51
|
Davis SE, Malfi RL, Roulston TH. Species differences in bumblebee immune response predict developmental success of a parasitoid fly. Oecologia 2015; 178:1017-32. [PMID: 25795253 DOI: 10.1007/s00442-015-3292-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/07/2015] [Indexed: 11/24/2022]
Abstract
Endoparasitoids develop inside the body of a host organism and, if successful, eventually kill their host in order to reach maturity. Host species can vary in their suitability for a developing endoparasitoid; in particular, the host immune response, which can suppress egg hatching and larval development, has been hypothesized to be one of the most important determinants of parasitoid host range. In this study, we investigated whether three bumblebee host species (Bombus bimaculatus, Bombus griseocollis, and Bombus impatiens) varied in their suitability for the development of a shared parasitoid, the conopid fly (Conopidae, Diptera) and whether the intensity of host encapsulation response, an insect immune defense against invaders, could predict parasitoid success. When surgically implanted with a nylon filament, B. griseocollis exhibited a stronger immune response than both B. impatiens and B. bimaculatus. Similarly, B. griseocollis was more likely to melanize conopid larvae from natural infections and more likely to kill conopids prior to its own death. Our results indicate that variation in the strength of the general immune response of insects may have ecological implications for sympatric species that share parasites. We suggest that, in this system, selection for a stronger immune response may be heightened by the pattern of phenological overlap between local host species and the population peak of their most prominent parasitoid.
Collapse
Affiliation(s)
- Staige E Davis
- Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA, 22904, USA
| | | | | |
Collapse
|
52
|
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 2015; 62:567-83. [PMID: 25712037 DOI: 10.1111/jeu.12209] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/03/2023]
Abstract
Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 1967. We provide reference genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics unambiguously identify strains BRL/SF as a novel taxonomic unit distinct from C. mellificae strains 30254/30862 and assign all four strains as lineages of a novel clade within the subfamily Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial Lotmaria passim n. gen., n. sp. for this previously undescribed taxon. Analyses of new and previously accessioned genetic data show C. mellificae is still extant in bee populations, however, L. passim n. gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species designations from Hymenoptera provide genetic support.
Collapse
Affiliation(s)
- Ryan S Schwarz
- Bee Research Laboratory, Beltsville Agricultural Research Center - East, U.S. Department of Agriculture, Bldg 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center - West, U.S. Department of Agriculture, Bldg 012, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Charles A Murphy
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center - West, U.S. Department of Agriculture, Bldg 012, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jorgen Ravoet
- Laboratory of Zoophysiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Zoophysiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center - East, U.S. Department of Agriculture, Bldg 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| |
Collapse
|
53
|
Tozkar CÖ, Kence M, Kence A, Huang Q, Evans JD. Metatranscriptomic analyses of honey bee colonies. Front Genet 2015; 6:100. [PMID: 25852743 PMCID: PMC4365734 DOI: 10.3389/fgene.2015.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.
Collapse
Affiliation(s)
- Cansu Ö Tozkar
- Ecological Genetics Laboratory, Department of Biological Sciences, Middle East Technical University Ankara, Turkey
| | - Meral Kence
- Ecological Genetics Laboratory, Department of Biological Sciences, Middle East Technical University Ankara, Turkey
| | - Aykut Kence
- Ecological Genetics Laboratory, Department of Biological Sciences, Middle East Technical University Ankara, Turkey
| | - Qiang Huang
- Bee Research Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| | - Jay D Evans
- Bee Research Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| |
Collapse
|
54
|
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 2014; 165:825-38. [PMID: 25460233 DOI: 10.1016/j.protis.2014.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Compared to their relatives, the diversity of endosymbiont-containing Trypanosomatidae remains under-investigated, with only two new species described in the past 25 years, bringing the total to six. The possible reasons for such a poor representation of this group are either their overall scarcity or susceptibility of their symbionts to antibiotics that are traditionally used for cultivation of flagellates. In this work we describe the isolation, cultivation, as well as morphological and molecular characterization of a novel endosymbiont-harboring trypanosomatid species, Kentomonas sorsogonicus sp. n. The newly erected genus Kentomonas gen. n. shares many common features with the genera Angomonas and Strigomonas, such as the presence of an extensive system of peripheral mitochondrial branches distorting the corset of subpellicular microtubules, large and loosely packed kinetoplast, and a rudimentary paraflagellar rod. Here we also propose to unite all endosymbiont-bearing trypanosomatids into the new subfamily Strigomonadinae subfam. n.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Martina Tesařová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
55
|
Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME JOURNAL 2014; 8:2369-79. [PMID: 24763369 DOI: 10.1038/ismej.2014.68] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/15/2022]
Abstract
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as 'core bacteria' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.
Collapse
|
56
|
Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One 2014; 9:e95057. [PMID: 24743507 PMCID: PMC3990616 DOI: 10.1371/journal.pone.0095057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/23/2014] [Indexed: 12/02/2022] Open
Abstract
Since 2006, honey bee colonies in North America and Europe have experienced increased annual mortality. These losses correlate with increased pathogen incidence and abundance, though no single etiologic agent has been identified. Crithidia mellificae is a unicellular eukaryotic honey bee parasite that has been associated with colony losses in the USA and Belgium. C. mellificae is a member of the family Trypanosomatidae, which primarily includes other insect-infecting species (e.g., the bumble bee pathogen Crithidia bombi), as well as species that infect both invertebrate and vertebrate hosts including human pathogens (e.g.,Trypanosoma cruzi, T. brucei, and Leishmania spp.). To better characterize C. mellificae, we sequenced the genome and transcriptome of strain SF, which was isolated and cultured in 2010. The 32 megabase draft genome, presented herein, shares a high degree of conservation with the related species Leishmania major. We estimate that C. mellificae encodes over 8,300 genes, the majority of which are orthologs of genes encoded by L. major and other Leishmania or Trypanosoma species. Genes unique to C. mellificae, including those of possible bacterial origin, were annotated based on function and include genes putatively involved in carbohydrate metabolism. This draft genome will facilitate additional investigations of the impact of C. mellificae infection on honey bee health and provide insight into the evolution of this unique family.
Collapse
Affiliation(s)
- Charles Runckel
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph DeRisi
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JD); (MLF)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (JD); (MLF)
| |
Collapse
|
57
|
Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S, Escudero LR, Salathé R, Scriven JJ, Schmid-Hempel P. The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 2014; 83:823-37. [PMID: 24256429 DOI: 10.1111/1365-2656.12185] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/18/2013] [Indexed: 01/13/2023]
Abstract
The Palaearctic Bombus ruderatus (in 1982/1983) and Bombus terrestris (1998) have both been introduced into South America (Chile) for pollination purposes. We here report on the results of sampling campaigns in 2004, and 2010-2012 showing that both species have established and massively expanded their range. Bombus terrestris, in particular, has spread by some 200 km year(-1) and had reached the Atlantic coast in Argentina by the end of 2011. Both species, and especially B. terrestris, are infected by protozoan parasites that seem to spread along with the imported hosts and spillover to native species. Genetic analyses by polymorphic microsatellite loci suggest that the host population of B. terrestris is genetically diverse, as expected from a large invading founder population, and structured through isolation by distance. Genetically, the populations of the trypanosomatid parasite, Crithidia bombi, sampled in 2004 are less diverse, and distinct from the ones sampled later. Current C. bombi populations are highly heterozygous and also structured through isolation by distance correlating with the genetic distances of B. terrestris, suggesting the latter's expansion to be a main structuring factor for the parasite. Remarkably, wherever B. terrestris spreads, the native Bombus dahlbomii disappears although the reasons remain unclear. Our ecological and genetic data suggest a major invasion event that is currently unfolding in southern South America with disastrous consequences for the native bumblebee species.
Collapse
Affiliation(s)
- Regula Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Michael Eckhardt
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - David Goulson
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Daniel Heinzmann
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Carlos Lange
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata CONICET-UNLP, Comisión de Investigaciones Cientificas de la provincia de Buenos Aires (CICPBA), Calle 2 # 584, 1900, La Plata, Argentina
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata CONICET-UNLP, Comisión de Investigaciones Cientificas de la provincia de Buenos Aires (CICPBA), Calle 2 # 584, 1900, La Plata, Argentina
| | - Luisa R Escudero
- Instituto de Biología, Pontificia Universita Católica de Valparaíso, Avda. Brasil, 2950, Valparaíso, Chile
| | - Rahel Salathé
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Jessica J Scriven
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| |
Collapse
|
58
|
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One 2013; 8:e79581. [PMID: 24260255 PMCID: PMC3834336 DOI: 10.1371/journal.pone.0079581] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023] Open
Abstract
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
59
|
Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 2013; 8:e72443. [PMID: 23991113 PMCID: PMC3753275 DOI: 10.1371/journal.pone.0072443] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 01/17/2023] Open
Abstract
Since the last decade, unusually high honey bee colony losses have been reported mainly in North-America and Europe. Here, we report on a comprehensive bee pathogen screening in Belgium covering 363 bee colonies that were screened for 18 known disease-causing pathogens and correlate their incidence in summer with subsequent winter mortality. Our analyses demonstrate that, in addition to Varroa destructor, the presence of the trypanosomatid parasite Crithidia mellificae and the microsporidian parasite Nosema ceranae in summer are also predictive markers of winter mortality, with a negative synergy being observed between the two in terms of their effects on colony mortality. Furthermore, we document the first occurrence of a parasitizing phorid fly in Europe, identify a new fourth strain of Lake Sinai Virus (LSV), and confirm the presence of other little reported pathogens such as Apicystis bombi, Aphid Lethal Paralysis Virus (ALPV), Spiroplasma apis, Spiroplasma melliferum and Varroa destructor Macula-like Virus (VdMLV). Finally, we provide evidence that ALPV and VdMLV replicate in honey bees and show that viruses of the LSV complex and Black Queen Cell Virus tend to non-randomly co-occur together. We also noticed a significant correlation between the number of pathogen species and colony losses. Overall, our results contribute significantly to our understanding of honey bee diseases and the likely causes of their current decline in Europe.
Collapse
|
60
|
Murray TE, Coffey MF, Kehoe E, Horgan FG. Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. BIOLOGICAL CONSERVATION 2013; 159:269-276. [PMID: 32287339 PMCID: PMC7124208 DOI: 10.1016/j.biocon.2012.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 05/02/2023]
Abstract
Worldwide, wild bumble bees (Bombus spp.) are experiencing marked declines, with potentially up to 11% of species currently under threat. Recent studies from North America suggest that disease transmission from commercially reared bumble bees to wild populations has led to marked range contractions in some species. In Europe, data on the prevalence of pathogen spillover from commercial to wild bumble bee populations is lacking, despite the widespread production and transport of hives within the EU since the early 1980s. We determined the permeability of cropping systems to commercial bumble bees, and quantified the prevalence of four pathogens in commercial Bombus terrestris hives and adjacent conspecific populations at increasing distances from greenhouses in Ireland. Commercial bumble bees collected from 31% to 97% of non-crop pollen, depending on the cropping system, and hives had markedly higher frequencies of two gut parasites, Crithidia spp. and Nosema bombi, compared to adjacent populations, but were free of tracheal mites. The highest prevalence of Crithida was observed within 2 km of greenhouses and the probability of infection declined in a host sex- and pathogen-specific manner up to 10 km. We suggest implementing measures that prevent the interaction of commercially reared and wild bumble bees by integrating the enforcement of national best management practices for users of commercial pollinators with international legislation that regulates the sanitation of commercial hives in production facilities.
Collapse
Affiliation(s)
- Tomás E. Murray
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- Martin-Luther University Halle-Wittenberg, Institute for Biology, Department of Zoology, D-06120 Halle (Saale), Germany
| | - Mary F. Coffey
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- University of Limerick, Department of Life Sciences, Limerick, Ireland
| | - Eamonn Kehoe
- Teagasc, Advisory Office, Johnstown Castle Estate, Co. Wexford, Ireland
| | - Finbarr G. Horgan
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- International Rice Research Institute, Crop and Environmental Sciences Division, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
61
|
Morimoto T, Kojima Y, Yoshiyama M, Kimura K, Yang B, Peng G, Kadowaki T. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:74-77. [PMID: 23757133 DOI: 10.1111/j.1758-2229.2012.00385.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/04/2012] [Indexed: 06/02/2023]
Abstract
The role of protozoan parasites in honey bee health and distribution in the world is not well understood. Therefore, we carried out a molecular survey for the presence of Crithidia mellificae and Apicystis bombi in the colonies of both non-native Apis mellifera and native Apis cerana japonica in Japan. We found that A. mellifera, but not A. c. japonica, colonies are parasitized with C. mellificae and A. bombi. Their absence in A. c. japonica colonies indicates that A. mellifera is their native host. Nevertheless, the prevalence in A. mellifera colonies is low compared with other pathogens such as viruses and Nosema microsporidia. Japanese C. mellificae isolates share well-conserved nuclear-encoded gene sequences with Swiss and US isolates. We have found two Japanese haplotypes (A and B) with two nucleotide differences in the kinetoplast-encoded cytochrome b sequence. The haplotype A is identical to Swiss isolate. These results demonstrate that C. mellificae and A. bombi distribute in Asia, Oceania, Europe, and South and North Americas.
Collapse
Affiliation(s)
- Tomomi Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Yang B, Peng G, Li T, Kadowaki T. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol 2013; 3:298-311. [PMID: 23467539 PMCID: PMC3586640 DOI: 10.1002/ece3.464] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022] Open
Abstract
China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.
Collapse
Affiliation(s)
- Bu Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | | | | | | |
Collapse
|
63
|
Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing mixed-genotype infections I: extraction and cloning of infections from hosts of the trypanosomatid Crithidia bombi. PLoS One 2012; 7:e49046. [PMID: 23155449 PMCID: PMC3498296 DOI: 10.1371/journal.pone.0049046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
We here present an efficient, precise and reliable method to isolate and cultivate healthy and viable single Crithidia bombi cells from bumblebee faeces using flow cytometry. We report a precision of >99% in obtaining single trypanosomatid cells for further culture and analysis (“cloning”). In the study, we have investigated the use of different liquid media to cultivate C. bombi and present an optimal medium for obtaining viable clones from all tested, infected host donors. We show that this method can be applied to genotype a collection of clones from natural infections. Furthermore, we show how to cryo-preserve C. bombi cells to be revived to become infective clones after at least 4 years of storage. Considering the high prevalence of infections in natural populations, our method provides a powerful tool in studying the level and diversity of these infections, and thus enriches the current methodology for the studies of complex host-parasite interactions.
Collapse
Affiliation(s)
- Rahel Salathé
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| | | | | | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| |
Collapse
|
64
|
Probing mixed-genotype infections II: high multiplicity in natural infections of the trypanosomatid, Crithidia bombi, in its host, Bombus spp. PLoS One 2012; 7:e49137. [PMID: 23145099 PMCID: PMC3493493 DOI: 10.1371/journal.pone.0049137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Mixed-genotype infections have major consequences for many essential elements of host-parasite interactions. With genetic exchange between co-infecting parasite genotypes increased diversity among parasite offspring and the emergence of novel genotypes from infected hosts is possible. We here investigated mixed- genotype infections using the host, Bombus spp. and its trypanosome parasite Crithidia bombi as our study case. The natural infections of C. bombi were genotyped with a novel method for a representative sample of workers and spring queens in Switzerland. We found that around 60% of all infected hosts showed mixed-genotype infections with an average of 2.47±0.22 (S.E.) and 3.65±1.02 genotypes per worker or queen, respectively. Queens, however, harboured up to 29 different genotypes. Based on the genotypes of co-infecting strains, these could be putatively assigned to either ‘primary’ and ‘derived’ genotypes - the latter resulting from genetic exchange among the primary genotypes. High genetic relatedness among co-infecting derived but not primary genotypes supported this scenario. Co-infection in queens seems to be a major driver for the diversity of genotypes circulating in host populations.
Collapse
|
65
|
Abstract
Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.
Collapse
|
66
|
Koch H, Schmid-Hempel P. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 2012; 15:1095-103. [PMID: 22765311 DOI: 10.1111/j.1461-0248.2012.01831.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/31/2012] [Accepted: 06/14/2012] [Indexed: 01/15/2023]
Abstract
Specific interactions between parasite genotypes and host genotypes (G(p) × G(h)) are commonly found in invertebrate systems, but are largely lacking a mechanistic explanation. The genotype of invertebrate hosts can be complemented by the genomes of microorganisms living on or within the host ('microbiota'). We investigated whether the bacterial gut microbiota of bumble bees (Bombus terrestris) can account for the specificity of interactions between individuals from different colonies (previously taken as host genotype proxy) and genotypes of the parasite Crithidia bombi. For this, we transplanted the microbiota between individuals of six colonies. Both the general infection load and the specific success of different C. bombi genotypes were mostly driven by the microbiota, rather than by worker genotype. Variation in gut microbiota can therefore be responsible for specific immune phenotypes and the evolution of gut parasites may be driven by interactions with 'microbiota types' as well as with host genotypes.
Collapse
Affiliation(s)
- Hauke Koch
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH-Zentrum CHN, Zurich, Switzerland.
| | | |
Collapse
|
67
|
Koch H, Cisarovsky G, Schmid-Hempel P. Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 2012; 81:1202-1210. [PMID: 22708631 DOI: 10.1111/j.1365-2656.2012.02004.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Animal hosts harbour diverse and often specific bacterial communities (microbiota) in their gut. These microbiota can provide crucial services to the host such as aiding in digestion of food and immune defence. However, the ecological factors correlating with and eventually shaping these microbiota under natural conditions are poorly understood. 2. Bumblebees have recently been shown to possess simple and highly specific microbiota. We here examine the dynamics of these microbiota in field colonies of the bumblebee Bombus terrestris over one season. The gut bacteria were assessed with culture-independent methods, that is, with terminal restriction fragment length profiles of the 16S rRNA gene. 3. To further understand the factors that affect the microbiota, we experimentally manipulated field-placed colonies in a fully factorial experiment by providing additional food or by priming the workers' immune system by injecting heat-killed bacteria. We furthermore looked at possible correlates of diversity and composition of the microbiota for (i) natural infections with the microbial parasites Crithidia bombi and Nosema bombi, (ii) bumblebee worker size, (iii) colony identity, and (iv) colony age. 4. We found an increase in diversity of the microbiota in individuals naturally infected with either C. bombi or N. bombi. Crithidia bombi infections, however, appear to be only indirectly linked with higher microbial diversity when comparing colonies. The treatments of priming the immune system with heat-killed bacteria and additional food supply, as well as host body size, had no effect on the diversity or composition of the microbiota. Host colony identity had only a weak effect on the composition of the microbiota at the level of resolution of our method. We found both significant increases and decreases in the relative abundance of selected bacterial taxa over the season. 5. We present the first study on the ecological dynamics of gut microbiota in bumblebees and identify parasite infections, colony identity and colony age as important factors influencing the diversity and composition of the bacterial communities. The absence of an effect of our otherwise effective experimental treatments suggests a remarkable ability of the host to maintain a homoeostasis in this community under widely different environments.
Collapse
Affiliation(s)
- Hauke Koch
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gabriel Cisarovsky
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
68
|
Ruiz-González MX, Bryden J, Moret Y, Reber-Funk C, Schmid-Hempel P, Brown MJF. DYNAMIC TRANSMISSION, HOST QUALITY, AND POPULATION STRUCTURE IN A MULTIHOST PARASITE OF BUMBLEBEES. Evolution 2012; 66:3053-66. [DOI: 10.1111/j.1558-5646.2012.01655.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Cordes N, Huang WF, Strange JP, Cameron SA, Griswold TL, Lozier JD, Solter LF. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J Invertebr Pathol 2012; 109:209-16. [DOI: 10.1016/j.jip.2011.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
|
70
|
Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci U S A 2011; 108:19288-92. [PMID: 22084077 PMCID: PMC3228419 DOI: 10.1073/pnas.1110474108] [Citation(s) in RCA: 568] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Populations of important pollinators, such as bumble bees and honey bees, are declining at alarming rates worldwide. Parasites are likely contributing to this phenomenon. A distinct resident community of bacteria has recently been identified in bumble bees and honey bees that is not shared with related solitary bee species. We now show that the presence of these microbiota protects bee hosts against a widespread and highly virulent natural parasite (Crithidia bombi) in an experimental setting. We add further support to this antagonistic relationship from patterns found in field data. For the successful establishment of these microbiota and a protective effect, exposure to feces from nest mates was needed after pupal eclosion. Transmission of beneficial gut bacteria could therefore represent an important benefit of sociality. Our results stress the importance of considering the host microbiota as an "extended immune phenotype" in addition to the host immune system itself and provide a unique perspective to understanding bees in health and disease.
Collapse
Affiliation(s)
- Hauke Koch
- Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zürich, CH-8092 Zürich, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
71
|
Salathé RM, Schmid-Hempel P. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap. PLoS One 2011; 6:e22054. [PMID: 21853023 PMCID: PMC3154203 DOI: 10.1371/journal.pone.0022054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/16/2011] [Indexed: 01/09/2023] Open
Abstract
The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp.), in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis) or whether ecological factors (niche overlap in flower choice) shape the distribution of parasite genotypes (the ecological hypothesis). Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.
Collapse
Affiliation(s)
- Rahel M Salathé
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland.
| | | |
Collapse
|
72
|
Meeus I, Brown MJF, De Graaf DC, Smagghe G. Effects of invasive parasites on bumble bee declines. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2011; 25:662-71. [PMID: 21771075 DOI: 10.1111/j.1523-1739.2011.01707.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so-called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats.
Collapse
Affiliation(s)
- Ivan Meeus
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
73
|
Schmid-Hempel R, Salathé R, Tognazzo M, Schmid-Hempel P. Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. INFECTION GENETICS AND EVOLUTION 2011; 11:564-71. [PMID: 21252000 DOI: 10.1016/j.meegid.2011.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/24/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
The breeding structure of protozoan infections, i.e. whether and how frequently parasites exchange genes ("sexual reproduction"), is a crucially important parameter for many important questions; it also matters for how new virulent strains might emerge. Whether protozoan parasites are clonal or sexual is therefore a hotly debated issue. For trypanosomatids, few experimental tests of breeding structure exist to date and are limited to the vector-borne human diseases Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We infected the natural host (Bombus terrestris) of the monoxenous parasite Crithidia bombi (Trypanosomatida) either with a single strain of the parasite or in mixed infections and tested for genetic exchange among co-infecting strains using microsatellite markers. We show that strains regularly exchange genetic material, with occasional self-crossing during mixed infections. Most offspring clones fit the expected allelic pattern from a standard Mendelian segregation. In some cases, alleles are lost or gained, leading to an entirely new genotype different from either parent. Genetic exchange in C. bombi therefore does occur and the process also leads to allelic loss or gain that could result from slippage during recombination. The majority of novel offspring types correspond to a recombination of parental alleles. The case of C. bombi demonstrates that directly transmitted, monoxenic trypanosomatids can also exchange genes. Sex therefore seems to be found in very different lineages of the trypanosomatids. Furthermore, the data allowed estimating a frequency at which C. bombi shows genetic exchange in populations.
Collapse
Affiliation(s)
- Regula Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, Zürich, Switzerland.
| | | | | | | |
Collapse
|
74
|
Popp M, Lattorff HMG. A quantitative in vitro cultivation technique to determine cell number and growth rates in strains of Crithidia bombi (Trypanosomatidae), a parasite of bumblebees. J Eukaryot Microbiol 2010; 58:7-10. [PMID: 21129082 DOI: 10.1111/j.1550-7408.2010.00514.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protozoan parasite Crithidia bombi and its host, the bumblebee Bombus terrestris, are used as a model system for the study of the evolutionary ecology of host-parasite interactions. In order to study these interactions we established a method for in vitro cultivation of single parasite strains. Additionally, a high-throughput method is developed for the determination of cell numbers in cultures by means of optical density (OD) measurements. The protocol for in vitro cultivation allowed for growing different strains on agar plates as well as in culture medium. A calibration curve for the relationship between cell number and OD has been developed. Subsequently, growth rates for different genotypes of C. bombi have been recorded. Significant differences in the growth rates and generation times between these genotypes were demonstrated. As this might be related to the virulence of the parasite, this relationship may be confirmed by in vivo growth rate determination. In comparison with conventional cell counting, the application of OD measurements allows for high-throughput experiments as the time taken to record each sample is reduced by a factor of 30. The in vitro cultivation method allows for controlled infection experiments in order to study host-parasite interactions.
Collapse
Affiliation(s)
- Mario Popp
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06099 Halle, Saale, Germany.
| | | |
Collapse
|
75
|
Ulrich Y, Sadd BM, Schmid-Hempel P. Strain filtering and transmission of a mixed infection in a social insect. J Evol Biol 2010; 24:354-62. [PMID: 21091570 DOI: 10.1111/j.1420-9101.2010.02172.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixed-genotype infections have attracted considerable attention as drivers of pathogen evolution. However, experimental approaches often overlook essential features of natural host-parasite interactions, such as host heterogeneity, or the effects of between-host selection during transmission. Here, following inoculation of a mixed infection, we analyse the success of different strains of a trypanosome parasite throughout the colony cycle of its bumblebee host. We find that most colonies efficiently filter the circulating infection before it reaches the new queens, the only offspring that carry infections to the next season. A few colonies with a poor filtering ability thus contributed disproportionately to the parasite population in the next season. High strain diversity but not high infection intensity within colony was associated with an increased probability of transmission of the infection to new queens. Interestingly, the representation of the different strains changed dramatically over time, so that long-term parasite success could not be predicted from short-term observations. These findings highlight the shaping of within-colony parasite diversity through filtering as a crucial determinant of year-to-year pathogen transmission and emphasize the importance of host ecology and heterogeneity for disease dynamics.
Collapse
Affiliation(s)
- Y Ulrich
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland.
| | | | | |
Collapse
|