51
|
Joshi SR, Jagtap S, Basu B, Deobagkar DD, Ghosh P. Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1. PLoS One 2020; 15:e0234721. [PMID: 32579573 PMCID: PMC7314050 DOI: 10.1371/journal.pone.0234721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Systems biology based approaches have been effectively utilized to mine high throughput data. In the current study, we have performed system-level analysis for Deinococcus radiodurans R1 by constructing a gene co-expression network based on several microarray datasets available in the public domain. This condition-independent network was constructed by Weighted Gene Co-expression Network Analysis (WGCNA) with 61 microarray samples from 9 different experimental conditions. We identified 13 co-expressed modules, of which, 11 showed functional enrichments of one or more pathway/s or biological process. Comparative analysis of differentially expressed genes and proteins from radiation and desiccation stress studies with our co-expressed modules revealed the association of cyan with radiation response. Interestingly, two modules viz darkgreen and tan was associated with radiation as well as desiccation stress responses. The functional analysis of these modules showed enrichment of pathways important for adaptation of radiation or desiccation stress. To decipher the regulatory roles of these stress responsive modules, we identified transcription factors (TFs) and then calculated a Biweight mid correlation between modules hub gene and the identified TFs. We obtained 7 TFs for radiation and desiccation responsive modules. The expressions of 3 TFs were validated in response to gamma radiation using qRT-PCR. Along with the TFs, selected close neighbor genes of two important TFs, viz., DR_0997 (CRP) and DR_2287 (AsnC family transcriptional regulator) in the darkgreen module were also validated. In our network, among 13 hub genes associated with 13 modules, the functionality of 5 hub genes which are annotated as hypothetical proteins (hypothetical hub genes) in D. radiodurans genome has been revealed. Overall the study provided a better insight of pathways and regulators associated with relevant DNA damaging stress response in D. radiodurans.
Collapse
Affiliation(s)
- Suraj R. Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Surabhi Jagtap
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepti D. Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- * E-mail: ,
| |
Collapse
|
52
|
Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25. J Bacteriol 2020; 202:JB.00792-19. [PMID: 32291279 DOI: 10.1128/jb.00792-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
HutC is known as a transcriptional repressor specific for histidine utilization (hut) genes in Gram-negative bacteria, including Pseudomonas fluorescens SBW25. However, its precise mode of protein-DNA interactions hasn't been examined with purified HutC proteins. Here, we performed electrophoretic mobility shift assay (EMSA) and DNase I footprinting using His6-tagged HutC and biotin-labeled probe of the hut promoter (PhutU). Results revealed a complex pattern of HutC oligomerization, and the specific protein-DNA interaction is disrupted by urocanate, a histidine derivative, in a concentration-dependent manner. Next, we searched for putative HutC-binding sites in the SBW25 genome. This led to the identification of 143 candidate targets with a P value less than 10-4 HutC interaction with eight selected candidate sites was subsequently confirmed by EMSA analysis, including the type IV pilus assembly protein PilZ, phospholipase C (PlcC) for phosphatidylcholine hydrolyzation, and key regulators of cellular nitrogen metabolism (NtrBC and GlnE). Finally, an isogenic hutC deletion mutant was subjected to transcriptome sequencing (RNA-seq) analysis and phenotypic characterization. When bacteria were grown on succinate and histidine, hutC deletion caused upregulation of 794 genes and downregulation of 525 genes at a P value of <0.05 with a fold change cutoff of 2.0. The hutC mutant displayed an enhanced spreading motility and pyoverdine production in laboratory media, in addition to the previously reported growth defect on the surfaces of plants. Together, our data indicate that HutC plays global regulatory roles beyond histidine catabolism through low-affinity binding with operator sites located outside the hut locus.IMPORTANCE HutC in Pseudomonas is a representative member of the GntR/HutC family of transcriptional regulators, which possess a N-terminal winged helix-turn-helix (wHTH) DNA-binding domain and a C-terminal substrate-binding domain. HutC is generally known to repress expression of histidine utilization (hut) genes through binding to the PhutU promoter with urocanate (the first intermediate of the histidine degradation pathway) as the direct inducer. Here, we first describe the detailed molecular interactions between HutC and its PhutU target site in a plant growth-promoting bacterium, P. fluorescens SBW25, and further show that HutC possesses specific DNA-binding activities with many targets in the SBW25 genome. Subsequent RNA-seq analysis and phenotypic assays revealed an unexpected global regulatory role of HutC for successful bacterial colonization in planta.
Collapse
|
53
|
Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 2020; 95:5420819. [PMID: 30916760 DOI: 10.1093/femsec/fiz040] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/26/2019] [Indexed: 11/12/2022] Open
Abstract
Land plants directly contact soil through their roots. An enormous diversity of microbes dwelling in root-associated zones, including endosphere (inside root), rhizoplane (root surface) and rhizosphere (soil surrounding the root surface), play essential roles in ecosystem functioning and plant health. Rice is a staple food that feeds over 50% of the global population. Its root is a unique niche, which is often characterized by an oxic region (e.g. the rhizosphere) surrounded by anoxic bulk soil. This oxic-anoxic interface has been recognized as a pronounced hotspot that supports dynamic biogeochemical cycles mediated by various functional microbial groups. Considering the significance of rice production upon global food security and the methane budget, novel insights into how the overall microbial community (i.e. the microbiome) of the rice root system influences ecosystem functioning is the key to improving crop health and sustainable productivity of paddy ecosystems, and alleviating methane emissions. This mini-review summarizes the current understanding of microbial diversity of rice root-associated compartments to some extent, especially the rhizosphere, and makes a comparison of rhizosphere microbial community structures between rice and other crops/plants. Moreover, this paper describes the interactions between root-related microbiomes and rice plants, and further discusses the key factors shaping the rice root-related microbiomes.
Collapse
Affiliation(s)
- Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - San-An Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Xi-En Long
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian Province, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian Province, China
| |
Collapse
|
54
|
Nghe P, de Vos MGJ, Kingma E, Kogenaru M, Poelwijk FJ, Laan L, Tans SJ. Predicting Evolution Using Regulatory Architecture. Annu Rev Biophys 2020; 49:181-197. [PMID: 32040932 DOI: 10.1146/annurev-biophys-070317-032939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology. These methods combine systems biology models with population and single-cell quantification and with new genetic tools, and they have been applied to a range of complex cellular functions and engineered networks. In this article, we review these developments, which are revealing the mechanistic causes of epistasis at different levels of biological organization-in molecular recognition, within a single regulatory network, and between different networks-providing first indications of predictable features of evolutionary constraint.
Collapse
Affiliation(s)
- Philippe Nghe
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Marjon G J de Vos
- University of Groningen, GELIFES, 9747 AG Groningen, The Netherlands
| | - Enzo Kingma
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Manjunatha Kogenaru
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Frank J Poelwijk
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Liedewij Laan
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Sander J Tans
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands.,AMOLF, 1098 XG Amsterdam, The Netherlands;
| |
Collapse
|
55
|
Iosub IA, van Nues RW, McKellar SW, Nieken KJ, Marchioretto M, Sy B, Tree JJ, Viero G, Granneman S. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation. eLife 2020; 9:e54655. [PMID: 32356726 PMCID: PMC7213987 DOI: 10.7554/elife.54655] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
By shaping gene expression profiles, small RNAs (sRNAs) enable bacteria to efficiently adapt to changes in their environment. To better understand how Escherichia coli acclimatizes to nutrient availability, we performed UV cross-linking, ligation and sequencing of hybrids (CLASH) to uncover Hfq-associated RNA-RNA interactions at specific growth stages. We demonstrate that Hfq CLASH robustly captures bona fide RNA-RNA interactions. We identified hundreds of novel sRNA base-pairing interactions, including many sRNA-sRNA interactions and involving 3'UTR-derived sRNAs. We rediscovered known and identified novel sRNA seed sequences. The sRNA-mRNA interactions identified by CLASH have strong base-pairing potential and are highly enriched for complementary sequence motifs, even those supported by only a few reads. Yet, steady state levels of most mRNA targets were not significantly affected upon over-expression of the sRNA regulator. Our results reinforce the idea that the reproducibility of the interaction, not base-pairing potential, is a stronger predictor for a regulatory outcome.
Collapse
MESH Headings
- 3' Untranslated Regions
- 5' Untranslated Regions
- Adaptation, Physiological
- Databases, Genetic
- Energy Metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
Collapse
Affiliation(s)
- Ira Alexandra Iosub
- Centre for Synthetic and Systems Biology, University of EdinburghEdinburghUnited Kingdom
| | | | | | - Karen Jule Nieken
- Institute of Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Jai Justin Tree
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
56
|
Yeo WS, Anokwute C, Marcadis P, Levitan M, Ahmed M, Bae Y, Kim K, Kostrominova T, Liu Q, Bae T. A Membrane-Bound Transcription Factor is Proteolytically Regulated by the AAA+ Protease FtsH in Staphylococcus aureus. J Bacteriol 2020; 202:e00019-20. [PMID: 32094161 PMCID: PMC7148131 DOI: 10.1128/jb.00019-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In bacteria, chromosomal DNA resides in the cytoplasm, and most transcription factors are also found in the cytoplasm. However, some transcription factors, called membrane-bound transcription factors (MTFs), reside in the cytoplasmic membrane. Here, we report the identification of a new MTF in the Gram-positive pathogen Staphylococcus aureus and its regulation by the protease FtsH. The MTF, named MbtS (membrane-bound transcription factor of Staphylococcus aureus), is encoded by SAUSA300_2640 and predicted to have an N-terminal DNA binding domain and three transmembrane helices. The MbtS protein was degraded by membrane vesicles containing FtsH or by the purified FtsH. MbtS bound to an inverted repeat sequence in its promoter region, and the DNA binding was essential for its transcription. Transcriptional comparison between the ftsH deletion mutant and the ftsH mbtS double mutant showed that MbtS could alter the transcription of over 200 genes. Although the MbtS protein was not detected in wild-type (WT) cells grown in a liquid medium, the protein was detected in some isolated colonies on an agar plate. In a murine model of a skin infection, the disruption of mbtS increased the lesion size. Based on these results, we concluded that MbtS is a new S. aureus MTF whose activity is proteolytically regulated by FtsH.IMPORTANCEStaphylococcus aureus is an important pathogenic bacterium causing various diseases in humans. In the bacterium, transcription is typically regulated by the transcription factors located in the cytoplasm. In this study, we report an atypical transcription factor identified in S. aureus Unlike most other transcription factors, the newly identified transcription factor is located in the cytoplasmic membrane, and its activity is proteolytically controlled by the membrane-bound AAA+ protease FtsH. The newly identified MTF, named MbtS, has the potential to regulate the transcription of over 200 genes. This study provides a molecular mechanism by which a protease affects bacterial transcription and illustrates the diversity of the bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Chiamara Anokwute
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Philip Marcadis
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Marcus Levitan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Yeun Bae
- Department of Psychology, Indiana University, Bloomington, Indiana, USA
| | - Kyeongkyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tatiana Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| |
Collapse
|
57
|
Prathiviraj R, Chellapandi P. Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-020-0223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Genome-scale exploration of transcriptional regulation in the nisin Z producer Lactococcus lactis subsp. lactis IO-1. Sci Rep 2020; 10:3787. [PMID: 32123183 PMCID: PMC7051946 DOI: 10.1038/s41598-020-59731-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Transcription is of the most crucial steps of gene expression in bacteria, whose regulation guarantees the bacteria's ability to adapt to varying environmental conditions. Discovering the molecular basis and genomic principles of the transcriptional regulation is thus one of the most important tasks in cellular and molecular biology. Here, a comprehensive phylogenetic footprinting framework was implemented to predict maximal regulons of Lactococcus lactis subsp. lactis IO-1, a lactic acid bacterium known for its high potentials in nisin Z production as well as efficient xylose consumption which have made it a promising biotechnological strain. A total set of 321 regulons covering more than 90% of all the bacterium's operons have been elucidated and validated according to available data. Multiple novel biologically-relevant members were introduced amongst which arsC, mtlA and mtl operon for BusR, MtlR and XylR regulons can be named, respectively. Moreover, the effect of riboflavin on nisin biosynthesis was assessed in vitro and a negative correlation was observed. It is believed that understandings from such networks not only can be useful for studying transcriptional regulatory potentials of the target organism but also can be implemented in biotechnology to rationally design favorable production conditions.
Collapse
|
59
|
Structural and DNA binding properties of mycobacterial integration host factor mIHF. J Struct Biol 2020; 209:107434. [PMID: 31846718 DOI: 10.1016/j.jsb.2019.107434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
In bacteria, nucleoid associated proteins (NAPs) take part in active chromosome organization by supercoil management, three-dimensional DNA looping and direct transcriptional control. Mycobacterial integration host factor (mIHF, rv1388) is a NAP restricted to Actinobacteria and essential for survival of the human pathogen Mycobacterium tuberculosis. We show in vitro that DNA binding by mIHF strongly stabilizes the protein and increases its melting temperature. The structure obtained by Nuclear Magnetic Resonance (NMR) spectroscopy characterizes mIHF as a globular protein with a protruding alpha helix and a disordered N-terminus, similar to Streptomyces coelicolor IHF (sIHF). NMR revealed no residues of high flexibility, suggesting that mIHF is a rigid protein overall that does not undergo structural rearrangements. We show that mIHF only binds to double stranded DNA in solution, through two DNA binding sites (DBSs) similar to those identified in the X-ray structure of sIHF. According to Atomic Force Microscopy, mIHF is able to introduce left-handed loops of ca. 100 nm size (~300 bp) in supercoiled cosmids, thereby unwinding and relaxing the DNA.
Collapse
|
60
|
Dorman CJ, Schumacher MA, Bush MJ, Brennan RG, Buttner MJ. When is a transcription factor a NAP? Curr Opin Microbiol 2020; 55:26-33. [PMID: 32120333 DOI: 10.1016/j.mib.2020.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/03/2023]
Abstract
Proteins that regulate transcription often also play an architectural role in the genome. Thus, it has been difficult to define with precision the distinctions between transcription factors and nucleoid-associated proteins (NAPs). Anachronistic descriptions of NAPs as 'histone-like' implied an organizational function in a bacterial chromatin-like complex. Definitions based on protein abundance, regulatory mechanisms, target gene number, or the features of their DNA-binding sites are insufficient as marks of distinction, and trying to distinguish transcription factors and NAPs based on their ranking within regulatory hierarchies or positions in gene-control networks is also unsatisfactory. The terms 'transcription factor' and 'NAP' are ad hoc operational definitions with each protein lying along a spectrum of structural and functional features extending from highly specific actors with few gene targets to those with a pervasive influence on the transcriptome. The Streptomyces BldC protein is used to illustrate these issues.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
61
|
Cortés MP, Acuña V, Travisany D, Siegel A, Maass A, Latorre M. Integration of Biological Networks for Acidithiobacillus thiooxidans Describes a Modular Gene Regulatory Organization of Bioleaching Pathways. Front Mol Biosci 2020; 6:155. [PMID: 31998751 PMCID: PMC6966769 DOI: 10.3389/fmolb.2019.00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Acidithiobacillus thiooxidans is one of the most studied biomining species, highlighting its ability to oxidize reduced inorganic sulfur compounds, coupled with its elevated capacity to live under an elevated concentration of heavy metals. In this work, using an in silico semi-automatic genome scale approach, two biological networks for A. thiooxidans Licanantay were generated: (i) An affinity transcriptional regulatory network composed of 42 regulatory family genes and 1,501 operons (57% genome coverage) linked through 2,646 putative DNA binding sites (arcs), (ii) A metabolic network reconstruction made of 523 genes and 1,203 reactions (22 pathways related to biomining processes). Through the identification of confident connections between both networks (V-shapes), it was possible to identify a sub-network of transcriptional factor (34 regulators) regulating genes (61 operons) encoding for proteins involved in biomining-related pathways. Network analysis suggested that transcriptional regulation of biomining genes is organized into different modules. The topological parameters showed a high hierarchical organization by levels inside this network (14 layers), highlighting transcription factors CysB, LysR, and IHF as complex modules with high degree and number of controlled pathways. In addition, it was possible to identify transcription factor modules named primary regulators (not controlled by other regulators in the sub-network). Inside this group, CysB was the main module involved in gene regulation of several bioleaching processes. In particular, metabolic processes related to energy metabolism (such as sulfur metabolism) showed a complex integrated regulation, where different primary regulators controlled several genes. In contrast, pathways involved in iron homeostasis and oxidative stress damage are mainly regulated by unique primary regulators, conferring Licanantay an efficient, and specific metal resistance response. This work shows new evidence in terms of transcriptional regulation at a systems level and broadens the study of bioleaching in A. thiooxidans species.
Collapse
Affiliation(s)
- María Paz Cortés
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Vicente Acuña
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile
| | - Dante Travisany
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, UMR 6074, CNRS, Rennes, France.,INRIA, Dyliss Team, Centre Rennes-Bretagne-Atlantique, Rennes, France
| | - Alejandro Maass
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
62
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
63
|
An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR. BMC Microbiol 2020; 20:1. [PMID: 31896348 PMCID: PMC6941359 DOI: 10.1186/s12866-019-1672-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Interactions between transcription factors and DNA lie at the centre of many biological processes including DNA recombination, replication, repair and transcription. Most bacteria encode diverse proteins that act as transcription factors to regulate various traits. Several technologies for identifying protein–DNA interactions at the genomic level have been developed. Bind-n-seq is a high-throughput in vitro method first deployed to analyse DNA interactions associated with eukaryotic zinc-finger proteins. The method has three steps (i) binding protein to a randomised oligonucleotide DNA target library, (ii) deep sequencing of bound oligonucleotides, and (iii) a computational algorithm to define motifs among the sequences. The classical Bind-n-seq strategy suffers from several limitations including a lengthy wet laboratory protocol and a computational algorithm that is difficult to use. We introduce here an improved, rapid, and simplified Bind-n-seq protocol coupled with a user-friendly downstream data analysis and handling algorithm, which has been optimized for bacterial target proteins. We validate this new protocol by showing the successful characterisation of the DNA-binding specificities of YipR (YajQ interacting protein regulator), a well-known transcriptional regulator of virulence genes in the bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc). Results The improved Bind-n-seq approach identified several DNA binding motif sequences for YipR, in particular the CCCTCTC motif, which were located in the promoter regions of 1320 Xcc genes. Informatics analysis revealed that many of these genes regulate functions associated with virulence, motility, and biofilm formation and included genes previously found involved in virulence. Additionally, electromobility shift assays show that YipR binds to the promoter region of XC_2633 in a CCCTCTC motif-dependent manner. Conclusion We present a new and rapid Bind-n-seq protocol that should be useful to investigate DNA-binding proteins in bacteria. The analysis of YipR DNA binding using this protocol identifies a novel DNA sequence motif in the promoter regions of target genes that define the YipR regulon.
Collapse
|
64
|
Gottesman ME, Mustaev A. Change in inorganic phosphate physical state can regulate transcription. Transcription 2019; 10:187-194. [PMID: 31668122 DOI: 10.1080/21541264.2019.1682454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50-98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.
Collapse
Affiliation(s)
- Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
65
|
Yoshida K, Konishi K, Magana-Mora A, Rougny A, Yasutake Y, Muramatsu S, Murata S, Kumagai T, Aburatani S, Sakasegawa SI, Tamura T. Production of recombinant extracellular cholesterol esterase using consistently active promoters in Burkholderia stabilis. Biosci Biotechnol Biochem 2019; 83:1974-1984. [DOI: 10.1080/09168451.2019.1630256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
Burkholderia stabilis FERMP-21014 produces highly active cholesterol esterase in the presence of fatty acids. To develop an overexpression system for cholesterol esterase production, we carried out RNA sequencing analyses to screen strongly active promoters in FERMP-21014. Based on gene expression consistency analysis, we selected nine genes that were consistently expressed at high levels, following which we constructed expression vectors using their promoter sequences and achieved overproduction of extracellular cholesterol esterase under fatty acid-free conditions. Of the tested promoters, the promoter of BSFP_0720, which encodes the alkyl hydroperoxide reductase subunit AhpC, resulted in the highest cholesterol esterase activity (24.3 U mL−1). This activity level was 243-fold higher than that of the wild-type strain under fatty acid-free conditions. We confirmed that cholesterol esterase was secreted without excessive accumulation within the cells. The gene expression consistency analysis will be useful to screen promoters applicable to the overexpression of other industrially important enzymes.
Collapse
Affiliation(s)
- Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | - Arturo Magana-Mora
- Biotechnology Research Institute for Drug Discovery, AIST, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Adrien Rougny
- Biotechnology Research Institute for Drug Discovery, AIST, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | | | | | | | - Sachiyo Aburatani
- Biotechnology Research Institute for Drug Discovery, AIST, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | | | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
66
|
Ghosh P, Shah M, Ravichandran S, Park SS, Iqbal H, Choi S, Kim KK, Rhee DK. Pneumococcal VncR Strain-Specifically Regulates Capsule Polysaccharide Synthesis. Front Microbiol 2019; 10:2279. [PMID: 31632380 PMCID: PMC6781885 DOI: 10.3389/fmicb.2019.02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Capsular polysaccharides (CPS), a major virulence factor in Streptococcus pneumoniae, become thicker during blood invasion while not during asymptomatic nasopharyngeal colonization. However, the underlying mechanism controlling this differential pneumococcal CPS regulation remain unclear. Here, we show how VncR, the response regulator of the vancomycin resistance locus (vncRS operon), regulates CPS expression in vncR mutants in three serotype (type 2, 3, and 6B) backgrounds upon exposure to serum lactoferrin (LF). Comparative analysis of CPS levels in the wild type (WT) of three strains and their isogenic vncR mutants after LF exposure revealed a strain-specific alteration in CPS production. Consistently, VncR-mediated strain-specific CPS production is correlated with pneumococcal virulence, in vivo. Electrophoretic mobility-shift assay and co-immunoprecipitation revealed an interaction between VncR and the cps promoter (cpsp) in the presence of serum. In addition, in silico analysis uncovered this protein-DNA interaction, suggesting that VncR binds with the cpsp, and recognizes the strain-specific significance of the tandem repeats in cpsp. Taken together, the interaction of VncR and cpsp after serum exposure plays an essential role in regulating differential strain-specific CPS production, which subsequently determines strain-specific systemic virulence. This study highlights how host protein LF contributes to pneumococcal VncR-mediated CPS production. As CPS plays a significant role in immune evasion, these findings suggest that drugs designed to interrupt the VncR-mediated CPS production could help to combat pneumococcal infections.
Collapse
Affiliation(s)
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Subramaniyam Ravichandran
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hamid Iqbal
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Dong Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
67
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
68
|
Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. Proc Natl Acad Sci U S A 2019; 116:19695-19704. [PMID: 31501343 PMCID: PMC6765310 DOI: 10.1073/pnas.1903461116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens emerge by adapting mechanisms of virulence, differentiating them from their nonpathogenic progenitor. Virulence factors are often encoded on accessory genomic elements not part of the core genome and therefore must be integrated into the regulatory architecture of the cell. Here, we show that a highly conserved transcription factor in Escherichia coli has been relieved of a common purpose and adapted to regulate virulence pleiotropically in 2 distinct genetic backgrounds. This leads to enhanced virulence of both intestinal enterohemorrhagic E. coli and extraintestinal uropathogenic E. coli by exclusive mechanisms. These findings challenge the assumption that conserved transcription factors regulate common pathways maintained within a species and suggest that transcriptional repurposing creates new primary roles on an individual basis. Tailoring transcriptional regulation to coordinate the expression of virulence factors in tandem with the core genome is a hallmark of bacterial pathogen evolution. Bacteria encode hundreds of transcription factors forming the base-level control of gene regulation. Moreover, highly homologous regulators are assumed to control conserved genes between members within a species that harbor the same genetic targets. We have explored this concept in 2 Escherichia coli pathotypes that employ distinct virulence mechanisms that facilitate specification of a different niche within the host. Strikingly, we found that the transcription factor YhaJ actively regulated unique gene sets between intestinal enterohemorrhagic E. coli (EHEC) and extraintestinal uropathogenic E. coli (UPEC), despite being very highly conserved. In EHEC, YhaJ directly activates expression of type 3 secretion system components and effectors. Alternatively, YhaJ enhances UPEC virulence regulation by binding directly to the phase-variable type 1 fimbria promoter, driving its expression. Additionally, YhaJ was found to override the universal GAD acid tolerance system but exclusively in EHEC, thereby indirectly enhancing type 3 secretion pleiotropically. These results have revealed that within a species, conserved regulators are actively repurposed in a “personalized” manner to benefit particular lifestyles and drive virulence via multiple distinct mechanisms.
Collapse
|
69
|
A novel microbiological medium for the growth of periodontitis associated pathogens. J Microbiol Methods 2019; 163:105647. [DOI: 10.1016/j.mimet.2019.105647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
|
70
|
Murarka P, Bagga T, Singh P, Rangra S, Srivastava P. Isolation and identification of a TetR family protein that regulates the biodesulfurization operon. AMB Express 2019; 9:71. [PMID: 31127394 PMCID: PMC6534649 DOI: 10.1186/s13568-019-0801-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
Biodesulfurization helps in removal of sulfur from organosulfur present in petroleum fractions. All microorganisms isolated to date harbor a desulfurization operon consisting of three genes dszA, -B and -C which encode for monooxygenases (DszA & C) and desulfinase (DszB). Most of the studies have been carried out using dibenzothiophene as the model organosulfur compound, which is converted into 2 hydroxybiphenyl by a 4S pathway which maintains the calorific value of fuel. There are few studies reported on the regulation of this operon. However, there are no reports on the proteins which can enhance the activity of the operon. In the present study, we used in vitro and in vivo methods to identify a novel TetR family transcriptional regulator from Gordonia sp. IITR100 which functions as an activator of the dsz operon. Activation by TetR family regulator resulted in enhanced levels of desulfurization enzymes in Gordonia sp. IITR100. Activation was observed only when the 385 bp full length promoter was used. Upstream sequences between - 385 and - 315 were found to be responsible for activation. We provide evidence that the TetR family transcription regulator serves as an activator in other biodesulfurizing microorganisms such as Rhodococcus erythropolis IGTS8 and heterologous host Escherichia coli. This is the first report on the isolation of a possible transcriptional regulator that activates the desulfurization operon resulting in improved biodesulfurization.
Collapse
|
71
|
Rajeev L, Garber ME, Zane GM, Price MN, Dubchak I, Wall JD, Novichkov PS, Mukhopadhyay A, Kazakov AE. A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport. Environ Microbiol 2019; 21:784-799. [PMID: 30536693 DOI: 10.1111/1462-2920.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Bacterial genes for molybdenum-containing and tungsten-containing enzymes are often differentially regulated depending on the metal availability in the environment. Here, we describe a new family of transcription factors with an unusual DNA-binding domain related to excisionases of bacteriophages. These transcription factors are associated with genes for various molybdate and tungstate-specific transporting systems as well as molybdo/tungsto-enzymes in a wide range of bacterial genomes. We used a combination of computational and experimental techniques to study a member of the TF family, named TaoR (for tungsten-containing aldehyde oxidoreductase regulator). In Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, TaoR activates expression of aldehyde oxidoreductase aor and represses tungsten-specific ABC-type transporter tupABC genes under tungsten-replete conditions. TaoR binding sites at aor promoter were identified by electrophoretic mobility shift assay and DNase I footprinting. We also reconstructed TaoR regulons in 45 Deltaproteobacteria by comparative genomics approach and predicted target genes for TaoR family members in other Proteobacteria and Firmicutes.
Collapse
Affiliation(s)
- L Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - M E Garber
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA
| | - G M Zane
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - M N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - I Dubchak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J D Wall
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - P S Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Energy, Knowledge Base, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
72
|
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T. Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. Int J Mol Sci 2018; 19:ijms19123755. [PMID: 30486299 PMCID: PMC6321045 DOI: 10.3390/ijms19123755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR), Avenida las Palmeras 4, 18100 Armilla, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
73
|
de Almeida FA, Carneiro DG, de Oliveira Mendes TA, Barros E, Pinto UM, de Oliveira LL, Vanetti MCD. N-dodecanoyl-homoserine lactone influences the levels of thiol and proteins related to oxidation-reduction process in Salmonella. PLoS One 2018; 13:e0204673. [PMID: 30304064 PMCID: PMC6179229 DOI: 10.1371/journal.pone.0204673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing is a cell-cell communication mechanism mediated by chemical signals that leads to differential gene expression in response to high population density. Salmonella is unable to synthesize the autoinducer-1 (AI-1), N-acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. This study aimed to evaluate the fatty acid and protein profiles of Salmonella enterica serovar Enteritidis PT4 578 throughout time of cultivation in the presence of AHL. The presence of N-dodecanoyl-homoserine lactone (C12-HSL) altered the fatty acid and protein profiles of Salmonella cultivated during 4, 6, 7, 12 and 36 h in anaerobic condition. The profiles of Salmonella Enteritidis at logarithmic phase of growth (4 h of cultivation), in the presence of C12-HSL, were similar to those of cells at late stationary phase (36 h). In addition, there was less variation in both protein and fatty acid profiles along growth, suggesting that this quorum sensing signal anticipated a stationary phase response. The presence of C12-HSL increased the abundance of thiol related proteins such as Tpx, Q7CR42, Q8ZP25, YfgD, AhpC, NfsB, YdhD and TrxA, as well as the levels of free cellular thiol after 6 h of cultivation, suggesting that these cells have greater potential to resist oxidative stress. Additionally, the LuxS protein which synthesizes the AI-2 signaling molecule was differentially abundant in the presence of C12-HSL. The NfsB protein had its abundance increased in the presence of C12-HSL at all evaluated times, which is a suggestion that the cells may be susceptible to the action of nitrofurans or that AHLs present some toxicity. Overall, the presence of C12-HSL altered important pathways related to oxidative stress and stationary phase response in Salmonella.
Collapse
Affiliation(s)
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
74
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
75
|
Lai X, Verhage L, Hugouvieux V, Zubieta C. Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation. Molecules 2018; 23:E1914. [PMID: 30065231 PMCID: PMC6222629 DOI: 10.3390/molecules23081914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023] Open
Abstract
Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Leonie Verhage
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| |
Collapse
|
76
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
77
|
Pneumococcal Metabolic Adaptation and Colonization Are Regulated by the Two-Component Regulatory System 08. mSphere 2018; 3:3/3/e00165-18. [PMID: 29769380 PMCID: PMC5956151 DOI: 10.1128/msphere.00165-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease. Streptococcus pneumoniae two-component regulatory systems (TCS) enable adaptation and ensure its maintenance in host environments. This study deciphers the impact of TCS08 on pneumococcal gene expression and its role in metabolic and pathophysiological processes. Transcriptome analysis and real-time PCR demonstrated a regulatory effect of TCS08 on genes involved mainly in environmental information processing, intermediary metabolism, and colonization by S. pneumoniae D39 and TIGR4. Striking examples are genes for fatty acid biosynthesis, genes of the arginine deiminase system, and the psa operon encoding the manganese ABC transport system. In silico analysis confirmed that TCS08 is homologous to Staphylococcus aureus SaeRS, and a SaeR-like binding motif is displayed in the promoter region of pavB, the upstream gene of the tcs08 operon encoding a surface-exposed adhesin. Indeed, PavB is regulated by TCS08 as confirmed by immunoblotting and surface abundance assays. Similarly, pilus-1 of TIGR4 is regulated by TCS08. Finally, in vivo infections using the acute pneumonia and sepsis models showed a strain-dependent effect. Loss of function of HK08 or TCS08 attenuated D39 virulence in lung infections. The RR08 deficiency attenuated TIGR4 in pneumonia, while there was no effect on sepsis. In contrast, lack of HK08 procured a highly virulent TIGR4 phenotype in both pneumonia and sepsis infections. Taken together, these data indicate the importance of TCS08 in pneumococcal fitness to adapt to the milieu of the respiratory tract during colonization. IMPORTANCEStreptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease.
Collapse
|
78
|
Ambri F, Snoek T, Skjoedt ML, Jensen MK, Keasling JD. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast. Methods Mol Biol 2018; 1671:269-290. [PMID: 29170965 DOI: 10.1007/978-1-4939-7295-1_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cell factory development, screening procedures, often relying on low-throughput analytical methods, are lagging far behind diversity generation methods. This renders the identification and selection of the best cell factory designs tiresome and costly, conclusively hindering the manufacturing process. In the yeast Saccharomyces cerevisiae, implementation of allosterically regulated transcription factors from prokaryotes as metabolite biosensors has proven a valuable strategy to alleviate this screening bottleneck. Here, we present a protocol to select and incorporate prokaryotic transcriptional activators as metabolite biosensors in S. cerevisiae. As an example, we outline the engineering and characterization of the LysR-type transcriptional regulator (LTTR) family member BenM from Acetinobacter sp. ADP1 for monitoring accumulation of cis,cis-muconic acid, a bioplast precursor, in yeast by means of flow cytometry.
Collapse
Affiliation(s)
- Francesca Ambri
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tim Snoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette L Skjoedt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
79
|
Regulatory Elements Located in the Upstream Region of the Rhizobium leguminosarum rosR Global Regulator Are Essential for Its Transcription and mRNA Stability. Genes (Basel) 2017; 8:genes8120388. [PMID: 29244767 PMCID: PMC5748706 DOI: 10.3390/genes8120388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains several regulatory motifs, including inverted repeats (IRs) of different lengths. So far, the role of these motifs in the regulation of rosR transcription has not been elucidated in detail. In this study, we performed a functional analysis of these motifs using a set of transcriptional rosR-lacZ fusions that contain mutations in these regions. The levels of rosR transcription for different mutant variants were evaluated in R. leguminosarum using both quantitative real-time PCR and β-galactosidase activity assays. Moreover, the stability of wild type rosR transcripts and those with mutations in the regulatory motifs was determined using an RNA decay assay and plasmids with mutations in different IRs located in the 5′-untranslated region of the gene. The results show that transcription of rosR undergoes complex regulation, in which several regulatory elements located in the upstream region and some regulatory proteins are engaged. These include an upstream regulatory element, an extension of the -10 element containing three nucleotides TGn (TGn-extended -10 element), several IRs, and PraR repressor related to quorum sensing.
Collapse
|
80
|
Genomic insights into temperature-dependent transcriptional responses of Kosmotoga olearia, a deep-biosphere bacterium that can grow from 20 to 79 °C. Extremophiles 2017; 21:963-979. [PMID: 28894932 PMCID: PMC5674127 DOI: 10.1007/s00792-017-0956-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 11/29/2022]
Abstract
Temperature is one of the defining parameters of an ecological niche. Most organisms thrive within a temperature range that rarely exceeds ~30 °C, but the deep subsurface bacterium Kosmotoga olearia can grow over a temperature range of 59 °C (20–79 °C). To identify genes correlated with this flexible phenotype, we compared transcriptomes of K. olearia cultures grown at its optimal 65 °C to those at 30, 40, and 77 °C. The temperature treatments affected expression of 573 of 2224 K. olearia genes. Notably, this transcriptional response elicits re-modeling of the cellular membrane and changes in metabolism, with increased expression of genes involved in energy and carbohydrate metabolism at high temperatures and up-regulation of amino acid metabolism at lower temperatures. At sub-optimal temperatures, many transcriptional changes were similar to those observed in mesophilic bacteria at physiologically low temperatures, including up-regulation of typical cold stress genes and ribosomal proteins. Comparative genomic analysis of additional Thermotogae genomes indicates that one of K. olearia’s strategies for low-temperature growth is increased copy number of some typical cold response genes through duplication and/or lateral acquisition. At 77 °C one-third of the up-regulated genes are of hypothetical function, indicating that many features of high-temperature growth are unknown.
Collapse
|
81
|
Goñi-Moreno Á, Benedetti I, Kim J, de Lorenzo V. Deconvolution of Gene Expression Noise into Spatial Dynamics of Transcription Factor-Promoter Interplay. ACS Synth Biol 2017; 6:1359-1369. [PMID: 28355056 PMCID: PMC7617343 DOI: 10.1021/acssynbio.6b00397] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression noise is not only the mere consequence of stochasticity, but also a signal that reflects the upstream physical dynamics of the cognate molecular machinery. Soil bacteria facing recalcitrant pollutants exploit noise of catabolic promoters to deploy beneficial phenotypes such as metabolic bet-hedging and/or division of biochemical labor. Although the role of upstream promoter-regulator interplay in the origin of this noise is little understood, its specifications are probably ciphered in flow cytometry data patterns. We studied Pm promoter activity of the environmental bacterium Pseudomonas putida and its cognate regulator XylS by following expression of Pm-gfp fusions in single cells. Using mathematical modeling and computational simulations, we determined the kinetic properties of the system and used them as a baseline code to interpret promoter activity in terms of upstream regulator dynamics. Transcriptional noise was predicted to depend on the intracellular physical distance between regulator source (where XylS is produced) and the target promoter. Experiments with engineered bacteria in which this distance is minimized or enlarged confirmed the predicted effects of source/target proximity on noise patterns. This approach allowed deconvolution of cytometry data into mechanistic information on gene expression flow. It also provided a basis for selecting programmable noise levels in synthetic regulatory circuits.
Collapse
Affiliation(s)
- Ángel Goñi-Moreno
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Ilaria Benedetti
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| |
Collapse
|
82
|
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci U S A 2017; 114:E2729-E2738. [PMID: 28289196 PMCID: PMC5380061 DOI: 10.1073/pnas.1614712114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of Omossambicus Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named "OSRE1." Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1 Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation).
Collapse
Affiliation(s)
- Xiaodan Wang
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dietmar Kültz
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616;
| |
Collapse
|
83
|
Casella LG, Weiss A, Pérez-Rueda E, Antonio Ibarra J, Shaw LN. Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microb Genom 2017; 3:mgen000107. [PMID: 28663824 PMCID: PMC5382811 DOI: 10.1099/mgen.0.000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so doing, 243 transcription factors, 14 two-component systems (TCSs), 2 orphan response regulators, 1 hybrid TCS and 5 σ factors were found. A comparison of these elements between AB5075 and other clinical isolates, as well as a laboratory strain, led to the identification of several conserved regulatory elements, whilst at the same time uncovering regulators unique to hypervirulent strains. Lastly, by comparing regulatory elements compiled in this study to genes shown to be essential for AB5075 infection, we were able to highlight elements with a specific importance for pathogenic behaviour. Collectively, our work offers a unique insight into the regulatory network of A. baumannii strains, and provides insight into the evolution of hypervirulent lineages.
Collapse
Affiliation(s)
- Leila G Casella
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Andy Weiss
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Ernesto Pérez-Rueda
- 2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mérida, Yucatán, Mexico.,3Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- 4Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Delegación Miguel Hidalgo, CP, 11340 Mexico, DF, Mexico
| | - Lindsey N Shaw
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| |
Collapse
|
84
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
85
|
Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 2017; 284:466-484. [PMID: 27987384 DOI: 10.1111/febs.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The vitamin B6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
86
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
87
|
Son SJ, Park MR, Ryu SD, Maburutse BE, Oh NS, Park J, Oh S, Kim Y. Short communication: In vivo screening platform for bacteriocins using Caenorhabditis elegans to control mastitis-causing pathogens. J Dairy Sci 2016; 99:8614-8621. [PMID: 27638256 DOI: 10.3168/jds.2016-11330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 01/03/2023]
Abstract
This study aimed to develop an in vivo screening platform using Caenorhabditis elegans to identify a novel bacteriocin for controlling the mastitis-causing pathogen Staphylococcus aureus strain RF122 in dairy cows. Using Bacillus spp. isolated from traditional Korean foods, we developed a direct in vivo screening platform that uses 96-well plates and fluorescence image analysis. We identified a novel bacteriocin produced by Bacillus licheniformis strain 146 (lichenicin 146) with a high in vivo antimicrobial activity using our liquid C. elegans-Staph. aureus assay. We also determined the characteristics of lichenicin 146 using liquid chromatography-mass spectrometry and confirmed that it shared homologous sequences with bacteriocin family proteins. In addition, RNA-sequencing analysis revealed genes encoding cell surface or membrane proteins (SAB0993c, SAB0150, SAB0994c, and SAB2375c) that are involved in the bactericidal activity of lichenicin 146 against Staph. aureus strain RF122 infection as well as those encoding transcriptional regulators (SAB0844c and SAB0133). Thus, our direct in vivo screening platform facilitates simple, convenient, cost-effective, and reliable screening of potential antimicrobial compounds with applications in the dairy field.
Collapse
Affiliation(s)
- S J Son
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea; Agency of National Food Cluster, Gwacheon, 427-806, Korea
| | - M R Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea
| | - S D Ryu
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea
| | - B E Maburutse
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea
| | - N S Oh
- R&D Center, Seoul Dairy Cooperative, Ansan, Kyunggi 425-839, Korea
| | - J Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 570-752, Korea
| | - S Oh
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea.
| | - Y Kim
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 561-756, Korea.
| |
Collapse
|
88
|
Cureau N, AlJahdali N, Vo N, Carbonero F. Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives. Epigenomics 2016; 8:1259-73. [DOI: 10.2217/epi-2016-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human microbiota and epigenetic processes have both been shown to play a crucial role in health and disease. However, there is extremely scarce information on epigenetic modulation of microbiota members except for a few pathogens. Mainly DNA adenine methylation has been described extensively in modulating the virulence of pathogenic bacteria in particular. It would thus appear likely that such mechanisms are widespread for most bacterial members of the microbiota. This review will present briefly the current knowledge on epigenetic processes in bacteria, give examples of known methylation processes in microbial members of the human microbiota and summarize the knowledge on regulation of host epigenetic processes by the human microbiota.
Collapse
Affiliation(s)
- Natacha Cureau
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Nesreen AlJahdali
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| | - Nguyen Vo
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
- Cellular and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| |
Collapse
|
89
|
Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli. Nucleic Acids Res 2016; 44:6660-75. [PMID: 26908653 PMCID: PMC5001579 DOI: 10.1093/nar/gkw115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Flexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes. As these 'stress-ribosomes' are specific for the MazF-processed mRNAs, the translational program is changed. To identify this 'MazF-regulon' we employed Poly-seq (polysome fractionation coupled with RNA-seq analysis) and analyzed alterations introduced into the transcriptome and translatome after mazF overexpression. Unexpectedly, our results reveal that the corresponding protein products are involved in all cellular processes and do not particularly contribute to the general stress response. Moreover, our findings suggest that translational reprogramming serves as a fast-track reaction to harsh stress and highlight the so far underestimated significance of selective translation as a global regulatory mechanism in gene expression. Considering the reported implication of toxin-antitoxin (TA) systems in persistence, our results indicate that MazF acts as a prime effector during harsh stress that potentially introduces translational heterogeneity within a bacterial population thereby stimulating persister cell formation.
Collapse
Affiliation(s)
- Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Max F. Perutz Laboratories, Department of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Konstantin Byrgazov
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| |
Collapse
|
90
|
A comparative analysis of the ‘other roles’ of transcriptional factors from pathogenic organisms. Gene X 2016; 586:274-80. [DOI: 10.1016/j.gene.2016.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
|
91
|
Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA. Crystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors. PLoS One 2016; 11:e0157691. [PMID: 27337024 PMCID: PMC4918961 DOI: 10.1371/journal.pone.0157691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Small molecule effectors regulate gene transcription in bacteria by altering the DNA-binding affinities of specific repressor proteins. Although the GntR proteins represent a large family of bacterial repressors, only little is known about the allosteric mechanism that enables their function. DasR from Streptomyces coelicolor belongs to the GntR/HutC subfamily and specifically recognises operators termed DasR-responsive elements (dre-sites). Its DNA-binding properties are modulated by phosphorylated sugars. Here, we present several crystal structures of DasR, namely of dimeric full-length DasR in the absence of any effector and of only the effector-binding domain (EBD) of DasR without effector or in complex with glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Together with molecular dynamics (MD) simulations and a comparison with other GntR/HutC family members these data allowed for a structural characterisation of the different functional states of DasR. Allostery in DasR and possibly in many other GntR/HutC family members is best described by a conformational selection model. In ligand-free DasR, an increased flexibility in the EBDs enables the attached DNA-binding domains (DBD) to sample a variety of different orientations and among these also a DNA-binding competent conformation. Effector binding to the EBDs of DasR significantly reorganises the atomic structure of the latter. However, rather than locking the orientation of the DBDs, the effector-induced formation of β-strand β* in the DBD-EBD-linker segment merely appears to take the DBDs ‘on a shorter leash’ thereby impeding the ‘downwards’ positioning of the DBDs that is necessary for a concerted binding of two DBDs of DasR to operator DNA.
Collapse
Affiliation(s)
- Simon B. Fillenberg
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Mario D. Friess
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Samuel Körner
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
- * E-mail:
| |
Collapse
|
92
|
Merulla D, van der Meer JR. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. ACS Synth Biol 2016; 5:36-45. [PMID: 26348795 DOI: 10.1021/acssynbio.5b00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.
Collapse
Affiliation(s)
- Davide Merulla
- Department of Fundamental
Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
93
|
Tan Z, Chen J, Zhang X. Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:262. [PMID: 27980672 PMCID: PMC5134279 DOI: 10.1186/s13068-016-0675-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. RESULTS Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. CONCLUSIONS In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.
Collapse
Affiliation(s)
- Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jing Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
94
|
Majidian P, Kuse J, Tanaka K, Najafi H, Zeinalabedini M, Takenaka S, Yoshida KI. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. J GEN APPL MICROBIOL 2016; 62:277-285. [DOI: 10.2323/jgam.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Parastoo Majidian
- Department of Agrobioscience, Kobe University
- Sari University of Agricultural Sciences and Natural Resources
| | - Junko Kuse
- Department of Agrobioscience, Kobe University
| | | | - Hamid Najafi
- Sari University of Agricultural Sciences and Natural Resources
| | | | - Shinji Takenaka
- Department of Agrobioscience, Kobe University
- Organization of Advanced Science and Technology
| | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology
- Department of Science, Technology and Innovation
| |
Collapse
|
95
|
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. [PMID: 26136581 PMCID: PMC4488371 DOI: 10.1128/mmbr.00050-14] [Citation(s) in RCA: 1148] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
Affiliation(s)
- Pablo R. Hardoim
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Stéphane Compant
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | | | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
96
|
The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015. [PMID: 26136581 DOI: 10.1128/mmbr.00050-14.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
|
97
|
Latorre M, Low M, Gárate E, Reyes-Jara A, Murray BE, Cambiazo V, González M. Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis. Metallomics 2015; 7:1137-45. [PMID: 25906431 DOI: 10.1039/c5mt00043b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By integrating the microarray expression data and a global E. faecalis transcriptional network we identified a sub-network activated by zinc and copper. Our analyses indicated that the transcriptional response of the bacterium to copper and zinc exposure involved the activation of two modules, module I that contains genes implicated in zinc homeostasis, including the Zur transcriptional repressor, and module II containing a set of genes associated with general stress response and basal metabolism. Bacterial exposure to zinc and copper led to the repression of the zinc uptake systems of module I. Upon deletion of Zur, exposure to different zinc and copper conditions induced complementary homeostatic mechanisms (ATPase efflux proteins) to control the intracellular concentrations of zinc. The transcriptional activation of zinc homeostasis genes by zinc and copper reveals a functional interplay between these two metals, in which exposure to copper also impacts on the zinc homeostasis. Finally, we present a new zinc homeostasis model in E. faecalis, positioning this bacterium as one of the most complete systems biology model in metals described to date.
Collapse
Affiliation(s)
- Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
98
|
Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun 2015; 83:2542-56. [PMID: 25847961 DOI: 10.1128/iai.02978-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/29/2015] [Indexed: 01/14/2023] Open
Abstract
The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence.
Collapse
|
99
|
de las Heras A, Martínez-García E, Domingo-Sananes MR, de Lorenzo V. Widening functional boundaries of the σ(54) promoter Pu of Pseudomonas putida by defeating extant physiological constraints. MOLECULAR BIOSYSTEMS 2015; 11:734-42. [PMID: 25560994 DOI: 10.1039/c4mb00557k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extant layout of the σ(54) promoter Pu, harboured by the catabolic TOL plasmid, pWW0, of Pseudomonas putida is one of the most complex instances of endogenous and exogenous signal integration known in the prokaryotic domain. In this regulatory system, all signal inputs are eventually translated into occupation of the promoter sequence by either of two necessary components: the m-xylene responsive transcriptional factor XylR and the σ(54) containing form of RNA polymerase. Modelling of these components indicated that the Pu promoter could be upgraded to respond with much greater capacity to aromatic inducers by artificially increasing the endogenous levels of both XylR and the σ(54) sigma factor, either separately or together. To explore these scenarios, expression of rpoN, the gene encoding σ(54), was placed under the control of an orthogonal regulatory system that was inducible by salicylic acid. We generated a knock-in P. putida strain containing this construct alongside the xylR/Pu regulatory module in its native configuration, and furthermore, a second strain where xylR expression was under the control of an engineered positive-feedback loop. These interventions allowed us to dramatically increase the transcriptional capacity (i.e. absolute promoter output) of Pu far beyond its natural scope. In addition, they resulted in a new regulatory device displaying more sensitive and ultra-fast responses to m-xylene. To our knowledge, this is the first time that the working regime of a promoter has been rationally modified by releasing the constraints imposed by its innate constituents.
Collapse
Affiliation(s)
- Aitor de las Heras
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | |
Collapse
|
100
|
Jajesniak P, Seng Wong T. From genetic circuits to industrial-scale biomanufacturing: bacterial promoters as a cornerstone of biotechnology. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|