51
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
52
|
Davis HE, Cheslock A, MacMillan HA. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci Rep 2021; 11:10876. [PMID: 34035382 PMCID: PMC8149885 DOI: 10.1038/s41598-021-90401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Species from colder climates tend to be more chill tolerant regardless of the chill tolerance trait measured, but for Drosophila melanogaster, population-level differences in chill tolerance among populations are not always found when a single trait is measured in the laboratory. We measured chill coma onset temperature, chill coma recovery time, and survival after chronic cold exposure in replicate lines derived from multiple paired African and European D. melanogaster populations. The populations in our study were previously found to differ in chronic cold survival ability, which is believed to have evolved independently in each population pair; however, they did not differ in chill coma onset temperature and chill coma recovery time in a manner that reflected their geographic origins, even though these traits are known to vary with origin latitude among Drosophila species and are among the most common metrics of thermal tolerance in insects. While it is common practice to measure only one chill tolerance trait when comparing chill tolerance among insect populations, our results emphasise the importance of measuring more than one thermal tolerance trait to minimize the risk of missing real adaptive variation in insect thermal tolerance.
Collapse
Affiliation(s)
- Hannah E Davis
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Alexandra Cheslock
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
53
|
White CR, Marshall DJ, Chown SL, Clusella‐Trullas S, Portugal SJ, Franklin CE, Seebacher F. Geographical bias in physiological data limits predictions of global change impacts. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Craig R. White
- School of Biological Sciences Monash University Melbourne Australia
- Centre for Geometric Biology Monash University Melbourne Australia
| | - Dustin J. Marshall
- School of Biological Sciences Monash University Melbourne Australia
- Centre for Geometric Biology Monash University Melbourne Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Melbourne Australia
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Steven J. Portugal
- Department of Biological Sciences Royal HollowayUniversity of London Egham UK
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland Brisbane Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08 University of Sydney Sydney Australia
| |
Collapse
|
54
|
Laursen SF, Hansen LS, Bahrndorff S, Nielsen HM, Noer NK, Renault D, Sahana G, Sørensen JG, Kristensen TN. Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. INSECTS 2021; 12:380. [PMID: 33922364 PMCID: PMC8146041 DOI: 10.3390/insects12050380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
Within ecophysiological and genetic studies on insects, morphological and physiological traits are commonly assessed and phenotypes are typically obtained from manual measurements on numerous individuals. Manual observations are, however, time consuming, can introduce observer bias and are prone to human error. Here, we contrast results obtained from manual assessment of larval size and thermal tolerance traits in black soldier flies (Hermetia illucens) and houseflies (Musca domestica) that have been acclimated under three different temperature regimes with those obtained automatically using an image analysis software (Noldus EthoVision XT). We found that (i) larval size estimates of both species, obtained by manual weighing or by using the software, were highly correlated, (ii) measures of heat and cold tolerance using manual and automated approaches provided qualitatively similar results, and (iii) by using the software we obtained quantifiable information on stress responses and acclimation effects of potentially higher ecological relevance than the endpoint traits that are typically assessed when manual assessments are used. Based on these findings, we argue that automated assessment of insect stress responses and largescale phenotyping of morphological traits such as size will provide new opportunities within many disciplines where accurate and largescale phenotyping of insects is required.
Collapse
Affiliation(s)
- Stine Frey Laursen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (S.B.); (N.K.N.); (T.N.K.)
| | - Laura Skrubbeltrang Hansen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.S.H.); (H.M.N.); (G.S.)
| | - Simon Bahrndorff
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (S.B.); (N.K.N.); (T.N.K.)
| | - Hanne Marie Nielsen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.S.H.); (H.M.N.); (G.S.)
| | - Natasja Krog Noer
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (S.B.); (N.K.N.); (T.N.K.)
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystémes, Biodiversité, Evolution)-UMR, 6553 Rennes, France;
- Institut Universitaire de France, 1 Rue Descartes, CEDEX 05, 75231 Paris, France
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (L.S.H.); (H.M.N.); (G.S.)
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark;
| | - Torsten Nygaard Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (S.B.); (N.K.N.); (T.N.K.)
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
55
|
Sex-specific responses to cold in a very cold-tolerant, northern Drosophila species. Heredity (Edinb) 2021; 126:695-705. [PMID: 33510465 PMCID: PMC8182794 DOI: 10.1038/s41437-020-00398-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Organisms can plastically alter resource allocation in response to changing environmental factors. For example, in harsh conditions, organisms are expected to shift investment from reproduction toward survival; however, the factors and mechanisms that govern the magnitude of such shifts are relatively poorly studied. Here we compared the impact of cold on males and females of the highly cold-tolerant species Drosophila montana at the phenotypic and transcriptomic levels. Although both sexes showed similar changes in cold tolerance and gene expression in response to cold treatment, indicating that the majority of changes are concordant between the sexes, we identified a clear reduction in sexually dimorphic gene expression, suggesting that preparing for the colder season involves reducing investment in sex-specific traits. This reduction was larger in males than females, as expected if male sexual traits are more condition-dependent than female traits, as predicted by theory. Gene expression changes were primarily associated with shifts in metabolic profile, which likely play a role in increasing cold tolerance. Finally, we found that the expression of immune genes was reduced following cold treatment, suggesting that reduced investment in costly immune function may be important in helping flies survive colder periods.
Collapse
|
56
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
57
|
Arnan X, Angulo E, Boulay R, Molowny-Horas R, Cerdá X, Retana J. Introduced ant species occupy empty climatic niches in Europe. Sci Rep 2021; 11:3280. [PMID: 33558646 PMCID: PMC7870827 DOI: 10.1038/s41598-021-82982-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Exploring shifts in the climatic niches of introduced species can provide significant insight into the mechanisms underlying the invasion process and the associated impacts on biodiversity. We aim to test the phylogenetic signal hypothesis in native and introduced species in Europe by examining climatic niche similarity. We examined data from 134 ant species commonly found in western Europe; 130 were native species, and 4 were introduced species. We characterized their distribution patterns using species records from different databases, determined their phylogenetic relatedness, and tested for a phylogenetic signal in their optimal climatic niches. We then compared the introduced species' climatic niches in Europe with their climatic niches in their native ranges and with the climatic niches of their closest relative species in Europe. We found a strong phylogenetic signal in the optimal climatic niches of the most common ant species in Europe; however, this signal was weak for the main climatic variables that affect the distributions of introduced versus native species. Also, introduced species occupied different climatic niches in Europe than in their native ranges; furthermore, their European climatic niches did not resemble those of their closest relative species in Europe. We further discovered that there was not much concordance between the climatic niches of introduced species in their native ranges and climatic conditions in Europe. Our findings suggest that phylogenetics do indeed constrain shifts in the climatic niches of native European ant species. However, introduced species would not face such constraints and seemed to occupy relatively empty climatic niches.
Collapse
Affiliation(s)
- Xavier Arnan
- grid.26141.300000 0000 9011 5442Universidade de Pernambuco – Campus Garanhuns, Garanhuns, PE 55294-902 Brazil ,grid.452388.00000 0001 0722 403XCREAF, 08193 Cerdanyola del Vallès, Catalunya Spain
| | - Elena Angulo
- grid.418875.70000 0001 1091 6248Estación Biológica de Doñana, CSIC, Avda Américo Vespucio, 26, 41092 Sevilla, Spain
| | - Raphaël Boulay
- grid.12366.300000 0001 2182 6141Institute of Insect Biology, University François Rabelais of Tours, 37200 Tours, France
| | | | - Xim Cerdá
- grid.418875.70000 0001 1091 6248Estación Biológica de Doñana, CSIC, Avda Américo Vespucio, 26, 41092 Sevilla, Spain
| | - Javier Retana
- grid.452388.00000 0001 0722 403XCREAF, 08193 Cerdanyola del Vallès, Catalunya Spain ,grid.7080.fUniv Autònoma Barcelona, 08193 Cerdanyola del Vallès, Catalunya Spain
| |
Collapse
|
58
|
da Silva CRB, Beaman JE, Dorey JB, Barker SJ, Congedi NC, Elmer MC, Galvin S, Tuiwawa M, Stevens MI, Alton LA, Schwarz MP, Kellermann V. Climate change and invasive species: a physiological performance comparison of invasive and endemic bees in Fiji. J Exp Biol 2021; 224:jeb230326. [PMID: 33257439 DOI: 10.1242/jeb.230326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022]
Abstract
Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerance, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical island ectotherms are expected to be vulnerable to climate change as they often have narrow thermal tolerance and limited plasticity. In Fiji, only one species of endemic bee, Homalictus fijiensis, is commonly found in the lowland regions, but two invasive bee species, Braunsapis puangensis and Ceratina dentipes, have recently been introduced into Fiji. These introduced species pollinate invasive plants and might compete with H. fijiensis and other native pollinators for resources. To test whether certain performance traits promote invasiveness of some species, and to determine which species are the most vulnerable to climate change, we compared the thermal tolerance, desiccation resistance, metabolic rate and seasonal performance adjustments of endemic and invasive bees in Fiji. The two invasive species tended to be more resistant to thermal and desiccation stress than H. fijiensis, while H. fijiensis had greater capacity to adjust their CTmax with season, and H. fijiensis females tended to have higher metabolic rates than B. puangensis females. These findings provide mixed support for current hypotheses for the functional basis of the success of invasive species; however, we expect the invasive bees in Fiji to be more resilient to climate change because of their increased thermal tolerance and desiccation resistance.
Collapse
Affiliation(s)
- Carmen R B da Silva
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Julian E Beaman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - James B Dorey
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
| | - Sarah J Barker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Nicholas C Congedi
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Matt C Elmer
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Stephen Galvin
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Marika Tuiwawa
- South Pacific Regional Herbarium and Biodiversity Centre, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Mark I Stevens
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michael P Schwarz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
59
|
Tarusikirwa VL, Mutamiswa R, Chidawanyika F, Nyamukondiwa C. Cold hardiness of the South American tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae): both larvae and adults are chill-susceptible. PEST MANAGEMENT SCIENCE 2021; 77:184-193. [PMID: 32652749 DOI: 10.1002/ps.6006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND For many insects, including invasive species, overwintering survival is achieved behaviourally (e.g. through migration) or physiologically by entering diapause, a state of arrested physiological development that may be accompanied with depressed supercooling points (SCPs). Diapause allows in situ adaptation to adverse environmental conditions, providing sufficient parent propagules for insect pest proliferation when optimal conditions resurface. This phenomenon has however not been observed in the invasive South American tomato pinworm Tuta absoluta in its Mediterranean invaded areas. Moreover, no studies have looked at its overwintering survival in sub-Saharan Africa. Here, we thus investigated the cold hardiness of Tuta absoluta larvae and adults to better explain its local overwintering adaptation strategy. RESULTS Larval lower lethal temperatures ranged from -1 to -17 °C for 0.5 to 4 h durations. Adults showed lower temperature activity limits than larvae albeit freeze strategy experiments showed neither survived internal freezing. Fasting and dehydration pre-treatment generally depressed SCPs, although asymmetrically, conferring more negative SCPs for larvae. Ramping rates, synonymic to diurnal temperature changes also significantly affected SCPs while, inoculative freezing significantly compromised freezing temperatures in both larvae and adults. CONCLUSION Our results suggest that (i) Tuta absoluta larvae and adults are chill-susceptible and may successfully overwinter, (ii) larvae appear more cold hardy than adults and (iii) ecological factors e.g. inoculative freezing, cooling rates, feeding- and hydration-status may affect cold hardiness. These results are important in determining species range limits, population phenology, modelling pest risk status and allows temporal life-stage specific targeting of management strategies.
Collapse
Affiliation(s)
- Vimbai L Tarusikirwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Reyard Mutamiswa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
60
|
Gerber L, Kresse JC, Šimek P, Berková P, Overgaard J. Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110850. [PMID: 33221397 DOI: 10.1016/j.cbpa.2020.110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
Cold acclimation increases cold tolerance of chill-susceptible insects and the acclimation response often involves improved organismal ion balance and osmoregulatory function at low temperature. However, the physiological mechanisms underlying plasticity of ion regulatory capacity are largely unresolved. Here we used Ussing chambers to explore the effects of cold exposure on hindgut KCl reabsorption in cold- (11 °C) and warm-acclimated (30 °C) Locusta migratoria. Cooling (from 30 to 10 °C) reduced active reabsorption across recta from warm-acclimated locusts, while recta from cold-acclimated locusts maintained reabsorption at 10 °C. The differences in transport capacity were not linked to major rearrangements of membrane phospholipid profiles. Yet, the stimulatory effect of two signal transduction pathways were altered by temperature and/or acclimation. cAMP-stimulation increased reabsorption in both acclimation groups, with a strong stimulatory effect at 30 °C and a moderate stimulatory effect at 10 °C. cGMP-stimulation also increased reabsorption in both acclimation groups at 30 °C, but their response to cGMP differed at 10 °C. Recta from warm-acclimated locusts, characterised by reduced reabsorption at 10 °C, recovered reabsorption capacity following cGMP-stimulation at 10 °C. In contrast, recta from cold-acclimated locusts, characterised by sustained reabsorption at 10 °C, were unaffected by cGMP-stimulation. Furthermore, cold-exposed recta from warm-acclimated locusts were insensitive to bafilomycin-α1, a V-type H+-ATPase inhibitor, whereas this blocker reduced reabsorption across cold-exposed recta from cold-acclimated animals. In conclusion, bafilomycin-sensitive and cGMP-dependent transport mechanism(s) are likely blocked during cold exposure in warm-acclimated animals while preserved in cold-acclimated animals. These may in part explain the large differences in rectal ion transport capacity between acclimation groups at low temperature.
Collapse
Affiliation(s)
- Lucie Gerber
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark.
| | - Jean-Claude Kresse
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petra Berková
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Johannes Overgaard
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
61
|
Hague MTJ, Caldwell CN, Cooper BS. Pervasive Effects of Wolbachia on Host Temperature Preference. mBio 2020; 11:e01768-20. [PMID: 33024036 PMCID: PMC7542361 DOI: 10.1128/mbio.01768-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Heritable symbionts can modify a range of ecologically important host traits, including behavior. About half of all insect species are infected with maternally transmitted Wolbachia, a bacterial endosymbiont known to alter host reproduction, nutrient acquisition, and virus susceptibility. Here, we broadly test the hypothesis that Wolbachia modifies host behavior by assessing the effects of eight different Wolbachia strains on the temperature preference of six Drosophila melanogaster subgroup species. Four of the seven host genotypes infected with A-group Wolbachia strains (wRi in Drosophila simulans, wHa in D. simulans, wSh in Drosophila sechellia, and wTei in Drosophila teissieri) prefer significantly cooler temperatures relative to uninfected genotypes. Contrastingly, when infected with divergent B-group wMau, Drosophila mauritiana prefers a warmer temperature. For most strains, changes to host temperature preference do not alter Wolbachia titer. However, males infected with wSh and wTei tend to experience an increase in titer when shifted to a cooler temperature for 24 h, suggesting that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results indicate that Wolbachia modifications to host temperature preference are likely widespread, which has important implications for insect thermoregulation and physiology. Understanding the fitness consequences of these Wolbachia effects is crucial for predicting evolutionary outcomes of host-symbiont interactions, including how Wolbachia spreads to become common.IMPORTANCE Microbes infect a diversity of species, influencing the performance and fitness of their hosts. Maternally transmitted Wolbachia bacteria infect most insects and other arthropods, making these bacteria some of the most common endosymbionts in nature. Despite their global prevalence, it remains mostly unknown how Wolbachia influence host physiology and behavior to proliferate. We demonstrate pervasive effects of Wolbachia on Drosophila temperature preference. Most hosts infected with A-group Wolbachia prefer cooler temperatures, whereas the one host species infected with divergent B-group Wolbachia prefers warmer temperatures, relative to uninfected genotypes. Changes to host temperature preference generally do not alter Wolbachia abundance in host tissues, but for some A-group strains, adult males have increased Wolbachia titer when shifted to a cooler temperature. This suggests that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results help elucidate the impact of endosymbionts on their hosts amid the global Wolbachia pandemic.
Collapse
Affiliation(s)
- Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Chelsey N Caldwell
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
62
|
Comparison of Static and Dynamic Assays When Quantifying Thermal Plasticity of Drosophilids. INSECTS 2020; 11:insects11080537. [PMID: 32824251 PMCID: PMC7469138 DOI: 10.3390/insects11080537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Temperature directly affects many biological processes, from enzymatic reactions to population growth, and thermal stress tolerance is central to our understanding of the global distribution and abundance of species and populations. Given the importance of thermal stress tolerance in ecophysiology and evolutionary biology it is important to be able to measure thermal stress resistance accurately and in ecologically relevant ways. Several methods for such quantification exist in the arthropod literature and the comparability of different methods is currently being debated. Here we reconcile the two most commonly used thermal assays (dynamic ramping and static knockdown assays) for quantifying insect heat tolerance limits and plastic responses using a newly suggested modeling technique. We find that results obtained on the basis of the two assays are highly correlated and that data from one assay can therefore reasonably well predict estimates from the other. These data are of general relevance to the study of thermal biology of ectotherms. Abstract Numerous assays are used to quantify thermal tolerance of arthropods including dynamic ramping and static knockdown assays. The dynamic assay measures a critical temperature while the animal is gradually heated, whereas the static assay measures the time to knockdown at a constant temperature. Previous studies indicate that heat tolerance measured by both assays can be reconciled using the time × temperature interaction from “thermal tolerance landscapes” (TTLs) in unhardened animals. To investigate if this relationship remains true within hardened animals, we use a static assay to assess the effect of heat hardening treatments on heat tolerance in 10 Drosophila species. Using this TTL approach and data from the static heat knockdown experiments, we model the expected change in dynamic heat knockdown temperature (CTmax: temperature at which flies enter coma) and compare these predictions to empirical measurements of CTmax. We find that heat tolerance and hardening capacity are highly species specific and that the two assays report similar and consistent responses to heat hardening. Tested assays are therefore likely to measure the same underlying physiological trait and provide directly comparable estimates of heat tolerance. Regardless of this compliance, we discuss why and when static or dynamic assays may be more appropriate to investigate ectotherm heat tolerance.
Collapse
|
63
|
Lubawy J, Słocińska M. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Sci Rep 2020; 10:12076. [PMID: 32694601 PMCID: PMC7374602 DOI: 10.1038/s41598-020-68941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Low temperatures in nature occur together with desiccation conditions, causing changes in metabolic pathways and cellular dehydration, affecting hemolymph volume, water content and ion homeostasis. Although some research has been conducted on the effect of low temperature on Gromphadorhina coquereliana, showing that it can survive exposures to cold or even freezing, no one has studied the effect of cold on the hemolymph volume and the immune response of this cockroach. Here, we investigated the effect of low temperature (4 °C) on the abovementioned parameters, hemocyte morphology and total number. Cold stress affected hemocytes and the immune response, but not hemolymph volume. After stress, the number of circulating hemocytes decreased by 44.7%, but the ratio of apoptotic cells did not differ significantly between stressed and control individuals: 8.06% and 7.18%, respectively. The number of phagocyting hemocytes decreased by 16.66%, the hemocyte morphology drastically changed, and the F-actin cytoskeleton differed substantially in cold-stressed insects compared to control insects. Moreover, the surface area of the cells increased from 393.69 µm2 in the control to 458.38 µm2 in cold-treated animals. Together, our results show the links between cold stress and the cellular immune response, which probably results in the survival capability of this species.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
64
|
Kellermann V, McEvey SF, Sgrò CM, Hoffmann AA. Phenotypic Plasticity for Desiccation Resistance, Climate Change, and Future Species Distributions: Will Plasticity Have Much Impact? Am Nat 2020; 196:306-315. [PMID: 32814000 DOI: 10.1086/710006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhile species distribution models (SDMs) are widely used to predict the vulnerability of species to climate change, they do not explicitly indicate the extent to which plastic responses ameliorate climate change impacts. Here we use data on plastic responses of 32 species of Drosophila to desiccation stress to suggest that basal resistance, rather than adult hardening, is relatively more important in determining species differences in desiccation resistance and sensitivity to climate change. We go on to show, using the semimechanistic SDM CLIMEX, that the inclusion of plasticity has some impact on current species distributions and future vulnerability for widespread species but has little impact on the distribution of arguably more vulnerable tropically restricted species.
Collapse
|
65
|
Sørensen JG, Winther ML, Salachan PV, MacLean HJ. Drawing the line: Linear or non-linear reaction norms in response to adult acclimation on lower thermal limits. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104075. [PMID: 32540466 DOI: 10.1016/j.jinsphys.2020.104075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Estimates of lower thermal limits are widely used to infer sensitivity to climate variability, local adaptation and adaptive acclimation responses in ectotherms. These inferences build on the ecological relevance of the tolerance estimates and assume that estimates can be extrapolated to relevant conditions. Methodological effects for upper thermal limits have been extensively investigated, with different ramping rates and acclimation regimes giving rise to varying, and even disparate, conclusions. However, methodological effects have received much less attention for lower thermal limits. In this study, we explicitly test whether methodology could affect estimates of lower thermal limits in interaction with acclimation temperature and thermal variability, by acclimating adult Drosophila melanogaster to different constant and fluctuating temperature regimes and generating reaction norms at different ramping rates. We find that ramping rates have no significant effect on the lower thermal limits. Constant temperature acclimation resulted in non-linear reaction norms, while the introduction of thermal variability during adult life result in linear reaction norms. Thus, applying ecologically relevant conditions (here thermal variability) potentially impacts the results and conclusions of insect low temperature tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jesper Givskov Sørensen
- Department of Biology, Aarhus University, Ny Munkegade 114, Bldg. 1540, 8000 Aarhus C, Denmark.
| | - Marius Løssl Winther
- Department of Biology, Aarhus University, Ny Munkegade 114, Bldg. 1540, 8000 Aarhus C, Denmark
| | - Paul Vinu Salachan
- Department of Biology, Aarhus University, Ny Munkegade 114, Bldg. 1540, 8000 Aarhus C, Denmark
| | - Heidi Joan MacLean
- Department of Biology, Aarhus University, Ny Munkegade 114, Bldg. 1540, 8000 Aarhus C, Denmark
| |
Collapse
|
66
|
Lecheta MC, Awde DN, O’Leary TS, Unfried LN, Jacobs NA, Whitlock MH, McCabe E, Powers B, Bora K, Waters JS, Axen HJ, Frietze S, Lockwood BL, Teets NM, Cahan SH. Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in Drosophila melanogaster. Front Genet 2020; 11:658. [PMID: 32655626 PMCID: PMC7324644 DOI: 10.3389/fgene.2020.00658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown. Here, using the model species Drosophila melanogaster, we used a combination of Genome Wide Association mapping (GWAS) and transcriptomic profiling to characterize whether genes associated with thermal tolerance are primarily involved in dynamic stress responses or preparatory processes that influence physiological condition at the time of thermal stress. To test our hypotheses, we measured the critical thermal minimum (CTmin) and critical thermal maximum (CTmax) of 100 lines of the Drosophila Genetic Reference Panel (DGRP) and used GWAS to identify loci that explain variation in thermal limits. We observed greater variation in lower thermal limits, with CTmin ranging from 1.81 to 8.60°C, while CTmax ranged from 38.74 to 40.64°C. We identified 151 and 99 distinct genes associated with CTmin and CTmax, respectively, and there was strong support that these genes are involved in both dynamic responses to thermal stress and preparatory processes that increase thermal resistance. Many of the genes identified by GWAS were involved in the direct transcriptional response to thermal stress (72/151 for cold; 59/99 for heat), and overall GWAS candidates were more likely to be differentially expressed than other genes. Further, several GWAS candidates were regulatory genes that may participate in the regulation of stress responses, and gene ontologies related to development and morphogenesis were enriched, suggesting many of these genes influence thermal tolerance through effects on development and physiological status. Overall, our results suggest that thermal tolerance alleles can influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance.
Collapse
Affiliation(s)
- Melise C. Lecheta
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - David N. Awde
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Thomas S. O’Leary
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Laura N. Unfried
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Nicholas A. Jacobs
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Miles H. Whitlock
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Eleanor McCabe
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Beck Powers
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Katie Bora
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - James S. Waters
- Department of Biology, Providence College, Providence, RI, United States
| | - Heather J. Axen
- Department of Biology and Biomedical Sciences, Salve Regina College, Providence, RI, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Brent L. Lockwood
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Nicholas M. Teets
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sara H. Cahan
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
67
|
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 2020; 74:1437-1450. [PMID: 32463118 DOI: 10.1111/evo.14025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits-critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior-along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)-across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aditya Sriram
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| |
Collapse
|
68
|
Jezovit JA, Rooke R, Schneider J, Levine JD. Behavioral and environmental contributions to drosophilid social networks. Proc Natl Acad Sci U S A 2020; 117:11573-11583. [PMID: 32404421 PMCID: PMC7261129 DOI: 10.1073/pnas.1920642117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals interact with each other in species-specific reproducible patterns. These patterns of organization are captured by social network analysis, and social interaction networks (SINs) have been described for a wide variety of species including fish, insects, birds, and mammals. The aim of this study is to understand the evolution of social organization in Drosophila Using a comparative ecological, phylogenetic, and behavioral approach, the different properties of SINs formed by 20 drosophilids were compared. We investigate whether drosophilid network structures arise from common ancestry, a response to the species' past climate, other social behaviors, or a combination of these factors. This study shows that differences in past climate predicted the species' current SIN properties. The drosophilid phylogeny offered no value to predicting species' differences in SINs through phylogenetic signal tests. This suggests that group-level social behaviors in drosophilid species are shaped by divergent climates. However, we find that the social distance at which flies interact correlated with the drosophilid phylogeny, indicating that behavioral elements of SINs have remained largely unchanged in their evolutionary history. We find a significant correlation of leg length to social distance, outlining the interdependence of anatomy and complex social structures. Although SINs display a complex evolutionary relationship across drosophilids, this study suggests that the ecology, and not common ancestry, contributes to diversity in social structure in Drosophila.
Collapse
Affiliation(s)
- Jacob A Jezovit
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Rebecca Rooke
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jonathan Schneider
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
69
|
Leonard AM, Lancaster LT. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. BMC Evol Biol 2020; 20:47. [PMID: 32326878 PMCID: PMC7181507 DOI: 10.1186/s12862-020-1589-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background Many organisms are responding to climate change with dramatic range shifts, involving plastic and genetic changes to cope with novel climate regimes found at higher latitudes. Using experimental lineages of the seed beetle Callosobruchus maculatus, we simulated the initial phase of colonisation to progressively cooler and/or more variable conditions, to investigate how adaptation and phenotypic plasticity contribute to shifts in thermal tolerance during colonisation of novel climates. Results We show that heat and cold tolerance rapidly evolve during the initial stages of adaptation to progressively cooler and more variable climates. The evolved shift in cold tolerance is, however, associated with maladaptive plasticity under the novel conditions, resulting in a pattern of countergradient variation between the ancestral and novel, fluctuating thermal environment. In contrast, lineages exposed to progressively cooler, but constant, temperatures over several generations expressed only beneficial plasticity in cold tolerances and no evolved response. Conclusions We propose that thermal adaptation during a range expansion to novel, more variable climates found at high latitudes and elevations may typically involve genetic compensation arising from maladaptive plasticity in the initial stages of adaptation, and that this form of (countergradient) thermal adaptation may represent an opportunity for more rapid and labile evolutionary change in thermal tolerances than via classic genetic assimilation models for thermal tolerance evolution (i.e., selection on existing reaction norms). Moreover, countergradient variation in thermal tolerances may typically mask cryptic genetic variability for these traits, resulting in apparent evolutionary stasis in thermal traits.
Collapse
Affiliation(s)
- Aoife M Leonard
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Lesley T Lancaster
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
70
|
Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD. Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol Ecol 2020; 29:920-939. [PMID: 32031739 DOI: 10.1111/mec.15376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well-suited for studying local adaptation. Here, we analyzed genome-wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.
Collapse
Affiliation(s)
- Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Kennan J Oyen
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
71
|
Davis JS, Moyle LC. Constitutive and Plastic Gene Expression Variation Associated with Desiccation Resistance Differences in the Drosophila americana Species Group. Genes (Basel) 2020; 11:genes11020146. [PMID: 32019054 PMCID: PMC7073762 DOI: 10.3390/genes11020146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/02/2023] Open
Abstract
Stress response mechanisms are ubiquitous and important for adaptation to heterogenous environments and could be based on constitutive or plastic responses to environmental stressors. Here we quantify constitutive and plastic gene expression differences under ambient and desiccation stress treatments, in males and females of three species of Drosophila known to differ in desiccation resistance. Drosophila novamexicana survives desiccation trials significantly longer than the two subspecies of Drosophila americana, consistent with its natural species range in the desert southwest USA. We found that desiccation stress reduces global expression differences between species—likely because many general stress response mechanisms are shared among species—but that all species showed plastic expression changes at hundreds of loci during desiccation. Nonetheless, D. novamexicana had the fewest genes with significant plastic expression changes, despite having the highest desiccation resistance. Of the genes that were significantly differentially expressed between species—either within each treatment (>200 loci), constitutively regardless of treatment (36 loci), or with different species-specific plasticity (26 loci)—GO analysis did not find significant enrichment of any major gene pathways or broader functions associated with desiccation stress. Taken together, these data indicate that if gene expression changes contribute to differential desiccation resistance between species, these differences are likely shaped by a relatively small set of influential genes rather than broad genome-wide differentiation in stress response mechanisms. Finally, among the set of genes with the greatest between-species plasticity, we identified an interesting set of immune-response genes with consistent but opposing reaction norms between sexes, whose potential functional role in sex-specific mechanisms of desiccation resistance remains to be determined.
Collapse
|
72
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
73
|
Jass A, Yerushalmi GY, Davis HE, Donini A, MacMillan HA. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Aedes aegypti. ACTA ACUST UNITED AC 2019; 222:jeb.214056. [PMID: 31732503 DOI: 10.1242/jeb.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022]
Abstract
The mosquito Aedes aegypti is largely confined to tropical and subtropical regions, but its range has recently been spreading to colder climates. As insect biogeography is tied to environmental temperature, understanding the limits of A. aegypti thermal tolerance and their capacity for phenotypic plasticity is important in predicting the spread of this species. In this study, we report on the chill coma onset (CCO) and recovery time (CCRT), as well as low-temperature survival phenotypes of larvae and adults of A. aegypti that developed or were acclimated to 15°C (cold) or 25°C (warm). Cold acclimation did not affect CCO temperatures of larvae but substantially reduced CCO in adults. Temperature and the duration of exposure both affected CCRT, and cold acclimation strongly mitigated these effects and increased rates of survival following prolonged chilling. Female adults were far less likely to take a blood meal when cold acclimated, and exposing females to blood (without feeding) attenuated some of the beneficial effects of cold acclimation on CCRT. Lastly, larvae suffered from haemolymph hyperkalaemia when chilled, but cold acclimation attenuated the imbalance. Our results demonstrate that A. aegypti larvae and adults have the capacity to acclimate to low temperatures, and do so at least in part by better maintaining ion balance in the cold. This ability for cold acclimation may facilitate the spread of this species to higher latitudes, particularly in an era of climate change.
Collapse
Affiliation(s)
- Amanda Jass
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Hannah E Davis
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
74
|
Jin PY, Sun JT, Hoffmann A, Guo YF, Zhou JC, Zhu YX, Chen L, Hong XY. Phylogenetic signals in pest abundance and distribution range of spider mites. BMC Evol Biol 2019; 19:223. [PMID: 31805865 PMCID: PMC6896397 DOI: 10.1186/s12862-019-1548-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Background Attributes of pest species like host range are frequently reported as being evolutionarily constrained and showing phylogenetic signal. Because these attributes in turn could influence the abundance and impact of species, phylogenetic information could be useful in predicting the likely status of pests. In this study, we used regional (China) and global datasets to investigate phylogenetic patterns in occurrence patterns and host ranges of spider mites, which constitute a pest group of many cropping systems worldwide. Results We found significant phylogenetic signal in relative abundance and distribution range both at the regional and global scales. Relative abundance and range size of spider mites were positively correlated with host range, although these correlations became weaker after controlling for phylogeny. Conclusions The results suggest that pest impacts are evolutionarily constrained. Information that is easily obtainable – including the number of known hosts and phylogenetic position of the mites – could therefore be useful in predicting future pest risk of species.
Collapse
Affiliation(s)
- Peng-Yu Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yan-Fei Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jin-Cheng Zhou
- School of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
75
|
MacLean HJ, Overgaard J, Kristensen TN, Lyster C, Hessner L, Olsvig E, Sørensen JG. Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. J Therm Biol 2019; 86:102428. [PMID: 31789224 DOI: 10.1016/j.jtherbio.2019.102428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 11/27/2022]
Abstract
Ectotherms can use microclimatic variation and behavioral thermoregulation to cope with unfavorable environmental temperatures. However, relatively little is known about how and if thermoregulatory behavior is used across life stages in small ectothermic insects. Here we investigate differences between three specialized Drosophila species from temperate, tropical or desert habitats and one cosmopolitan species by estimating the preferred temperature (Tpref) and the breadth (Tbreadth) of the distribution of adults, adult egg-laying, and larvae in thermal gradients. We also assess the plasticity of thermal preference following developmental acclimation to three constant temperatures. For egg-laying and larvae, we observe significant species differences in preferred temperature but this is not predicted by thermal ecology of the species. We corroborated this with previous studies of other Drosophila species and found that Tpref for egg laying and larvae have no relationship with annual mean temperature of the species' natural habitat. While adults have the greatest mobility, they show the greater variation in preference compared to juveniles contradicting common assumptions. We found evidence of developmental thermal acclimation in adult egg-laying preferred temperature, Tpref increasing with acclimation temperature, and in the breadth of the temperature preference distributions, Tbreadth decreasing with increasing acclimation temperature. Together, these data provide a high resolution and comprehensive look at temperature preferences across life stages and in response to acclimation. Results suggest that thermal preference, particularly in the early life stages, is relatively conserved among species and unrelated to temperature at species origin. Measuring thermal preference, in addition to thermal performance, is essential for understanding how species have adapted/will adapt to their thermal environment.
Collapse
Affiliation(s)
- Heidi J MacLean
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark.
| | - Johannes Overgaard
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg E, Denmark
| | - Catrine Lyster
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Leander Hessner
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Esajas Olsvig
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Jesper G Sørensen
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| |
Collapse
|
76
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Arnal P, Coeur d'acier A, Favret C, Godefroid M, Qiao G, Jousselin E, Sanchez Meseguer A. The evolution of climate tolerance in conifer-feeding aphids in relation to their host's climatic niche. Ecol Evol 2019; 9:11657-11671. [PMID: 31695876 PMCID: PMC6822038 DOI: 10.1002/ece3.5652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 01/09/2023] Open
Abstract
Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species-level distribution data for the conifer-feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host-specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host-specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.
Collapse
Affiliation(s)
- Pierre Arnal
- CBGPINRACIRADIRDMontpellier SupAgroUniv MontpellierMontpellierFrance
- Institut Systématique Evolution Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRSEPHESorbonne UniversitéParisFrance
| | | | - Colin Favret
- Department of Biological SciencesBiodiversity CentreUniversity of MontrealMontrealQCCanada
| | - Martin Godefroid
- CBGPINRACIRADIRDMontpellier SupAgroUniv MontpellierMontpellierFrance
| | - Ge‐Xia Qiao
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | | | - Andrea Sanchez Meseguer
- CBGPINRACIRADIRDMontpellier SupAgroUniv MontpellierMontpellierFrance
- CNRSUMR 5554 Institut des Sciences de l'Evolution (ISEM)Univ MontpellierMontpellierFrance
| |
Collapse
|
78
|
Llewelyn J, Macdonald SL, Moritz C, Martins F, Hatcher A, Phillips BL. Adjusting to climate: Acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integr Zool 2019; 13:411-427. [PMID: 29316349 DOI: 10.1111/1749-4877.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialization means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in 7 physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (i) recently field-collected animals; (ii) the same animals following laboratory acclimation; and (iii) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little to no effect on most traits. These results suggest that, while specialized, tropical ectotherms may be capable of rapid shifts in climate-relevant traits.
Collapse
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Stewart L Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Felipe Martins
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia
| | - Ben L Phillips
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
79
|
Hoffmann AA, Sgrò CM. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed? Integr Zool 2019; 13:355-371. [PMID: 29168624 PMCID: PMC6099205 DOI: 10.1111/1749-4877.12297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Researchers and practitioners are increasingly using comparative assessments of critical thermal and physiological limits to assess the relative vulnerability of ectothermic species to extreme thermal and aridity conditions occurring under climate change. In most assessments of vulnerability, critical limits are compared across taxa exposed to different environmental and developmental conditions. However, many aspects of vulnerability should ideally be compared when species are exposed to the same environmental conditions, allowing a partitioning of sources of variation such as used in quantitative genetics. This is particularly important when assessing the importance of different types of plasticity to critical limits, using phylogenetic analyses to test for evolutionary constraints, isolating genetic variants that contribute to limits, characterizing evolutionary interactions among traits limiting adaptive responses, and when assessing the role of cross generation effects. However, vulnerability assessments based on critical thermal/physiological limits also need to take place within a context that is relevant to field conditions, which is not easily provided under controlled environmental conditions where behavior, microhabitat, stress exposure rates and other factors will differ from field conditions. There are ways of reconciling these requirements, such as by taking organisms from controlled environments and then testing their performance under field conditions (or vice versa). While comparisons under controlled environments are challenging for many taxa, assessments of critical thermal limits and vulnerability will always be incomplete unless environmental effects within and across generations are considered, and where the ecological relevance of assays measuring critical limits can be established.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
80
|
MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180548. [PMID: 31203763 DOI: 10.1098/rstb.2018.0548] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The thermal biology of ectotherms is often used to infer species' responses to changes in temperature. It is often proposed that temperate species are more cold-tolerant, less heat-tolerant, more plastic, have broader thermal performance curves (TPCs) and lower optimal temperatures when compared to tropical species. However, relatively little empirical work has provided support for this using large interspecific studies. In the present study, we measure thermal tolerance limits and thermal performance in 22 species of Drosophila that developed under common conditions. Specifically, we measure thermal tolerance (CTmin and CTmax) as well as the fitness components viability, developmental speed and fecundity at seven temperatures to construct TPCs for each of these species. For 10 of the species, we also measure thermal tolerance and thermal performance following developmental acclimation to three additional temperatures. Using these data, we test several fundamental hypotheses about the evolution and plasticity of heat and cold resistance and thermal performance. We find that cold tolerance (CTmin) varied between the species according to the environmental temperature in the habitat from which they originated. These data support the idea that the evolution of cold tolerance has allowed species to persist in colder environments. However, contrary to expectation, we find that optimal temperature ( Topt) and the breadth of thermal performance ( Tbreadth) are similar in temperate, widespread and tropical species and we also find that the plasticity of TPCs was constrained. We suggest that the temperature range for optimal thermal performance is either fixed or under selection by the more similar temperatures that prevail during growing seasons. As a consequence, we find that Topt and Tbreadth are of limited value for predicting past, present and future distributions of species. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Collapse
Affiliation(s)
- Heidi J MacLean
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Jesper G Sørensen
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Torsten N Kristensen
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark.,2 Department of Chemistry and Bioscience, Aalborg University , 9220 Aalborg , Denmark
| | - Volker Loeschcke
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Kristian Beedholm
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| | - Vanessa Kellermann
- 3 School of Biological Sciences, Monash University , Melbourne 3800 , Australia
| | - Johannes Overgaard
- 1 Department of Bioscience, Aarhus University , Ny Munkegade 116, DK-8000 Aarhus , Denmark
| |
Collapse
|
81
|
Castañeda LE, Romero‐Soriano V, Mesas A, Roff DA, Santos M. Evolutionary potential of thermal preference and heat tolerance in
Drosophila subobscura. J Evol Biol 2019; 32:818-824. [DOI: 10.1111/jeb.13483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Luis E. Castañeda
- Programa de Genética Humana Facultad de Medicina Instituto de Ciencias Biomédicas Universidad de Chile Santiago Chile
| | | | - Andrés Mesas
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Valdivia Chile
| | - Derek A. Roff
- Department of Evolution, Ecology and Organismal Biology University of California Riverside California
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE) Departament de Genètica i de Microbiologia Universitat Autònoma de Barcelona Barcelona Spain
| |
Collapse
|
82
|
Hjelmen CE, Garrett MA, Holmes VR, Mynes M, Piron E, Johnston JS. Genome Size Evolution within and between the Sexes. J Hered 2019; 110:219-228. [PMID: 30476187 DOI: 10.1093/jhered/esy063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 02/02/2023] Open
Abstract
Genome sizes are known to vary between closely related species, but the patterns behind this variation have yet to be fully understood. Although this variation has been evaluated between species and within sexes, unknown is the extent to which this variation is driven by differentiation in sex chromosomes. To address this longstanding question, we examine the mode and tempo of genome size evolution for a total of 87 species of Drosophilidae, estimating and updating male genome size values for 44 of these species. We compare the evolution of genome size within each sex to the evolution of the differences between the sexes. Utilizing comparative phylogenetic methods, we find that male and female genome size evolution is largely a neutral process, reflective of phylogenetic relatedness between species, which supports the newly proposed accordion model for genome size change. When similarly analyzed, the difference between the sexes due to heteromorphic sex chromosomes is a dynamic process; the male-female genome size difference increases with time with or without known neo-Y events or complete loss of the Y. Observed instances of rapid change match theoretical expectations and known neo-Y and Y loss events in individual species.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Entomology, Texas A&M University, College Station, TX
| | - Margaret A Garrett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - V Renee Holmes
- Department of Entomology, Texas A&M University, College Station, TX
| | - Melissa Mynes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Elizabeth Piron
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | | |
Collapse
|
83
|
Niche Estimation Above and Below the Species Level. Trends Ecol Evol 2019; 34:260-273. [DOI: 10.1016/j.tree.2018.10.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
|
84
|
Koštál V, Grgac R, Korbelová J. Delayed mortality and sublethal effects of cold stress in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2019; 113:24-32. [PMID: 30653982 DOI: 10.1016/j.jinsphys.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Analysis of sublethal responses in cold-stressed insects can provide important information about fitness costs and a better understanding of the physiological mechanisms used to prevent and/or to cope with cold injury. Yet, such responses are understudied and often neglected in the literature. Here, we analyzed the effects of cold stress applied to larvae on the mortality/survival and fitness parameters of survivor adults of the vinegar fly, Drosophila melanogaster. Third instar larvae (either cold-sensitive or cold-acclimated) were exposed to either supercooling or freezing stress, both at -5 °C. A whole array of sublethal effects were observed, from mortality that occurs with some delay after cold stress, through delayed development to the pupal stage, to shortened life-span of the adult, and decreased female fecundity. Taking the sublethal effects into account improves the ecological meaningfulness of cold hardiness assay outcomes. For instance, we observed that although more than 80% of cold-acclimated larvae survive freezing to -5 °C, less than 10% survive until adulthood, and survivor females exhibit more than 50% reduction in their fecundity relative to controls. Female fecundity was positively correlated with dry mass and negatively correlated with total protein and glycogen stores. Hence, these parameters may serve as good predictors of survivor adult female fecundity. Further, we provide the concept of a two-component defense system, which (based on analysis of sublethal effects on fitness parameters) distinguishes between physiological mechanisms that help insects to resist (reduce or avoid) or tolerate (survive or repair) injuries linked to cold stress.
Collapse
Affiliation(s)
- Vladimír Koštál
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Robert Grgac
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | |
Collapse
|
85
|
Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci 2019. [PMID: 29540521 DOI: 10.1098/rspb.2018.0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparative analyses of ectotherm susceptibility to climate change often focus on thermal extremes, yet responses to aridity may be equally important. Here we focus on plasticity in desiccation resistance, a key trait shaping distributions of Drosophila species and other small ectotherms. We examined the extent to which 32 Drosophila species, varying in their distribution, could increase their desiccation resistance via phenotypic plasticity involving hardening, linking these responses to environment, phylogeny and basal resistance. We found no evidence to support the seasonality hypothesis; species with higher hardening plasticity did not occupy environments with higher and more seasonal precipitation. As basal resistance increased, the capacity of species to respond via phenotypic plasticity decreased, suggesting plastic responses involving hardening may be constrained by basal resistance. Trade-offs between basal desiccation resistance and plasticity were not universal across the phylogeny and tended to occur within specific clades. Phylogeny, environment and trade-offs all helped to explain variation in plasticity for desiccation resistance but in complex ways. These findings suggest some species have the ability to counter dry periods through plastic responses, whereas others do not; and this ability will depend to some extent on a species' placement within a phylogeny, along with its basal level of resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
86
|
Rane RV, Pearce SL, Li F, Coppin C, Schiffer M, Shirriffs J, Sgrò CM, Griffin PC, Zhang G, Lee SF, Hoffmann AA, Oakeshott JG. Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics 2019; 20:52. [PMID: 30651071 PMCID: PMC6335815 DOI: 10.1186/s12864-018-5413-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species. RESULTS We find disproportionately high rates of gene gains in internal branches in the species' phylogeny where cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the existence of widespread regulatory as well as structural changes in the species' differing adaptations. Gene Ontology terms related to metabolism were enriched in the differentially expressed genes in the resistant species while terms related to stress response were over-represented in the sensitive one. CONCLUSION Adaptations to new cactus hosts and hot desiccating environments were associated with periods of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change.
Collapse
Affiliation(s)
- Rahul V. Rane
- CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | | | - Fang Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Chris Coppin
- CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT 2601 Australia
| | - Michele Schiffer
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | - Jennifer Shirriffs
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, 3800 Australia
| | - Philippa C. Griffin
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | - Goujie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, København, Denmark
| | - Siu F. Lee
- CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, 3010 Australia
| | | |
Collapse
|
87
|
Muñoz MM, Bodensteiner BL. Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution. Integr Org Biol 2019; 1:oby002. [PMID: 33791511 PMCID: PMC7671085 DOI: 10.1093/iob/oby002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution.
Collapse
Affiliation(s)
- M M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| | - B L Bodensteiner
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
88
|
Kauranen H, Kinnunen J, Hiillos AL, Lankinen P, Hopkins D, Wiberg RAW, Ritchie MG, Hoikkala A. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J Exp Biol 2019; 222:jeb.205831. [DOI: 10.1242/jeb.205831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, but how the multiple changes involved in this and other photoperiodically regulated traits are interrelated is not well understood. We performed quasinatural selection on reproduction under short photoperiods in a northern fly species, Drosophila montana, to trace the effects of photoperiodic selection on traits regulated by the photoperiodic timer and / or by a circadian clock system. Selection changed several traits associated with reproductive diapause, including the critical day length for diapause (CDL), the frequency of diapausing females under photoperiods that deviate from daily 24 h cycles and cold tolerance, towards the phenotypes typical of lower latitudes. However, selection had no effect on the period of free-running locomotor activity rhythm regulated by the circadian clock in fly brain. At a genomic level, selection induced extensive divergence between the selection and control line replicates in 16 gene clusters involved in signal transduction, membrane properties, immunologlobulins and development. These changes resembled ones detected between latitudinally divergent D. montana populations in the wild and involved SNP divergence associated with several genes linked with diapause induction. Overall, our study shows that photoperiodic selection for reproduction under short photoperiods affects diapause-associated traits without disrupting the central clock network generating circadian rhythms in fly locomor activity.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Lankinen
- Department of Biology, University of Oulu, Oulu, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R. Axel W. Wiberg
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Michael G. Ritchie
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
89
|
Lubawy J, Daburon V, Chowański S, Słocińska M, Colinet H. Thermal stress causes DNA damage and mortality in a tropical insect. J Exp Biol 2019; 222:jeb.213744. [DOI: 10.1242/jeb.213744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Cold tolerance is considered an important factor determining geographic distribution of insects. We've previously shown that despite tropical origin, cockroach Gromphadorinha coquereliana is capable of surviving exposures to cold. However, freezing tolerance of this species had not yet been examined. Low temperature is known to alter membranes integrity in insects but whether chilling or freezing compromises DNA integrity remains a matter of speculation. In the present study, we subjected the G. coquereliana adults to freezing to determine their supercooling point (SCP) and evaluated whether the cockroaches were capable of surviving partial and complete freezing. Next, we conducted single cell gel electrophoresis assay (SCGE) to determine whether heat, cold and freezing altered haemocytes DNA integrity. The SCP of this species was high and around -4.76°C, which is within typical range of freezing-tolerant species. Most cockroaches survived one day after partial ice formation (20% mortality), but died progressively in the next few days after cold stress (70% mortality after 4 days). One day after complete freezing, most insects died (70% mortality), and after 4 days, 90% of them had succumbed. The SCGE assays showed substantial level of DNA damage in haemocytes. When cockroaches were heat-stressed, the level of DNA damage was similar to that observed in the freezing treatment; though all heat-stressed insects survived. The study shows that G. coquereliana can surprisingly be considered as moderately freezing-tolerant species, and for first time that extreme low temperature stress can affect DNA integrity, suggesting that this cockroach may possess an efficient DNA repair system.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | | | - Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| |
Collapse
|
90
|
Ørsted IV, Ørsted M. Species distribution models of the Spotted Wing
Drosophila
(
Drosophila suzukii
, Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13285] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iben Vejrum Ørsted
- Section of Biology and Environmental ScienceDepartment of Chemistry and BioscienceAalborg University Aalborg E Denmark
| | - Michael Ørsted
- Section of Biology and Environmental ScienceDepartment of Chemistry and BioscienceAalborg University Aalborg E Denmark
| |
Collapse
|
91
|
Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). INSECTS 2018; 9:insects9040144. [PMID: 30347706 PMCID: PMC6316201 DOI: 10.3390/insects9040144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population’s origin, as the best predictor—winter minimum temperature—explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species.
Collapse
|
92
|
MacMillan HA, Nazal B, Wali S, Yerushalmi GY, Misyura L, Donini A, Paluzzi JP. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. ACTA ACUST UNITED AC 2018; 221:jeb.185884. [PMID: 30104306 DOI: 10.1242/jeb.185884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
For insects, chilling injuries that occur in the absence of freezing are often related to a systemic loss of ion and water balance that leads to extracellular hyperkalemia, cell depolarization and the triggering of apoptotic signalling cascades. The ability of insect ionoregulatory organs (e.g. the Malpighian tubules) to maintain ion balance in the cold has been linked to improved chill tolerance, and many neuroendocrine factors are known to influence ion transport rates of these organs. Injection of micromolar doses of CAPA (an insect neuropeptide) have been previously demonstrated to improve Drosophila cold tolerance, but the mechanisms through which it impacts chill tolerance are unclear, and low doses of CAPA have been previously demonstrated to cause anti-diuresis in insects, including dipterans. Here, we provide evidence that low (femtomolar) and high (micromolar) doses of CAPA impair and improve chill tolerance, respectively, via two different effects on Malpighian tubule ion and water transport. While low doses of CAPA are anti-diuretic, reduce tubule K+ clearance rates and reduce chill tolerance, high doses facilitate K+ clearance from the haemolymph and increase chill tolerance. By quantifying CAPA peptide levels in the central nervous system, we estimated the maximum achievable hormonal titres of CAPA and found further evidence that CAPA may function as an anti-diuretic hormone in Drosophila melanogaster We provide the first evidence of a neuropeptide that can negatively affect cold tolerance in an insect and further evidence of CAPA functioning as an anti-diuretic peptide in this ubiquitous insect model.
Collapse
Affiliation(s)
| | - Basma Nazal
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Sahr Wali
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Lidiya Misyura
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | |
Collapse
|
93
|
Roberts KE, Hadfield JD, Sharma MD, Longdon B. Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog 2018; 14:e1007185. [PMID: 30339695 PMCID: PMC6209381 DOI: 10.1371/journal.ppat.1007185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Host shifts-where a pathogen jumps between different host species-are an important source of emerging infectious disease. With on-going climate change there is an increasing need to understand the effect changes in temperature may have on emerging infectious disease. We investigated whether species' susceptibilities change with temperature and ask if susceptibility is greatest at different temperatures in different species. We infected 45 species of Drosophilidae with an RNA virus and measured how viral load changes with temperature. We found the host phylogeny explained a large proportion of the variation in viral load at each temperature, with strong phylogenetic correlations between viral loads across temperature. The variance in viral load increased with temperature, while the mean viral load did not. This suggests that as temperature increases the most susceptible species become more susceptible, and the least susceptible less so. We found no significant relationship between a species' susceptibility across temperatures, and proxies for thermal optima (critical thermal maximum and minimum or basal metabolic rate). These results suggest that whilst the rank order of species susceptibilities may remain the same with changes in temperature, some species may become more susceptible to a novel pathogen, and others less so.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Manmohan D. Sharma
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Ben Longdon
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
94
|
Kristensen TN, Ketola T, Kronholm I. Adaptation to environmental stress at different timescales. Ann N Y Acad Sci 2018; 1476:5-22. [PMID: 30259990 DOI: 10.1111/nyas.13974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022]
Abstract
Environments are changing rapidly, and to cope with these changes, organisms have to adapt. Adaptation can take many shapes and occur at different speeds, depending on the type of response, the trait, the population, and the environmental conditions. The biodiversity crisis that we are currently facing illustrates that numerous species and populations are not capable of adapting with sufficient speed to ongoing environmental changes. Here, we discuss current knowledge on the ability of animals and plants to adapt to environmental stress on different timescales, mainly focusing on thermal stress and ectotherms. We discuss within-generation responses that can be fast and induced within minutes or hours, evolutionary adaptations that are often slow and take several generations, and mechanisms that lay somewhere in between and that include epigenetic transgenerational effects. To understand and predict the impacts of environmental change and stress on biodiversity, we suggest that future studies should (1) have an increased focus on understanding the type and speed of responses to fast environmental changes; (2) focus on the importance of environmental fluctuations and the predictability of environmental conditions on adaptive capabilities, preferably in field studies encompassing several fitness components; and (3) look at ecosystem responses to environmental stress and their resilience when disturbed.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department of Bioscience, University of Aarhus, Aarhus, Denmark
| | - Tarmo Ketola
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
95
|
Cold exposure causes cell death by depolarization-mediated Ca 2+ overload in a chill-susceptible insect. Proc Natl Acad Sci U S A 2018; 115:E9737-E9744. [PMID: 30254178 DOI: 10.1073/pnas.1813532115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cold tolerance of insects is arguably among the most important traits defining their geographical distribution. Even so, very little is known regarding the causes of cold injury in this species-rich group. In many insects it has been observed that cold injury coincides with a cellular depolarization caused by hypothermia and hyperkalemia that develop during chronic cold exposure. However, prior studies have been unable to determine if cold injury is caused by direct effects of hypothermia, by toxic effects of hyperkalemia, or by the depolarization that is associated with these perturbations. Here we use a fluorescent DNA-staining method to estimate cell viability of muscle and hindgut tissue from Locusta migratoria and show that the cellular injury is independent of the direct effects of hypothermia or toxic effects of hyperkalemia. Instead, we show that chill injury develops due to the associated cellular depolarization. We further hypothesized that the depolarization-induced injury was caused by opening of voltage-sensitive Ca2+ channels, causing a Ca2+ overload that triggers apoptotic/necrotic pathways. In accordance with this hypothesis, we show that hyperkalemic depolarization causes a marked increase in intracellular Ca2+ levels. Furthermore, using pharmacological manipulation of intra- and extracellular Ca2+ concentrations as well as Ca2+ channel conductance, we demonstrate that injury is prevented if transmembrane Ca2+ flux is prevented by removing extracellular Ca2+ or blocking Ca2+ influx. Together these findings demonstrate a causal relationship between cold-induced hyperkalemia, depolarization, and the development of chill injury through Ca2+-mediated necrosis/apoptosis.
Collapse
|
96
|
Phenotypic Plasticity Promotes Overwintering Survival in A Globally Invasive Crop Pest, Drosophila suzukii. INSECTS 2018; 9:insects9030105. [PMID: 30134571 PMCID: PMC6164111 DOI: 10.3390/insects9030105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 11/17/2022]
Abstract
Spotted wing drosophila, Drosophila suzukii Matsumura, is a major pest of small fruit worldwide in temperate and subtropical growing regions. In Northern climates, D. suzukii likely overwinters locally under leaf litter and snow pack, but our understanding of the factors affecting thermal susceptibility is limited. While previous investigations of thermal susceptibility in this species have employed conventional static acclimation protocols, we aimed to determine whether gradual cooling, or dynamic acclimation, may extend the limits of known thermal tolerance by more closely approximating naturally occurring shifts in temperature. First, we assessed survival among adult and pupal D. suzukii using static acclimation. Then, we re-assessed survival using a novel dynamic acclimation method. We found that while static acclimation was sufficient to induce cold tolerance, dynamic acclimation significantly improved survival at temperatures as low as -7.5 °C. Following static acclimation, the lower lethal limit of adult D. suzukii was -1.1 °C in winter morphotype (WM) adults compared to 1.7 °C in non-acclimated summer morphotype (SM) adults. Dynamic acclimation reduced the lower limit to -5 °C in SM flies. At the end of our study 50% of WM flies survived 72 h at -7.5 °C. Below 0 °C pupal survival declined significantly regardless of acclimation procedure. However, pupal acclimation improved survival outcomes significantly compared to non-acclimated pupae, suggesting that while juvenile diapause is unlikely, cold hardening likely benefits those flies which may develop into the overwintering WM population. These data suggest that the degree of cold hardening is proportional to the thermal environment, a finding previously unrecognized in this species. Given the economic impact of this pest, these data may have important implications for offseason population monitoring and management. We discuss how phenotypic plasticity may drive geographical range expansion, and the impact of climate change on the spread of this species.
Collapse
|
97
|
Everman ER, Freda PJ, Brown M, Schieferecke AJ, Ragland GJ, Morgan TJ. Ovary Development and Cold Tolerance of the Invasive Pest Drosophila suzukii (Matsumura) in the Central Plains of Kansas, United States. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1013-1023. [PMID: 29846535 DOI: 10.1093/ee/nvy074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 05/27/2023]
Abstract
Environmental challenges presented by temperature variation can be overcome through phenotypic plasticity in small invasive ectotherms. We tested the effect of thermal exposure to 21, 18, and 11°C throughout the whole life cycle of individuals, thermal exposure of adults reared at 25°C to 15 and 11°C for a 21-d period, and long (14:10 hr) and short (10:14 hr) photoperiod on ovary size and development in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) cultured from a recently established population in Topeka, Kansas (United States). Examination of the response to temperature and photoperiod variation in this central plains population provides insight into the role of phenotypic plasticity in a climate that is warmer than regions in North America where D. suzukii was initially established. We found both low temperature and short photoperiod resulted in reduced ovary size and level of development. In particular, reduced ovary development was observed following exposure to 15°C, indicating that ovary development in females from the central plains population is more sensitive to lower temperature compared with populations examined from the northern United States and southern Canada. We also provide evidence that D. suzukii reared at 25°C are capable of short-term hardening when exposed to -6°C following 4°C acclimation, contrary to previous reports indicating flies reared at warm temperatures do not rapidly-cold harden. Our study highlights the central role of phenotypic plasticity in response to winter-like laboratory conditions and provides an important geographic comparison to previously published assessments of ovary development and short-term hardening survival response for D. suzukii collected in cooler climates.
Collapse
Affiliation(s)
- E R Everman
- Division of Biology, Kansas State University, Manhattan, KS
| | - P J Freda
- Department of Entomology, Kansas State University, Manhattan, KS
| | - M Brown
- Division of Biology, Kansas State University, Manhattan, KS
| | | | - G J Ragland
- Department of Integrative Biology, University of Colorado, Denver, CO
| | - T J Morgan
- Division of Biology, Kansas State University, Manhattan, KS
| |
Collapse
|
98
|
Oliveira SR, Silva CAD, Carvalho TS, Costa LAA. Biology of Corythucha gossypii Fabricius, 1794 (Hemiptera: Tingidae) in Ricinus communis at different temperatures and thermal requirements. BRAZ J BIOL 2018; 79:278-285. [PMID: 30088527 DOI: 10.1590/1519-6984.180501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022] Open
Abstract
We studied the biology of Corythucha gossypii in Ricinus communis under different temperatures in climatic chambers adjusted at 20, 23, 25, and 28 °C, 60 ± 10% relative humidity, and a 12-h photoperiod. The development period and viability of eggs, the development period and survival rate of nymphs, and egg-adult cycle of C. gossypii as well as the adult longevity and fecundity were estimated. The thermal requirements (K) and temperature-base (Tb) were estimated for each of the immature stages and for the eggs-adults period. The duration of the eggs and nymphs phases and the egg-adult cycle of the C. gossypii on castor bean leaves at 20-28 °C were 7.6-17 days, 10.2-27.5 days, and 16.9-44.5 days, respectively. The lower temperature inhibited the oviposition of C. gossypii, whereas the higher temperatures were most favorable for its development. The municipalities of the Bahia state of Brumado, Irecê, Itaberaba, Jacobina, and Senhor do Bonfim were estimated to have a high potential for the population growth of C. gossypii. However, a greater number of generations per year of C. gossypii were observed in the municipalities of Brumado and Itaberaba.
Collapse
Affiliation(s)
- S R Oliveira
- Programa de Pós-graduação em Ciências Agrárias, Universidade Estadual da Paraíba - UEPB, Rua Domitila Cabral de Castro, s/n, Bairro Universitário (Bodocongó), CEP 58429-570, Campina Grande, PB, Brasil
| | - C A D Silva
- Programa de Pós-graduação em Ciências Agrárias, Universidade Estadual da Paraíba - UEPB, Rua Domitila Cabral de Castro, s/n, Bairro Universitário (Bodocongó), CEP 58429-570, Campina Grande, PB, Brasil.,Laboratório de Entomologia, Centro Nacional de Pesquisa de Algodão, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Rua Osvaldo Cruz, 1143, Centenário, CEP 58107-720, Campina Grande, PB, Brasil
| | - T S Carvalho
- Programa de Pós-graduação em Ciências Agrárias, Universidade Estadual da Paraíba - UEPB, Rua Domitila Cabral de Castro, s/n, Bairro Universitário (Bodocongó), CEP 58429-570, Campina Grande, PB, Brasil
| | - L A A Costa
- Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro - UFRJ, Quinta da Boa Vista, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
99
|
Parker DJ, Wiberg RAW, Trivedi U, Tyukmaeva VI, Gharbi K, Butlin RK, Hoikkala A, Kankare M, Ritchie MG. Inter and Intraspecific Genomic Divergence in Drosophila montana Shows Evidence for Cold Adaptation. Genome Biol Evol 2018; 10:2086-2101. [PMID: 30010752 PMCID: PMC6107330 DOI: 10.1093/gbe/evy147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/25/2022] Open
Abstract
The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Biophore, Switzerland
| | - R Axel W Wiberg
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, The University of Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Michael G Ritchie
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| |
Collapse
|
100
|
Kellermann V, Sgrò CM. Evidence for lower plasticity in
CT
MAX
at warmer developmental temperatures. J Evol Biol 2018; 31:1300-1312. [DOI: 10.1111/jeb.13303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences Monash University Clayton Melbourne Vic. Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Melbourne Vic. Australia
| |
Collapse
|