity.
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea.
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea.
| | - Hyewon Shin
- Department of Pharmacology, SK Biopharmaceuticals, Co., Ltd., 221 Pangyoyeok-ro, Seongnam, Gyeonggi, 305-712, Republic of Korea.
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea.
| |
Collapse
|
73
|
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci 2019; 40:417-436. [PMID: 30947192 DOI: 10.1159/000497471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in neonates represent a neurologic emergency requiring prompt recognition, determination of etiology, and treatment. Yet, the definition and identification of neonatal seizures remain challenging and controversial, in part due to the unique physiology of brain development at this life stage. These issues are compounded when considering seizures in premature infants, in whom the complexities of brain development may engender different clinical and electrographic seizure features at different points in neuronal maturation. In extremely premature infants (< 28 weeks gestational age), seizure pathophysiology has not been explored in detail. This review discusses the physiological and structural development of the brain in this developmental window, focusing on factors that may lead to seizures and their consequences at this early time point. We hypothesize that the clinical and electrographic phenomenology of seizures in extremely preterm infants reflects the specific pathophysiology of brain development in that age window.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
74
|
Kang IS, Cho JH, Lee MG, Jang IS. Modulation of tetrodotoxin-resistant Na + channels by amitriptyline in dural afferent neurons. Eur J Pharmacol 2018; 838:69-77. [PMID: 30194938 DOI: 10.1016/j.ejphar.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
Migraine is characterized by recurrent and disabling headaches; therefore, several drugs have been widely prescribed to prevent acute migraine attacks. Amitriptyline, a tricyclic antidepressant, is among the most commonly administered. It is poorly known, however, whether amitriptyline modulates the excitability of dural afferent neurons that transmit pain signals from the dura mater. In this study, the effects of amitriptyline on tetrodotoxin-resistant (TTX-R) Na+ channels were examined in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from medium-sized DiI-positive neurons using a whole-cell patch clamp technique. Amitriptyline (3 μM) slightly reduced the peak component of transient INa and induced a marked decrease in the steady-state component of transient TTX-R INa, as well as in the slow ramp-induced TTX-R INa. Our findings suggest that amitriptyline specifically inhibits persistent Na+ currents mediated by TTX-R Na+ channels. While amitriptyline had minor effects on voltage-activation/inactivation, it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Amitriptyline also affected the inactivation kinetics of TTX-R Na+ channels by significantly accelerating the inactivation of TTX-R Na+ channels and slowing the subsequent recovery. Amitriptyline decreased the number of action potentials by increasing the threshold for their generation. In conclusion, the amitriptyline-mediated diverse modulation of TTX-R Na+ channels would be, at least in part, responsible for its prophylactic efficacy for migraine attacks.
Collapse
Affiliation(s)
- In-Sik Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
75
|
Han JE, Cho JH, Nakamura M, Lee MG, Jang IS. Effect of carbamazepine on tetrodotoxin-resistant Na + channels in trigeminal ganglion neurons innervating to the dura. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:649-660. [PMID: 30402025 PMCID: PMC6205941 DOI: 10.4196/kjpp.2018.22.6.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 01/31/2023]
Abstract
Migraine is a neurological disorder characterized by recurrent and disabling severe headaches. Although several anticonvulsant drugs that block voltage-dependent Na+ channels are widely used for migraine, far less is known about the therapeutic actions of carbamazepine on migraine. In the present study, therefore, we characterized the effects of carbamazepine on tetrodotoxin-resistant (TTX-R) Na+ channels in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents were measured in medium-sized DiIpositive neurons using the whole-cell patch clamp technique in the voltage-clamp mode. While carbamazepine had little effect on the peak amplitude of transient Na+ currents, it strongly inhibited steady-state currents of transient as well as persistent Na+ currents in a concentration-dependent manner. Carbamazepine had only minor effects on the voltage-activation relationship, the voltage-inactivation relationship, and the use-dependent inhibition of TTX-R Na+ channels. However, carbamazepine changed the inactivation kinetics of TTX-R Na+ channels, significantly accelerating the development of inactivation and delaying the recovery from inactivation. In the current-clamp mode, carbamazepine decreased the number of action potentials without changing the action potential threshold. Given that the sensitization of dural afferent neurons by inflammatory mediators triggers acute migraine headaches and that inflammatory mediators potentiate TTX-R Na+ currents, the present results suggest that carbamazepine may be useful for the treatment of migraine headaches.
Collapse
Affiliation(s)
- Jin-Eon Han
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| | - Maan-Gee Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
76
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker M, Holder D. Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography. NEUROIMAGE-CLINICAL 2018; 20:674-684. [PMID: 30218899 PMCID: PMC6140294 DOI: 10.1016/j.nicl.2018.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Electrical Impedance Tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of internal impedance changes within an object using non-penetrating surface electrodes. It has previously been used to image impedance changes due to neuronal depolarisation during evoked potentials in the rat somatosensory cortex with a resolution of 2 ms and <200 μm, using an epicortical electrode array. The purpose of this work was to use this technique to elucidate the intracortical spatiotemporal trajectory of ictal spike-and-wave discharges (SWDs), induced by electrical stimulation in an acute rat model of epilepsy, throughout the cerebral cortex. Seizures lasting 16.5 ± 5.3 s with repetitive 2-5 Hz SWDs were induced in five rats anaesthetised with fentanyl-isoflurane. Transfer impedance measurements were obtained during each seizure with a 57-electrode epicortical array by applying 50 μA current at 1.7 kHz to two electrodes and recording voltages from all remaining electrodes. Images were reconstructed from averaged SWD-related impedance traces obtained from EIT measurements in successive seizures. We report the occurrence of reproducible impedance changes during the initial spike phase, which had an early onset in the whisker barrel cortex and spread posteriorly, laterally and ventrally over 20 ms (p < 0.03125, N = 5). These findings, which confirm and extend knowledge of SWD initiation and expression, suggest that EIT is a valuable neuroimaging tool for improving understanding of neural circuits implicated in epileptic phenomena.
Collapse
Affiliation(s)
- Sana Hannan
- Department of Medical Physics and Biomedical Engineering, University College London, UK.
| | - Mayo Faulkner
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - James Avery
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | | | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
77
|
Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, Hill RS, Shin T, Chen AY, Doan RN, Anttonen AK, Ignatius J, Medne L, Bönnemann CG, Hecht JL, Salonen O, Barkovich AJ, Poduri A, Wilke M, de Wit MCY, Mancini GMS, Sztriha L, Im K, Amrom D, Andermann E, Paetau R, Lehesjoki AE, Walsh CA, Lehtinen MK. Sodium Channel SCN3A (Na V1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron 2018; 99:905-913.e7. [PMID: 30146301 DOI: 10.1016/j.neuron.2018.07.052] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/05/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.
Collapse
Affiliation(s)
- Richard S Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay Ganesh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebeca Borges-Monroy
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Y Chen
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna-Kaisa Anttonen
- The Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Medical and Clinical Genetics, Neuroscience Center and Research Programs Unit, Molecular Neurology, 00014, University of Helsinki, Helsinki, Finland
| | - Jaakko Ignatius
- Department of Clinical Genetics, Turku University Hospital, Turku, 20521, Finland
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carsten G Bönnemann
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Oili Salonen
- Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | - A James Barkovich
- Benioff Children's Hospital, Departments of Radiology, Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA 94117, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Marie Claire Y de Wit
- Neurogenetics Joint Clinic in Sophia Children's Hospital, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Laszlo Sztriha
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Kiho Im
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dina Amrom
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Institute and Hospital; and the Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Institute and Hospital; and the Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ritva Paetau
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- The Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Medical and Clinical Genetics, Neuroscience Center and Research Programs Unit, Molecular Neurology, 00014, University of Helsinki, Helsinki, Finland
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
78
|
Hannan S, Faulkner M, Aristovich K, Avery J, Holder D. Frequency-dependent characterisation of impedance changes during epileptiform activity in a rat model of epilepsy. Physiol Meas 2018; 39:085003. [DOI: 10.1088/1361-6579/aad5f4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
79
|
Müller P, Draguhn A, Egorov AV. Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem 2018; 146:446-458. [PMID: 29863287 DOI: 10.1111/jnc.14479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Axonal excitability is an important determinant for the accuracy, direction, and velocity of neuronal signaling. The mechanisms underlying spike generation in the axonal initial segment and transmitter release from presynaptic terminals have been intensely studied and revealed a role for several specific ionic conductances, including the persistent sodium current (INaP ). Recent evidence indicates that action potentials can also be generated at remote locations along the axonal fiber, giving rise to ectopic action potentials during physiological states (e.g., fast network oscillations) or in pathological situations (e.g., following demyelination). Here, we investigated how ectopic axonal excitability of mouse hippocampal CA1 pyramidal neurons is regulated by INaP . Recordings of field potentials and intracellular voltage in brain slices revealed that electrically evoked antidromic spikes were readily suppressed by two different blockers of INaP , riluzole and phenytoin. The effect was mediated by a reduction of the probability of ectopic spike generation while latency was unaffected. Interestingly, the contribution of INaP to excitability was much more pronounced in axonal branches heading toward the entorhinal cortex compared with the opposite fiber direction toward fimbria. Thus, excitability of distal CA1 pyramidal cell axons is affected by persistent sodium currents in a direction-selective manner. This mechanism may be of importance for ectopic spike generation in oscillating network states as well as in pathological situations.
Collapse
Affiliation(s)
- Peter Müller
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
80
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
81
|
Kang YJ, Lewis HES, Young MW, Govindaiah G, Greenfield LJ, Garcia-Rill E, Lee SH. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons. Neuroscience 2018; 376:80-93. [PMID: 29462702 PMCID: PMC5978001 DOI: 10.1016/j.neuroscience.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/01/2023]
Abstract
The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB1BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB1BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Mason William Young
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gubbi Govindaiah
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
82
|
Regulation of voltage-gated sodium channel expression, control of excitability and implications for seizure generation. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
83
|
Zaman T, Helbig I, Božović IB, DeBrosse SD, Bergqvist AC, Wallis K, Medne L, Maver A, Peterlin B, Helbig KL, Zhang X, Goldberg EM. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol 2018; 83:703-717. [PMID: 29466837 DOI: 10.1002/ana.25188] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit β1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.
Collapse
Affiliation(s)
- Tariq Zaman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian Albrecht University, Kiel, Germany.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Suzanne D DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - A Christina Bergqvist
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kimberly Wallis
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katherine L Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
84
|
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice. Cell Rep 2018; 16:3157-3166. [PMID: 27653682 DOI: 10.1016/j.celrep.2016.08.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model.
Collapse
|
85
|
Banach M, Popławska M, Borowicz-Reutt KK. Amiodarone, a multi-channel blocker, enhances anticonvulsive effect of carbamazepine in the mouse maximal electroshock model. Epilepsy Res 2018; 140:105-110. [PMID: 29329017 DOI: 10.1016/j.eplepsyres.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Cardiac arrhythmia may occur in the course of epilepsy. Simultaneous therapy of the two diseases might be complicated by drug interactions since antiarrhythmic and antiepileptic agents share some molecular targets. The aim of this study was to evaluate the influence of amiodarone, an antiarrhythmic drug working as a multi-channel blocker, on the protective activity of four classical antiepileptic drugs in the maximal electroshock test in mice. Amiodarone at doses up to 75 mg/kg did not affect the electroconvulsive threshold in mice. Acute amiodarone at the dose of 75 mg/kg significantly potentiated the anticonvulsive effect of carbamazepine, but not that of valproate, phenytoin or phenobarbital in the maximal electroshock-induced seizures in mice. The antiarrhythmic agent and its combinations with antiepileptic drugs did not impair motor performance or long-term memory in mice, except for the combination of amiodarone and phenobarbital. Brain concentrations of antiepileptic drugs were not changed. Despite favourable impact of amiodarone on the anticonvulsive action of carbamazepine in the maximal electroshock, co-administration of the two drugs should be carefully monitored in clinical conditions. Further studies are necessary to evaluate effects of chronic treatment with amiodarone on seizure activity and the action of antiepileptic drugs.
Collapse
Affiliation(s)
- Monika Banach
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL-20-954, Lublin, Poland
| | - Monika Popławska
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL-20-954, Lublin, Poland
| | - Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL-20-954, Lublin, Poland.
| |
Collapse
|
86
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 PMCID: PMC5738717 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|
87
|
Identification of Persistent and Resurgent Sodium Currents in Spiral Ganglion Neurons Cultured from the Mouse Cochlea. eNeuro 2017; 4:eN-NWR-0303-17. [PMID: 29138759 PMCID: PMC5684619 DOI: 10.1523/eneuro.0303-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023] Open
Abstract
In spiral ganglion neurons (SGNs), the afferent single units of the auditory nerve, high spontaneous and evoked firing rates ensure preservation of the temporal code describing the key features of incoming sound. During postnatal development, the spatiotemporal distribution of ion channel subtypes contributes to the maturation of action potential generation in SGNs, and to their ability to generate spike patterns that follow rapidly changing inputs. Here we describe tetrodotoxin (TTX)-sensitive Na+ currents in SGNs cultured from mice, whose properties may support this fast spiking behavior. A subthreshold persistent Na+ current (INaP) and a resurgent Na+ current (INaR) both emerged prior to the onset of hearing and became more prevalent as hearing matured. Navβ4 subunits, which are proposed to play a key role in mediating INaR elsewhere in the nervous system, were immunolocalized to the first heminode where spikes are generated in the auditory nerve, and to perisomatic nodes of Ranvier. ATX-II, a sea anemone toxin that slows classical Na+ channel inactivation selectively, enhanced INaP five-fold and INaR three-fold in voltage clamp recordings. In rapidly-adapting SGNs under current clamp, ATX-II increased the likelihood of firing additional action potentials. The data identify INaP and INaR as novel regulators of excitability in SGNs, and consistent with their roles in other neuronal types, we suggest that these nonclassical Na+ currents may contribute to the control of refractoriness in the auditory nerve.
Collapse
|
88
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
89
|
Chang M, Dian JA, Dufour S, Wang L, Moradi Chameh H, Ramani M, Zhang L, Carlen PL, Womelsdorf T, Valiante TA. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiol Dis 2017; 109:102-116. [PMID: 29024712 DOI: 10.1016/j.nbd.2017.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 09/12/2017] [Accepted: 10/08/2017] [Indexed: 12/14/2022] Open
Abstract
Activation of γ-aminobutyric acid (GABAA) receptors have been associated with the onset of epileptiform events. To investigate if a causal relationship exists between GABAA receptor activation and ictal event onset, we activated inhibitory GABAergic networks in the superficial layer (2/3) of the somatosensory cortex during hyperexcitable conditions using optogenetic techniques in mice expressing channelrhodopsin-2 in all GABAergic interneurons. We found that a brief 30ms light pulse reliably triggered either an interictal-like event (IIE) or ictal-like ("ictal") event in the in vitro cortical 4-Aminopyridine (4-AP) slice model. The link between light pulse and epileptiform event onset was lost following blockade of GABAA receptors with bicuculline methiodide. Additionally, recording the chronological sequence of events following a light pulse in a variety of configurations (whole-cell, gramicidin-perforated patch, and multi-electrode array) demonstrated an initial hyperpolarization followed by post-inhibitory rebound spiking and a subsequent slow depolarization at the transition to epileptiform activity. Furthermore, the light-triggered ictal events were independent of the duration or intensity of the initiating light pulse, suggesting an underlying regenerative mechanism. Moreover, we demonstrated that brief GABAA receptor activation can initiate ictal events in the in vivo 4-AP mouse model, in another common in vitro model of epileptiform activity, and in neocortical tissue resected from epilepsy patients. Our findings reveal that the synchronous activation of GABAergic interneurons is a robust trigger for ictal event onset in hyperexcitable cortical networks.
Collapse
Affiliation(s)
- Michael Chang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Joshua A Dian
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Suzie Dufour
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Lihua Wang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Homeira Moradi Chameh
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Meera Ramani
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Liang Zhang
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Taufik A Valiante
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
90
|
Effects of eugenol on respiratory burst generation in newborn rat brainstem-spinal cord preparations. Pflugers Arch 2017; 470:385-394. [PMID: 28963585 DOI: 10.1007/s00424-017-2074-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Eugenol is contained in several plants including clove and is used as an analgesic drug. In the peripheral and central nervous systems, this compound modulates neuronal activity through action on voltage-gated ionic channels and/or transient receptor potential channels. However, it is unknown whether eugenol exerts any effects on the respiratory center neurons in the medulla. We examined the effects of eugenol on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat (P0-P3). The preparations were superfused by artificial cerebrospinal fluid at 25-26 °C, and inspiratory C4 ventral root activity was monitored. Membrane potentials of respiratory neurons were recorded in the parafacial region of the rostral ventrolateral medulla. Bath application of eugenol (0.5-1 mM) decreased respiratory rhythm accompanied by strong inhibition of the burst activity of pre-inspiratory neurons. After washout, respiratory rhythm partly recovered, but the inspiratory burst duration was extremely shortened, and this continued for more than 60 min after washout. The shortening of C4 inspiratory burst by eugenol was not reversed by capsazepine (TRPV1 antagonist) or HC-030031 (TRPA1 antagonist), whereas the depression was partially blocked by GABAA antagonist bicuculline and glycine antagonist strychnine or GABAB antagonist phaclofen. A spike train of action potentials in respiratory neurons induced by depolarizing current pulse was depressed by application of eugenol. Eugenol decreased the negative slope conductance of pre-inspiratory neurons, suggesting blockade of persistent Na+ current. These results suggest that changes in both membrane excitability and synaptic connections are involved in the shortening of respiratory neuron bursts by eugenol.
Collapse
|
91
|
Pro-excitatory alterations in sodium channel activity facilitate subiculum neuron hyperexcitability in temporal lobe epilepsy. Neurobiol Dis 2017; 108:183-194. [PMID: 28860087 DOI: 10.1016/j.nbd.2017.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common form of adult epilepsy involving the limbic structures of the temporal lobe. Subiculum neurons act to provide a major output from the hippocampus and consist of a large population of endogenously bursting excitatory neurons. In TLE, subiculum neurons are largely spared, become hyperexcitable and show spontaneous epileptiform activity. The basis for this hyperexcitability is unclear, but is likely to involve alterations in the expression levels and function of various ion channels. In this study, we sought to determine the importance of sodium channel currents in facilitating neuronal hyperexcitability of subiculum neurons in the continuous hippocampal stimulation (CHS) rat model of TLE. Subiculum neurons from TLE rats were hyperexcitable, firing a higher frequency of action potentials after somatic current injection and action potential (AP) bursts after synaptic stimulation. Voltage clamp recordings revealed increases in resurgent (INaR) and persistent (INaP) sodium channel currents and pro-excitatory shifts in sodium channel activation and inactivation parameters that would facilitate increases in AP generation. Attenuation of INaR and INaP currents with 4,9-anhydro-tetrodotoxin (4,9-ah TTX; 100nM), a toxin with increased potency against Nav1.6 channels, suppressed neuronal firing frequency and inhibited AP bursting induced by synaptic stimulation in TLE neurons. These findings support an important role of sodium channels, particularly Nav1.6, in facilitating subiculum neuron hyperexcitability in TLE and provide further support for the importance of INaR and INaP currents in establishing epileptiform activity of subiculum neurons.
Collapse
|
92
|
Ceballos CC, Roque AC, Leão RM. A Negative Slope Conductance of the Persistent Sodium Current Prolongs Subthreshold Depolarizations. Biophys J 2017; 113:2207-2217. [PMID: 28732557 DOI: 10.1016/j.bpj.2017.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/25/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Neuronal subthreshold voltage-dependent currents determine membrane properties such as the input resistance (Rin) and the membrane time constant (τm) in the subthreshold range. In contrast with classical cable theory predictions, the persistent sodium current (INaP), a non-inactivating mode of the voltage-dependent sodium current, paradoxically increases Rin and τm when activated. Furthermore, this current amplifies and prolongs synaptic currents in the subthreshold range. Here, using a computational neuronal model, we showed that the creation of a region of negative slope conductance by INaP activation is responsible for these effects and the ability of the negative slope conductance to amplify and prolong Rin and τm relies on the fast activation of INaP. Using dynamic clamp in hippocampal CA1 pyramidal neurons in brain slices, we showed that the effects of INaP on Rin and τm can be recovered by applying an artificial INaP after blocking endogenous INaP with tetrodotoxin. Furthermore, we showed that injection of a pure negative conductance is enough to reproduce the effects of INaP on Rin and τm and is also able to prolong artificial excitatory post synaptic currents. Since both the negative slope conductance and the almost instantaneous activation are critical for producing these effects, the INaP is an ideal current for boosting the amplitude and duration of excitatory post synaptic currents near the action potential threshold.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio C Roque
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil.
| | - Ricardo M Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
93
|
Aberrant Sodium Channel Currents and Hyperexcitability of Medial Entorhinal Cortex Neurons in a Mouse Model of SCN8A Encephalopathy. J Neurosci 2017; 37:7643-7655. [PMID: 28676574 DOI: 10.1523/jneurosci.2709-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/06/2017] [Accepted: 06/27/2017] [Indexed: 02/02/2023] Open
Abstract
SCN8A encephalopathy, or early infantile epileptic encephalopathy 13 (EIEE13), is caused predominantly by de novo gain-of-function mutations in the voltage-gated Na channel Nav1.6. Affected individuals suffer from refractory seizures, developmental delay, cognitive disability, and elevated risk of sudden unexpected death in epilepsy (SUDEP). A knock-in mouse model carrying the patient mutation p.Asn1768Asp (N1768D) reproduces many features of the disorder, including spontaneous seizures and SUDEP. We used the mouse model to examine the effects of the mutation on layer II stellate neurons of the medial entorhinal cortex (mEC), which transmit excitatory input to the hippocampus. Heterozygous (Scn8aD/+), homozygous (Scn8aD/D)), and WT (Scn8a+/+) littermates were compared at 3 weeks of age, the time of seizure onset for homozygous mice. Heterozygotes remain seizure free for another month. mEC layer II neurons of heterozygous and homozygous mice were hyperexcitable and generated long-lasting depolarizing potentials with bursts of action potentials after synaptic stimulation. Recording of Na currents revealed proexcitatory increases in persistent and resurgent currents and rightward shifts in inactivation parameters, leading to significant increases in the magnitude of window currents. The proexcitatory changes were more pronounced in homozygous mice than in heterozygotes, consistent with the earlier age of seizure onset in homozygotes. These studies demonstrate that the N1768D mutation increases the excitability of mEC layer II neurons by increasing persistent and resurgent Na currents and disrupting channel inactivation. The aberrant activities of mEC layer II neurons would provide excessive excitatory input to the hippocampus and contribute to hyperexcitability of hippocampal neurons in this model of SCN8A encephalopathy.SIGNIFICANCE STATEMENTSCN8A encephalopathy is a devastating neurological disorder that results from de novo mutations in the Na channel Nav1.6. In addition to seizures, patients suffer from cognitive and developmental delays and are at high risk for sudden unexpected death in epilepsy (SUDEP). A mouse knock-in model expressing the patient mutation N1768D reproduces several pathological phenotypes, including spontaneous seizures and sudden death. We demonstrate that medial entorhinal cortex (mEC) neurons from the mouse model exhibit proexcitatory alterations in Na channel activity, some of which were not seen in hippocampal or cortical neurons, and resulting in neuronal hyperexcitability. Because mEC neurons regulate the activity of the hippocampus, which plays an important role in seizure onset, we propose that these profound changes in mEC neuron excitability associated with the gain-of-function mutation of Nav1.6 may increase excitatory drive into the hippocampus, culminating in seizure activity and SUDEP.
Collapse
|
94
|
Pharmacology of the Na v1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 2017; 114:6836-6841. [PMID: 28607094 DOI: 10.1073/pnas.1621263114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.
Collapse
|
95
|
V-Ghaffari B, Kouhnavard M, Elbasiouny SM. Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions. PLoS One 2017; 12:e0178244. [PMID: 28591171 PMCID: PMC5462370 DOI: 10.1371/journal.pone.0178244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
Subthreshold oscillations in combination with large-amplitude oscillations generate mixed-mode oscillations (MMOs), which mediate various spatial and temporal cognition and memory processes and behavioral motor tasks. Although many studies have shown that canard theory is a reliable method to investigate the properties underlying the MMOs phenomena, the relationship between the results obtained by applying canard theory and conductance-based models of neurons and their electrophysiological mechanisms are still not well understood. The goal of this study was to apply canard theory to the conductance-based model of pyramidal neurons in layer V of the Entorhinal Cortex to investigate the properties of MMOs under antiepileptic drug conditions (i.e., when persistent sodium current is inhibited). We investigated not only the mathematical properties of MMOs in these neurons, but also the electrophysiological mechanisms that shape spike clustering. Our results show that pyramidal neurons can display two types of MMOs and the magnitude of the slow potassium current determines whether MMOs of type I or type II would emerge. Our results also indicate that slow potassium currents with large time constant have significant impact on generating the MMOs, as opposed to fast inward currents. Our results provide complete characterization of the subthreshold activities in MMOs in pyramidal neurons and provide explanation to experimental studies that showed MMOs of type I or type II in pyramidal neurons under antiepileptic drug conditions.
Collapse
Affiliation(s)
- Babak V-Ghaffari
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science & Mathematics, Wright State University, Dayton, Ohio, United States of America
- * E-mail: (SME); (BV)
| | - M. Kouhnavard
- Malaysia-Japan Int. Inst. of Tech, University Technology Malaysia, Kuala Lumpur, Malaysia
| | - Sherif M. Elbasiouny
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science & Mathematics, Wright State University, Dayton, Ohio, United States of America
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering & Computer Science, Wright State University, Dayton, Ohio, United States of America
- * E-mail: (SME); (BV)
| |
Collapse
|
96
|
Shubina L, Aliev R, Kitchigina V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res 2017; 1661:1-14. [DOI: 10.1016/j.brainres.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
|
97
|
Stiglbauer V, Hotka M, Ruiß M, Hilber K, Boehm S, Kubista H. Ca v 1.3 channels play a crucial role in the formation of paroxysmal depolarization shifts in cultured hippocampal neurons. Epilepsia 2017; 58:858-871. [PMID: 28295232 DOI: 10.1111/epi.13719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE An increase of neuronal Cav 1.3 L-type calcium channels (LTCCs) has been observed in various animal models of epilepsy. However, LTCC inhibitors failed in clinical trials of epileptic treatment. There is compelling evidence that paroxysmal depolarization shifts (PDSs) involve Ca2+ influx through LTCCs. PDSs represent a hallmark of epileptiform activity. In recent years, a probable epileptogenic role for PDSs has been proposed. However, the implication of the two neuronal LTCC isoforms, Cav 1.2 and Cav 1.3, in PDSs remained unknown. Moreover, Ca2+ -dependent nonspecific cation (CAN) channels have also been suspected to contribute to PDSs. Nevertheless, direct experimental support of an important role of CAN channel activation in PDS formation is still lacking. METHODS Primary neuronal networks derived from dissociated hippocampal neurons were generated from mice expressing a dihydropyridine-insensitive Cav 1.2 mutant (Cav 1.2DHP-/- mice) or from Cav 1.3-/- knockout mice. To investigate the role of Cav 1.2 and Cav 1.3, perforated patch-clamp recordings were made of epileptiform activity, which was elicited using either bicuculline or caffeine. LTCC activity was modulated using the dihydropyridines Bay K 8644 (agonist) and isradipine (antagonist). RESULTS Distinct PDS could be elicited upon LTCC potentiation in Cav 1.2DHP-/- neurons but not in Cav 1.3-/- neurons. In contrast, when bicuculline led to long-lasting, seizure-like discharge events rather than PDS, these were prolonged in Cav 1.3-/- neurons but not in Cav 1.2DHP-/- neurons. Because only the Cav 1.2 isoform is functionally coupled to CAN channels in primary hippocampal networks, PDS formation does not require CAN channel activity. SIGNIFICANCE Our data suggest that the LTCC requirement of PDS relates primarily to Cav 1.3 channels rather than to Cav 1.2 channels and CAN channels in hippocampal neurons. Hence, Cav 1.3 may represent a new therapeutic target for suppression of PDS development. The proposed epileptogenic role of PDSs may allow for a prophylactic rather than the unsuccessful seizure suppressing application of LTCC inhibitors.
Collapse
Affiliation(s)
- Victoria Stiglbauer
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matej Hotka
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Ruiß
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
98
|
Vera J, Alcayaga J, Sanhueza M. Competition between Persistent Na + and Muscarine-Sensitive K + Currents Shapes Perithreshold Resonance and Spike Tuning in CA1 Pyramidal Neurons. Front Cell Neurosci 2017; 11:61. [PMID: 28337126 PMCID: PMC5340745 DOI: 10.3389/fncel.2017.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022] Open
Abstract
Neurons from many brain regions display intrinsic subthreshold theta-resonance, responding preferentially to theta-frequency oscillatory stimuli. Resonance may contribute to selective communication among neurons and to orchestrate brain rhythms. CA1 pyramidal neurons receive theta activity, generating place fields. In these neurons the expression of perithreshold frequency preference is controversial, particularly in the spiking regime, with evidence favoring either non-resonant (integrator-like) or resonant behavior. Perithreshold dynamics depends on the persistent Na+ current INaP developing above −70 mV and the muscarine-sensitive K+ current IM activating above −60 mV. We conducted current and voltage clamp experiments in slices to investigate perithreshold excitability of CA1 neurons under oscillatory stimulation. Around 20% of neurons displayed perithreshold resonance that is expressed in spiking. The remaining neurons (~80%) acted as low-pass filters lacking frequency preference. Paired voltage clamp measurement of INaP and IM showed that perithreshold activation of IM is in general low while INaP is high enough to depolarize neurons toward threshold before resonance expression, explaining the most abundant non-resonant perithreshold behavior. Partial blockade of INaP by pharmacological tools or dynamic clamp changed non-resonant to resonant behavior. Furthermore, shifting IM activation toward hyperpolarized potentials by dynamic clamp also transformed non-resonant neurons into resonant ones. We propose that the relative levels of INaP and IM control perithreshold behavior of CA1 neurons constituting a gating mechanism for theta resonance in the spiking regime. Both currents are regulated by intracellular signaling and neuromodulators which may allow dynamic switching of perithreshold behavior between resonant and non-resonant.
Collapse
Affiliation(s)
- Jorge Vera
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| | - Julio Alcayaga
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Cell Physiology Center, University of Chile Santiago, Chile
| |
Collapse
|
99
|
Lin WH, Giachello CNG, Baines RA. Seizure control through genetic and pharmacological manipulation of Pumilio in Drosophila: a key component of neuronal homeostasis. Dis Model Mech 2016; 10:141-150. [PMID: 28067623 PMCID: PMC5312004 DOI: 10.1242/dmm.027045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is a significant disorder for which approximately one-third of patients do not respond to drug treatments. Next-generation drugs, which interact with novel targets, are required to provide a better clinical outcome for these individuals. To identify potential novel targets for antiepileptic drug (AED) design, we used RNA sequencing to identify changes in gene transcription in two seizure models of the fruit fly Drosophila melanogaster The first model compared gene transcription between wild type (WT) and bangsenseless1 (parabss), a gain-of-function mutant in the sole fly voltage-gated sodium channel (paralytic). The second model compared WT with WT fed the proconvulsant picrotoxin (PTX). We identified 743 genes (FDR≤1%) with significant altered expression levels that are common to both seizure models. Of these, 339 are consistently upregulated and 397 downregulated. We identify pumilio (pum) to be downregulated in both seizure models. Pum is a known homeostatic regulator of action potential firing in both flies and mammals, achieving control of neuronal firing through binding to, and regulating translation of, the mRNA transcripts of voltage-gated sodium channels (Nav). We show that maintaining expression of pum in the CNS of parabss flies is potently anticonvulsive, whereas its reduction through RNAi-mediated knockdown is proconvulsive. Using a cell-based luciferase reporter screen, we screened a repurposed chemical library and identified 12 compounds sufficient to increase activity of pum Of these compounds, we focus on avobenzone, which significantly rescues seizure behaviour in parabss flies. The mode of action of avobenzone includes potentiation of pum expression and mirrors the ability of this homeostatic regulator to reduce the persistent voltage-gated Na+ current (INaP) in an identified neuron. This study reports a novel approach to suppress seizure and highlights the mechanisms of neuronal homeostasis as potential targets for next-generation AEDs.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
100
|
Lara-Valderrábano L, Rocha L, Galván EJ. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels. Neurotoxicology 2016; 57:183-193. [DOI: 10.1016/j.neuro.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|