51
|
Saha M, Singha S, Chakraborty M, Mazumdar S, Kumar S, Karmakar P, Das S. Characterization of a MnII complex of Alizarin suggests attributes explaining a superior anticancer activity: A comparison with anthracycline drugs. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
53
|
Pandey RP, Bashyal P, Parajuli P, Yamaguchi T, Sohng JK. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification. Org Lett 2019; 21:8058-8064. [PMID: 31550168 DOI: 10.1021/acs.orglett.9b03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two promiscuous Bacillus licheniformis glycosyltransferases, YdhE and YojK, exhibited prominent stereospecific but nonregiospecific glycosylation activity of 20 different classes of 59 structurally different natural and non-natural products. Both enzymes transferred various sugars at three nucleophilic groups (OH, NH2, SH) of diverse compounds to produce O-, N-, and S-glycosides. The enzymes also displayed a catalytic reversibility potential for a one-pot transglycosylation, thus bestowing a cost-effective application in biosynthesis of glycodiversified natural products in drug discovery.
Collapse
Affiliation(s)
| | | | | | - Tokutaro Yamaguchi
- Genome-based BioIT Convergence Institute , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | | |
Collapse
|
54
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
55
|
Genc HN. Enantioselective Michael reaction of anthrone catalyzed by chiral tetraoxacalix[2]arene[2]triazine derivatives. RSC Adv 2019; 9:21063-21069. [PMID: 35515554 PMCID: PMC9065986 DOI: 10.1039/c9ra03029h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023] Open
Abstract
A highly enantioselective Michael addition reaction of anthrone with nitroalkenes by chiral tetraoxacalix[2]arene[2]triazine catalysts was investigated as a novel topic. The stereoselective conversion progressed smoothly by employing 10 mol% of the catalyst and afforded the corresponding Michael adducts with acceptable to high enantioselectivities (up to 97% ee) and very high yields (up to 96%).
Collapse
Affiliation(s)
- Hayriye Nevin Genc
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University Konya 42090 Turkey +90 332 3238225 +90 332 3238220/5534
| |
Collapse
|
56
|
Panduwawala TD, Iqbal S, Thompson AL, Genov M, Pretsch A, Pretsch D, Liu S, Ebright RH, Howells A, Maxwell A, Moloney MG. Functionalised bicyclic tetramates derived from cysteine as antibacterial agents. Org Biomol Chem 2019; 17:5615-5632. [PMID: 31120090 PMCID: PMC6686852 DOI: 10.1039/c9ob01076a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Routes to bicyclic tetramates derived from cysteine permitting ready incorporation of functionality at two different points around the periphery of a heterocyclic skeleton are reported. This has enabled the identification of systems active against Gram-positive bacteria, some of which show gyrase and RNA polymerase inhibitory activity. In particular, tetramates substituted with glycosyl side chains, chosen to impart polarity and aqueous solubility, show high antibacterial activity coupled with modest gyrase/polymerase activity in two cases. An analysis of physicochemical properties indicates that the antibacterially active tetramates generally occupy physicochemical space with MW of 300-600, clog D7.4 of -2.5 to 4 and rel. PSA of 11-22%. This work demonstrates that biologically active 3D libraries are readily available by manipulation of a tetramate skeleton.
Collapse
Affiliation(s)
- Tharindi D Panduwawala
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo. Metabolites 2019; 9:metabo9040069. [PMID: 30965644 PMCID: PMC6523420 DOI: 10.3390/metabo9040069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Alteration in the number and composition of intestinal microbiota affects the metabolism of several xenobiotics. Gastrodin, isolated from Gastrodia elata, is prone to be hydrolyzed by intestinal microbiota. In the present study, the role of intestinal microbiota in gastrodin metabolism was investigated in vitro and in vivo. Gastrodin was incubated in an anaerobic condition with intestinal contents prepared from vehicle- and antibiotics-treated rats and the disappearance of gastrodin and formation of 4-hydroxybenzyl alcohol (4-HBA) was measured by liquid chromatography coupled to mass spectroscopy (LC-MS/MS). The results showed that almost all gastrodin incubated with control intestinal contents was metabolized to its aglycone in time- and concentration-dependent manners. In contrast, much less formation of 4-HBA was detected in intestinal contents from antibiotics-treated rats. Subsequently, in vivo pharmacokinetic study revealed that the antibiotic pretreatment of rats significantly affected the metabolism of gastrodin to 4-HBA. When administered orally, gastrodin was rapidly absorbed rapidly into plasma, metabolized to 4-HBA, and disappeared from the body within six hours. Interestingly, the pharmacokinetic parameters of 4-HBA were changed remarkably in antibiotics-treated rats, compared to control rats. The results clearly indicated that the antibiotics treatment of rats suppressed the ability of intestinal microbiota to metabolize gastrodin to 4-HBA and that, thereby, the pharmacodynamic action was significantly modulated.
Collapse
|
58
|
Cannone Z, Shaqra AM, Lorenc C, Henowitz L, Keshipeddy S, Robinson VL, Zweifach A, Wright D, Peczuh MW. Post-Glycosylation Diversification (PGD): An Approach for Assembling Collections of Glycosylated Small Molecules. ACS COMBINATORIAL SCIENCE 2019; 21:192-197. [PMID: 30607941 DOI: 10.1021/acscombsci.8b00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many small molecule natural products with antibiotic and antiproliferative activity are adorned with a carbohydrate residue as part of their molecular structure. The carbohydrate moiety can act to mediate key interactions with the target, attenuate physicochemical properties, or both. Facile incorporation of a carbohydrate group on de novo small molecules would enable these valuable properties to be leveraged in the evaluation of focused compound libraries. While there is no universal way to incorporate a sugar on small molecule libraries, techniques such as glycorandomization and neoglycorandomization have made signification headway toward this goal. Here, we report a new approach for the synthesis of glycosylated small molecule libraries. It puts the glycosylation early in the synthesis of library compounds. Functionalized aglycones subsequently participate in chemoselective diversification reactions distal to the carbohydrate. As a proof-of-concept, we prepared several desosaminyl glycosides from only a few starting glycosides, using click cycloadditions, acylations, and Suzuki couplings as diversification reactions. New compounds were then characterized for their inhibition of bacterial protein translation, bacterial growth, and in a T-cell activation assay.
Collapse
Affiliation(s)
- Zachary Cannone
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Ala M. Shaqra
- Department of Molecular & Cellular Biology, University of Connecticut, 91 N. Eagleville Road, U3125, Storrs, Connecticut 06269, United States
| | - Chris Lorenc
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| | - Liza Henowitz
- Department of Molecular & Cellular Biology, University of Connecticut, 91 N. Eagleville Road, U3125, Storrs, Connecticut 06269, United States
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, 69 N.
Eagleville Road U3092, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Victoria L. Robinson
- Department of Molecular & Cellular Biology, University of Connecticut, 91 N. Eagleville Road, U3125, Storrs, Connecticut 06269, United States
| | - Adam Zweifach
- Department of Molecular & Cellular Biology, University of Connecticut, 91 N. Eagleville Road, U3125, Storrs, Connecticut 06269, United States
| | - Dennis Wright
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, Connecticut 06269, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, 69 N.
Eagleville Road U3092, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, Connecticut 06269, United States
| |
Collapse
|
59
|
Goitia H, Quispe P, Naso LG, Martínez VR, Rey M, Rizzi AC, Ferrer EG, Williams PAM. Interactions of rutin with the oxidovanadium(iv) cation. Anticancer improvement effects of glycosylated flavonoids. NEW J CHEM 2019. [DOI: 10.1039/c9nj01039d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports the biological evaluation of the new complex Na2[VO(rut)(OH)2]·5H2O (rut = rutin, a glycosylated flavonoid).
Collapse
Affiliation(s)
- Helen Goitia
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP)
- La Plata
- Argentina
| | - Patricia Quispe
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP)
- La Plata
- Argentina
| | - Luciana G. Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP)
- La Plata
- Argentina
| | - Valeria R. Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP)
- La Plata
- Argentina
| | - Marilin Rey
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- 3000 Santa Fe
- Argentina
| | - Alberto C. Rizzi
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- 3000 Santa Fe
- Argentina
| | - Evelina G. Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP)
- La Plata
- Argentina
| | | |
Collapse
|
60
|
Mazzaferro LS, Weiz G, Braun L, Kotik M, Pelantová H, Křen V, Breccia JD. Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase fromAcremoniumsp. DSM 24697. Biotechnol Appl Biochem 2018; 66:53-59. [DOI: 10.1002/bab.1695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Laura S. Mazzaferro
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Gisela Weiz
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Lucas Braun
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Javier D. Breccia
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| |
Collapse
|
61
|
Darsandhari S, Pandey RP, Shrestha B, Parajuli P, Liou K, Sohng JK. One-Pot Multienzyme Cofactors Recycling (OPME-CR) System for Lactose and Non-natural Saccharide Conjugated Polyphenol Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7965-7974. [PMID: 29968471 DOI: 10.1021/acs.jafc.8b02421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A one-pot multienzyme cofactors recycling (OPME-CR) system was designed for the synthesis of UDP-α-d-galactose, which was combined with LgtB, a β-(1,4) galactosyltransferase from Neisseria meningitidis, to modify various polyphenol glycosides. This system recycles one mole of ADP and one mole of UDP to regenerate one mole of UDP-α-d-galactose by consuming two moles of acetylphosphate and one mole of d-galactose in each cycle. The ATP additionally used to generate UDP from UMP was also recycled at the beginning of the reaction. The engineered cofactors recycling system with LgtB efficiently added a d-galactose unit to a variety of sugar units such as d-glucose, rutinose, and 2-deoxy-d-glucose. The temperature, pH, incubation time, and divalent metal ions for the OPME-CR system were optimized. The maximum number of UDP-α-d-galactose regeneration cycles (RCmax) was 18.24 by fed batch reaction. The engineered system generated natural and non-natural polyphenol saccharides efficiently and cost-effectively.
Collapse
Affiliation(s)
- Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Kwangkyoung Liou
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| |
Collapse
|
62
|
Tamura M, Yuasa N, Cao J, Nakagawa Y, Tomishige K. Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angew Chem Int Ed Engl 2018; 57:8058-8062. [DOI: 10.1002/anie.201803043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masazumi Tamura
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Naoto Yuasa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Ji Cao
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Yoshinao Nakagawa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| |
Collapse
|
63
|
Tamura M, Yuasa N, Cao J, Nakagawa Y, Tomishige K. Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masazumi Tamura
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Naoto Yuasa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Ji Cao
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Yoshinao Nakagawa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| |
Collapse
|
64
|
Yang G, Luo X, Guo H, Wang Q, Zhou J, Huang T, Tang J, Shan J, Zhang J. α-Selective synthesis of 2-deoxy-glycosides and disaccharides. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1439498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Guofang Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaosheng Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hong Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qingbing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiafen Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tianyun Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jie Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Junjie Shan
- Department of Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
65
|
Mauro N, Schillaci D, Varvarà P, Cusimano MG, Geraci DM, Giuffrè M, Cavallaro G, Maida CM, Giammona G. Branched High Molecular Weight Glycopolypeptide With Broad-Spectrum Antimicrobial Activity for the Treatment of Biofilm Related Infections. ACS APPLIED MATERIALS & INTERFACES 2018; 10:318-331. [PMID: 29251486 DOI: 10.1021/acsami.7b16573] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There are few therapeutic options to simultaneously tackle Staphylococcus aureus and Pseudomonas aeruginosa, two of the most relevant nosocomial and antibiotic-resistant pathogens responsible for implant, catheters and wound severe infections. The design and synthesis of polymers with inherent antimicrobial activity have gained increasing attention as a safe strategy to treat multi-drug-resistant microbes. Here, we tested the activity of a new polymeric derivative with glycopolypeptide architecture (PAA-VC) bearing l-arginine, vancomycin, and colistin as side chains acting against multiple targets, which give rise to a broad spectrum antimicrobial activity favorably combining specific and nonspecific perturbation of the bacterial membrane. PAA-VC has been tested against planktonic and established biofilms of reference strains S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 and susceptible or antibiotic resistant clinical isolates of the above-mentioned microorganisms. MIC values observed for the conjugate (48-190 and 95-190 nM for P. aeruginosa and S. aureus strains, respectively) showed higher efficacy if compared with the free vancomycin (MICs within 1.07-4.28 μM) and colistin (MICs within 0.63-1.33 μM). Additionally, being highly biocompatible (IC50 > 1000, 430, and 250 μg mL-1 for PAA-VC, vancomycin and colistin respectively) high-dosage can be adopted for the eradication of infections in patients. This positively influences the anti-biofilm activity of the conjugate leading to a quasi-total eradication of established clinically relevant biofilms (inhibition >90% at 500 μg mL-1). We believe that the in vitro presented data, especially the activity against established biofilms of two relevant pathogens, the high biocompatibility and the good mucoadhesion properties, would allow the use of PAA-VC as promising candidate to successfully address emerging infections.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Domenico Schillaci
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Paola Varvarà
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Maria Grazia Cusimano
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Daniela Maria Geraci
- Department of "Scienze per la Promozione della Salute e Materno Infantile-G. D'Alessandro" University of Palermo , Via del Vespro 133, 90127 Palermo, Italy
| | - Mario Giuffrè
- Department of "Scienze per la Promozione della Salute e Materno Infantile-G. D'Alessandro" University of Palermo , Via del Vespro 133, 90127 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Carmelo Massimo Maida
- Department of "Scienze per la Promozione della Salute e Materno Infantile-G. D'Alessandro" University of Palermo , Via del Vespro 133, 90127 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
- Mediterranean Center for Human Advanced Biotechnologies (Med-Chab) , Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|
66
|
Inoue C, Okamoto Y, Vavricka CJ, Kiyota H, Izumi M. Synthesis of Halogenated-4-Nitrophenyl 2-deoxy-2-halogeno-pyranosides via N -Halogenosuccinimide Activated Glucal. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reaction of 3,4,6-tri- O -acetyl-D-glucal with silver 4-nitrophenolate in the presence of N -iodosuccinimide and N -bromosuccinimide produced (2,6-dihalo-4-nitro)phenyl 2-halo-2-deoxy-α-D-glycopyranosides. Although bromination and iodination of the 4-nitrophenyl group could not be avoided, the resulting (2,6-dihalo-4-nitro)phenylated compounds can be used as substrates or covalent glycosidase inhibitors after deprotection. The stereoselectivity and regioselectivity of the halogenation reactions are described.
Collapse
Affiliation(s)
- Chieri Inoue
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yumi Okamoto
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Christopher J. Vavricka
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Minoru Izumi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
67
|
Zeng J, Wang R, Yao W, Zhang S, Sun G, Liao Z, Meng L, Wan Q. Diversified synthesis and α-selective glycosylation of 3-amino-2,3,6-trideoxy sugars. Org Chem Front 2018. [DOI: 10.1039/c8qo00948a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quick access to various unnatural 3-amino-2,3,6-trideoxy sugars was achieved by sequential functionalization of a glycal intermediate. This strategy and the further glycosylation method allowed the efficient late-stage modification of bioactive natural products and drugs.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
- Institute of Brain Research
| |
Collapse
|
68
|
The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo) 2017; 70:520-526. [PMID: 28246379 DOI: 10.1038/ja.2017.30] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Beginning with the discovery of penicillin by Alexander Fleming in the late 1920s, antibiotics have revolutionized the field of medicine. They have saved millions of lives each year, alleviated pain and suffering, and have even been used prophylactically for the prevention of infectious diseases. However, we have now reached a crisis where many antibiotics are no longer effective against even the simplest infections. Such infections often result in an increased number of hospitalizations, more treatment failures and the persistence of drug-resistant pathogens. Of particular concern are organisms such as methicillin-resistant Staphylococcus aureus, Clostridium difficile, multidrug and extensively drug-resistant Mycobacterium tuberculosis, Neisseria gonorrhoeae, carbapenem-resistant Enterobacteriaceae and bacteria that produce extended spectrum β-lactamases, such as Escherichia coli. To make matters worse, there has been a steady decline in the discovery of new and effective antibiotics for a number of reasons. These include increased costs, lack of adequate support from the government, poor returns on investment, regulatory hurdles and pharmaceutical companies that have simply abandoned the antibacterial arena. Instead, many have chosen to focus on developing drugs that will be used on a chronic basis, which will offer a greater profit and more return on investment. Therefore, there is now an urgent need to develop new and useful antibiotics to avoid returning to the 'pre-antibiotic era'. Some potential opportunities for antibiotic discovery include better economic incentives, genome mining, rational metabolic engineering, combinatorial biosynthesis and further exploration of the earth's biodiversity.
Collapse
|
69
|
Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv 2017. [DOI: 10.1039/c7ra01858d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbohydrates have been demonstrated to perform imperative act in biological processes. This review highlights recent uses of photoinduced glycosylation in carbohydrate chemistry for the synthesis of oligosaccharides, thiosugars, glycoconjugates and glycoprotein.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
70
|
Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Castellane TCL, Lemos EGDM. Bg10: A Novel Metagenomics Alcohol-Tolerant and Glucose-Stimulated GH1 ß-Glucosidase Suitable for Lactose-Free Milk Preparation. PLoS One 2016; 11:e0167932. [PMID: 28002476 PMCID: PMC5176175 DOI: 10.1371/journal.pone.0167932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
New ß-glucosidases with product (glucose) or ethanol tolerances are greatly desired to make industrial processes more marketable and efficient. Therefore, this report describes the in silico/vitro characterization of Bg10, a metagenomically derived homodimeric ß-glucosidase that exhibited a Vmax of 10.81 ± 0.43 μM min-1, Kcat of 175.1± 6.91 min-1, and Km of 0.49 ± 0.12 mM at a neutral pH and 37°C when pNP-ß-D-glucopyranoside was used as the substrate, and the enzyme retained greater than 80% activity within the respective pH and temperature ranges of 6.5 to 8.0 and 35 to 40°C. The enzyme was stimulated by its product, glucose; consequently, the Bg10 activity against 50 and 100 mM of glucose were increased by 36.8% and 22%, respectively, while half of the activity was retained at 350 mM. Moreover, the Bg10 was able to hydrolyse 55% (milk sample) and 100% (purified sugar) of the lactose at low (6°C) and optimum (37°C) temperatures, respectively, suggesting the possibility of further optimization of the reaction for lactose-free dairy production. In addition, the enzyme was able to fully hydrolyse 40 mM of cellobiose at one hour and was tolerant to ethanol up to concentrations of 500 mM (86% of activity), while a 1 M concentration still resulted in 41% residual activity, which could be interesting for biofuel production.
Collapse
Affiliation(s)
- Elisângela Soares Gomes-Pepe
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
- Agricultural Microbiology postgraduate program of UNESP, Jaboticabal, São Paulo State, Brazil
| | - Elwi Guillermo Machado Sierra
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Mariana Rangel Pereira
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Tereza Cristina Luque Castellane
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| |
Collapse
|
71
|
Pandey RP, Sohng JK. Glycosyltransferase-Mediated Exchange of Rare Microbial Sugars with Natural Products. Front Microbiol 2016; 7:1849. [PMID: 27899922 PMCID: PMC5110563 DOI: 10.3389/fmicb.2016.01849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ramesh P Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae K Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea; Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| |
Collapse
|
72
|
Uriel C, Rijo P, Fernandes AS, Gómez AM, Fraser-Reid B, López JC. Methyl 1,2-Orthoesters in Acid-Washed Molecular Sieves Mediated Glycosylations. ChemistrySelect 2016. [DOI: 10.1002/slct.201601613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Clara Uriel
- Instituto de Química Orgánica General (IQOG-CSIC); Bioorganic Chemistry Department; Juan de la Cierva 3 28006 Madrid Spain
| | - Patricia Rijo
- Center for Research in Biosciences &Health Technologies (CBIOS); Universidade Lusófona de Humanidades e Tecnologías; 1749-024 Lisboa Portugal
- Instituto de Investigaçao do Medicamento (iMed.ULisboa); Faculdade de Farmácia; Universidade de Lisboa; 1649-003 Lisboa Portugal
| | - Ana S. Fernandes
- Center for Research in Biosciences &Health Technologies (CBIOS); Universidade Lusófona de Humanidades e Tecnologías; 1749-024 Lisboa Portugal
- Instituto de Investigaçao do Medicamento (iMed.ULisboa); Faculdade de Farmácia; Universidade de Lisboa; 1649-003 Lisboa Portugal
| | - Ana M. Gómez
- Instituto de Química Orgánica General (IQOG-CSIC); Bioorganic Chemistry Department; Juan de la Cierva 3 28006 Madrid Spain
| | - Bert Fraser-Reid
- Natural Products and Glycotechnology Research Institute, Inc. (NPG); 595F Weathersfield Road Pittsboro, NC 27312 USA
| | - J. Cristóbal López
- Instituto de Química Orgánica General (IQOG-CSIC); Bioorganic Chemistry Department; Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
73
|
Pandey RP, Parajuli P, Chu LL, Kim SY, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Lemmerer M, Schmölzer K, Gutmann A, Nidetzky B. Downstream Processing of Nucleoside-Diphospho-Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| |
Collapse
|
75
|
Dewitte G, Walmagh M, Diricks M, Lepak A, Gutmann A, Nidetzky B, Desmet T. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. J Biotechnol 2016; 233:49-55. [DOI: 10.1016/j.jbiotec.2016.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|
76
|
Beattie RJ, Hornsby TW, Craig G, Galan MC, Willis CL. Stereoselective synthesis of protected l- and d-dideoxysugars and analogues via Prins cyclisations. Chem Sci 2016; 7:2743-2747. [PMID: 28660050 PMCID: PMC5477037 DOI: 10.1039/c5sc04144a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
A de novo approach for the rapid construction of orthogonally protected l- and d-deoxysugars and analogues is described. A novel and robust silicon-acetal undergoes Prins cyclisations with a series of homoallylic alcohols in high yield and excellent stereocontrol. Modified Tamao-Fleming oxidation of the resulting silyltetrahydropyrans gives direct access to deoxyglycoside analogues and the approach was showcased in the synthesis of protected l-oliose, a component of the anticancer agent aclacinomycin A.
Collapse
Affiliation(s)
- Ryan J Beattie
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Thomas W Hornsby
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Gemma Craig
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Christine L Willis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| |
Collapse
|
77
|
Xu L, Qi T, Xu L, Lu L, Xiao M. Recent progress in the enzymatic glycosylation of phenolic compounds. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2015.1137580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
78
|
Chen D, Sun L, Chen R, Xie K, Yang L, Dai J. Enzymatic Synthesis of Acylphloroglucinol 3-C
-Glucosides from 2-O
-Glucosides using a C
-Glycosyltransferase from Mangifera indica. Chemistry 2016; 22:5873-7. [DOI: 10.1002/chem.201600411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Lili Sun
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 P.R. China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Lin Yang
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 P.R. China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| |
Collapse
|
79
|
Synthetic analog of anticancer drug daunorubicin from daunorubicinone using one-pot enzymatic UDP-recycling glycosylation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
80
|
Battina SK, Kashyap S. Copper mediated iodoacetoxylation and glycosylation: effective and convenient approaches for the stereoselective synthesis of 2-deoxy-2-iodo glycosides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Tan Y, Hu Y, Wang Q, Zhou H, Wang Y, Gan M. Tetrocarcins N and O, glycosidic spirotetronates from a marine-derived Micromonospora sp. identified by PCR-based screening. RSC Adv 2016. [DOI: 10.1039/c6ra17026a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new glycosidic spirotetronate antibiotics, tetrocarcins N (1) and O (2), were isolated and identified from the marine-derived Micromonospora sp. 5-297 using a PCR-based genetic screening method targeting the dTDP-glucose-4,6-dehydratase gene.
Collapse
Affiliation(s)
- Yi Tan
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Yuanyuan Hu
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Qiang Wang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Hongxia Zhou
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Yiguang Wang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
| |
Collapse
|
82
|
Kundoor G, Rao DS, Kashyap S. Regioselective Direct Difunctionalization of Glycals: Convenient Access to 2-Deoxyglycoconjugates Mediated by Tetra-n-butylammonium Iodide/Sodium Periodate. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Govindareddy Kundoor
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
| | - Dodla Sivanageswara Rao
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
| | - Sudhir Kashyap
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
- Academy of Scientific and Innovative Research; Indian Institute of Chemical Technology (CSIR); Hyderabad- 500 007 India
| |
Collapse
|
83
|
Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 2015; 34:88-111. [PMID: 26657050 DOI: 10.1016/j.biotechadv.2015.11.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/24/2023]
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
84
|
Wang F, Singh S, Xu W, Helmich KE, Miller MD, Cao H, Bingman CA, Thorson JS, Phillips GN. Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases. ACS Chem Biol 2015; 10:2048-56. [PMID: 26023720 DOI: 10.1021/acschembio.5b00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sugar aminotransferases (SATs) are an important class of tailoring enzymes that catalyze the 5'-pyridoxal phosphate (PLP)-dependent stereo- and regiospecific installation of an amino group from an amino acid donor (typically L-Glu or L-Gln) to a corresponding ketosugar nucleotide acceptor. Herein we report the strategic structural study of two homologous C4 SATs (Micromonospora echinospora CalS13 and Escherichia coli WecE) that utilize identical substrates but differ in their stereochemistry of aminotransfer. This study reveals for the first time a new mode of SAT sugar nucleotide binding and, in conjunction with previously reported SAT structural studies, provides the basis from which to propose a universal model for SAT stereo- and regiochemical control of amine installation. Specifically, the universal model put forth highlights catalytic divergence to derive solely from distinctions within nucleotide sugar orientation upon binding within a relatively fixed SAT active site where the available ligand bound structures of the three out of four representative C3 and C4 SAT examples provide a basis for the overall model. Importantly, this study presents a new predictive model to support SAT functional annotation, biochemical study and rational engineering.
Collapse
Affiliation(s)
| | - Shanteri Singh
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Kate E. Helmich
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | | | | | - Craig A. Bingman
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jon S. Thorson
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
85
|
Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK. Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
86
|
Design and synthesis of dithiocarbamate linked β-carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg Med Chem 2015; 23:5511-26. [DOI: 10.1016/j.bmc.2015.07.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 12/21/2022]
|
87
|
Singh S, Michalska K, Bigelow L, Endres M, Kharel MK, Babnigg G, Yennamalli RM, Bingman CA, Joachimiak A, Thorson JS, Phillips GN. Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. J Biol Chem 2015; 290:26249-58. [PMID: 26240141 DOI: 10.1074/jbc.m115.673459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.
Collapse
Affiliation(s)
- Shanteri Singh
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596
| | - Karolina Michalska
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lance Bigelow
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael Endres
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Madan K Kharel
- the School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Gyorgy Babnigg
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ragothaman M Yennamalli
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Craig A Bingman
- the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jon S Thorson
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596,
| | - George N Phillips
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005 the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| |
Collapse
|
88
|
Yamaguchi S, Tanaka H, Takahashi T. Reagent Control of a Birch Reduction for the Synthesis of a 2-Deoxyoligosaccharide Possessing a 1,4-Dialkylhydroquinone. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
89
|
Etxeberria U, Arias N, Boqué N, Romo-Hualde A, Macarulla MT, Portillo MP, Milagro FI, Martínez JA. Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry. Food Funct 2015; 6:2758-67. [PMID: 26156396 DOI: 10.1039/c5fo00473j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Faecal non-targeted metabolomics deciphers metabolic end-products resulting from the interactions among food, host genetics, and gut microbiota. Faeces from Wistar rats fed a high-fat sucrose (HFS) diet supplemented with trans-resveratrol and quercetin (separately or combined) were analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Metabolomics in faeces are categorised into four clusters based on the type of treatment. Tentative identification of significantly differing metabolites highlighted the presence of carbohydrate derivatives or conjugates (3-phenylpropyl glucosinolate and dTDP-D-mycaminose) in the quercetin group. The trans-resveratrol group was differentiated by compounds related to nucleotides (uridine monophosphate and 2,4-dioxotetrahydropyrimidine D-ribonucleotide). Marked associations between bacterial species (Clostridium genus) and the amount of some metabolites were identified. Moreover, trans-resveratrol and resveratrol-derived microbial metabolites (dihydroresveratrol and lunularin) were also identified. Accordingly, this study confirms the usefulness of omics-based techniques to discriminate individuals depending on the physiological effect of food constituents and represents an interesting tool to assess the impact of future personalized therapies.
Collapse
Affiliation(s)
- Usune Etxeberria
- Department of Nutrition, Food Science and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Briegel AC, Cummings AK, Smith GR, Doroski MD, Boyko WJ, Piro NA, Kassel WS, Giuliano RM. Synthesis of lemonose derivatives: methyl 4-amino-3-O,4-N-carbonyl-2,4,6-trideoxy-3-C-methyl-α-l-lyxo-pyranoside and its phenyl thioglycoside. Carbohydr Res 2015; 409:63-8. [PMID: 25957213 DOI: 10.1016/j.carres.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 03/08/2015] [Indexed: 11/29/2022]
Abstract
Lemonose is a component of the antibiotic lemonomycin and other antibiotics and natural products. Three routes to the synthesis of the title compound, a protected, desmethyl derivative of lemonose, from l-rhamnose or its glycal, were investigated based on electrophilic cyclization, epoxidation-ring opening, and deoxygenation of an intermediate that was used in the synthesis of the amino sugar callipeltose. The deoxygenation route was successful and it provided the title compound, which was then converted to a phenyl thioglycoside.
Collapse
Affiliation(s)
- Alicia C Briegel
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Adrienne K Cummings
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Garry R Smith
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Matthew D Doroski
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Walter J Boyko
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Nicholas A Piro
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - W Scott Kassel
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Robert M Giuliano
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States.
| |
Collapse
|
91
|
Lacoske MH, Xu J, Mansour N, Gao C, Theodorakis EA. Synthetic Strategies Toward the Decalin Motif of Maklamicin and Related Spirotetronates. Org Chem Front 2015; 2:388-393. [PMID: 26257916 PMCID: PMC4527581 DOI: 10.1039/c4qo00332b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a scalable approach to the decalin moiety of maklamicin. Key to the synthesis is an intramolecular Diels-Alder (IMDA) reaction that proceeds via an endo-axial transition state to generate the desired stereochemistry. We explored the diastereoselectivity of the IMDA reaction as a function of both chiral catalysis and acyclic precursor stereochemistry.
Collapse
Affiliation(s)
- Michelle H. Lacoske
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jing Xu
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Noel Mansour
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chao Gao
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
92
|
Lacoske M, Theodorakis EA. Spirotetronate polyketides as leads in drug discovery. JOURNAL OF NATURAL PRODUCTS 2015; 78:562-75. [PMID: 25434976 PMCID: PMC4380204 DOI: 10.1021/np500757w] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 05/05/2023]
Abstract
The discovery of chlorothricin (1) defined a new family of microbial metabolites with potent antitumor antibiotic properties collectively referred to as spirotetronate polyketides. These microbial metabolites are structurally distinguished by the presence of a spirotetronate motif embedded within a macrocyclic core. Glycosylation at the periphery of this core contributes to the structural complexity and bioactivity of this motif. The spirotetronate family displays impressive chemical structures, potent bioactivities, and significant pharmacological potential. This review groups the family members based on structural and biosynthetic considerations and summarizes synthetic and biological studies that aim to elucidate their mode of action and explore their pharmacological potential.
Collapse
Affiliation(s)
- Michelle
H. Lacoske
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
93
|
Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Angew Chem Int Ed Engl 2015; 54:2811-5. [PMID: 25581707 PMCID: PMC4376353 DOI: 10.1002/anie.201409792] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/15/2022]
Abstract
The structures of the O-glycosyltransferase LanGT2 and the engineered, C-C bond-forming variant LanGT2S8Ac show how the replacement of a single loop can change the functionality of the enzyme. Crystal structures of the enzymes in complex with a nonhydrolyzable nucleotide-sugar analogue revealed that there is a conformational transition to create the binding sites for the aglycon substrate. This induced-fit transition was explored by molecular docking experiments with various aglycon substrates.
Collapse
Affiliation(s)
- Heng Keat Tam
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany)
| | - Johannes Härle
- Institut für Pharmazeutische Wissenschaften
Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)
| | - Stefan Gerhardt
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany)
| | - Jürgen Rohr
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Guojun Wang
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Aurélien Bigot
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Monika Lutterbeck
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Wolfgang Seiche
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Bernhard Breit
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Andreas Bechthold
- Institut für Pharmazeutische Wissenschaften
Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany). BIOSS Centre for
Biological Signalling Studies Schänzlestrasse 18, 79104 Freiburg
(Germany)
| |
Collapse
|
94
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
95
|
Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Strukturelle Charakterisierung von O- und C-glycosylierenden Varianten der Landomycin-Glycosyltransferase LanGT2. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
96
|
Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 2015; 44:8350-74. [DOI: 10.1039/c5cs00600g] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts) occur almost everywhere in the biosphere, and always play crucial roles in vital processes.
Collapse
Affiliation(s)
- Dong-Mei Liang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jia-Heng Liu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hao Wu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin-Bin Wang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hong-Ji Zhu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jian-Jun Qiao
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
97
|
Wang H, Tao J, Cai X, Chen W, Zhao Y, Xu Y, Yao W, Zeng J, Wan Q. Stereoselective Synthesis of α-Linked 2-Deoxy Glycosides Enabled by Visible-Light-Mediated Reductive Deiodination. Chemistry 2014; 20:17319-23. [DOI: 10.1002/chem.201405516] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Indexed: 12/23/2022]
|
98
|
Salazar VA, Rubin J, Moussaoui M, Pulido D, Nogués MV, Venge P, Boix E. Protein post-translational modification in host defense: the antimicrobial mechanism of action of human eosinophil cationic protein native forms. FEBS J 2014; 281:5432-46. [PMID: 25271100 DOI: 10.1111/febs.13082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 02/06/2023]
Abstract
Knowledge on the contribution of protein glycosylation in host defense antimicrobial peptides is still scarce. We have studied here how the post-translational modification pattern modulates the antimicrobial activity of one of the best characterized leukocyte granule proteins. The human eosinophil cationic protein (ECP), an eosinophil specific granule protein secreted during inflammation and infection, can target a wide variety of pathogens. Previous work in human eosinophil extracts identified several ECP native forms and glycosylation heterogeneity was found to contribute to the protein biological properties. In this study we analyze for the first time the antimicrobial activity of the distinct native proteins purified from healthy donor blood. Low and heavy molecular weight forms were tested on Escherichia coli cell cultures and compared with the recombinant non-glycosylated protein. Further analysis on model membranes provided an insight towards an understanding of the protein behavior at the cytoplasmic membrane level. The results highlight the significant reduction in protein toxicity and bacteria agglutination activity for heavy glycosylated fractions. Notwithstanding, the lower glycosylated fraction mostly retains the lipopolysaccharide binding affinity together with the cytoplasmic membrane depolarization and membrane leakage activities. From structural analysis we propose that heavy glycosylation interferes with the protein self-aggregation, hindering the cell agglutination and membrane disruption processes. The results suggest the contribution of post-translational modifications to the antimicrobial role of ECP in host defense.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
99
|
Enzymatic glycosylation of the topical antibiotic mupirocin. Glycoconj J 2014; 31:563-72. [DOI: 10.1007/s10719-014-9538-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
|
100
|
Singh S, Peltier-Pain P, Tonelli M, Thorson JS. A general NMR-based strategy for the in situ characterization of sugar-nucleotide-dependent biosynthetic pathways. Org Lett 2014; 16:3220-3. [PMID: 24911465 PMCID: PMC4075999 DOI: 10.1021/ol501241a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple method for the study of sugar-nucleotide-dependent multienzyme cascades is highlighted where the use of selectively (13)C-labeled sugar nucleotides and inverse (13)C detection NMR offers fast, direct detection and quantification of reactants and products and circumvents the need for chromatographic separation. The utility of the method has been demonstrated by characterizing four previously uncharacterized sugar nucleotide biosynthetic enzymes involved in calicheamicin biosynthesis.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | | | | | | |
Collapse
|