51
|
Dey R, Rieger A, Banting G, Ashbolt NJ. Role of amoebae for survival and recovery of 'non-culturable' Helicobacter pylori cells in aquatic environments. FEMS Microbiol Ecol 2021; 96:5902844. [PMID: 32897313 PMCID: PMC7494403 DOI: 10.1093/femsec/fiaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a fastidious Gram-negative bacterium that infects over half of the world's population, causing chronic gastritis and is a risk factor for stomach cancer. In developing and rural regions where prevalence rate exceeds 60%, persistence and waterborne transmission are often linked to poor sanitation conditions. Here we demonstrate that H. pylori not only survives but also replicates within acidified free-living amoebal phagosomes. Bacterial counts of the clinical isolate H. pylori G27 increased over 50-fold after three days in co-culture with amoebae. In contrast, a H. pylori mutant deficient in a cagPAI gene (cagE) showed little growth within amoebae, demonstrating the likely importance of a type IV secretion system in H. pylori for amoebal infection. We also demonstrate that H. pylori can be packaged by amoebae and released in extracellular vesicles. Furthermore, and for the first time, we successfully demonstrate the ability of two free-living amoebae to revert and recover viable but non-cultivable coccoid (VBNC)-H. pylori to a culturable state. Our studies provide evidence to support the hypothesis that amoebae and perhaps other free-living protozoa contribute to the replication and persistence of human-pathogenic H. pylori by providing a protected intracellular microenvironment for this pathogen to persist in natural aquatic environments and engineered water systems, thereby H. pylori potentially uses amoeba as a carrier and a vector of transmission.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Aja Rieger
- Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Graham Banting
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Provincial Laboratory for Public Health (ProvLab), Alberta Health Services, Edmonton, Canada.,School of Environmental, Sciense and Engineering, Southern Cross University, Lismore NSW, Australia
| |
Collapse
|
52
|
Rayamajhee B, Subedi D, Peguda HK, Willcox MD, Henriquez FL, Carnt N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens 2021; 10:pathogens10020225. [PMID: 33670718 PMCID: PMC7922382 DOI: 10.3390/pathogens10020225] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur 44700, Nepal
- Correspondence: or
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Mark Duncan Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland (UWS), Paisley PA1 2BE, UK;
| | - Nicole Carnt
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| |
Collapse
|
53
|
Chaúque BJM, Benetti AD, Corção G, Silva CE, Gonçalves RF, Rott MB. A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria. Photochem Photobiol Sci 2021; 20:123-137. [DOI: 10.1007/s43630-020-00008-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
|
54
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
55
|
Reyes‐Batlle M, Gabriel MF, Rodríguez‐Expósito R, Felgueiras F, Sifaoui I, Mourão Z, de Oliveira Fernandes E, Piñero JE, Lorenzo‐Morales J. Evaluation of the occurrence of pathogenic free-living amoeba and bacteria in 20 public indoor swimming pool facilities. Microbiologyopen 2021; 10:e1159. [PMID: 33650798 PMCID: PMC7859502 DOI: 10.1002/mbo3.1159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, indoor swimming pool activities have increased to promote health-enhancing physical activities, which require establishing suitable protocols for disinfection and water quality control. Normally, the assessment of the microbial quality of the water in the pools only considers the presence of different bacteria. However, other less frequent but more resistant pathogens, such as free-living amoebas (FLA), are not contemplated in both existing recommendation and research activities. FLA represent a relevant human health risk, not only due to their pathogenicity but also due to the ability to act as vehicles of other pathogens, such as bacteria. Therefore, this work aimed to study the physicochemical characteristics and the occurrence of potentially pathogenic FLA and bacteria in water samples from 20 public indoor swimming facilities in Northern Portugal. Our results showed that some swimming pools presented levels of pH, free chlorine, and conductivity out of the recommended limits. Pathogenic FLA species were detected in two of the facilities under study, where we also report the presence of both, FLA and pathogenic bacteria. Our findings evidence the need to assess the occurrence of FLA and their existence in the same environmental niche as pathogenic bacteria in swimming pool facilities worldwide and to establish recommendations to safeguard the health of the users.
Collapse
Affiliation(s)
- María Reyes‐Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Marta F. Gabriel
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | - Rubén Rodríguez‐Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
| | - Fátima Felgueiras
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Zenaida Mourão
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | | | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Jacob Lorenzo‐Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| |
Collapse
|
56
|
Reyneke B, Hamilton KA, Fernández-Ibáñez P, Polo-López MI, McGuigan KG, Khan S, Khan W. EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140717. [PMID: 32679496 DOI: 10.1016/j.scitotenv.2020.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10-4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA.
Collapse
Affiliation(s)
- B Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - K A Hamilton
- School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85281, United States
| | - P Fernández-Ibáñez
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | - M I Polo-López
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain
| | - K G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - W Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
57
|
Moreno-Mesonero L, Ferrús MA, Moreno Y. Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. ENVIRONMENTAL RESEARCH 2020; 190:109987. [PMID: 32771367 DOI: 10.1016/j.envres.2020.109987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa commonly found in water. FLA are well-established hosts for amoeba-resistant bacteria, most of which are pathogenic, and offer them shelter from adverse environmental conditions or water treatments. Since there is very little knowledge about the complete bacterial microbiome of FLA, in this work the bacterial microbiome of FLA isolated from wastewater both after secondary and tertiary treatments was studied by amplicon-based sequencing. FLA were detected in 87.5% and 50.0% of wastewater samples taken after secondary and tertiary disinfection treatments, respectively. The most abundant bacterial phyla were Proteobacteria, Planctomycetes, Bacteroidetes and Firmicutes, which represented 83.77% of the total bacterial FLA microbiome. The most abundant class of bacteria was Gammaproteobacteria, which contains an important number of relevant pathogenic bacteria. The bacteria of public health concern Aeromonas, Arcobacter, Campylobacter, Helicobacter, Klebsiella, Legionella, Mycobacterium, Pseudomonas and Salmonella were detected as part of the FLA microbiome. Although different microbial communities were identified in each sample, there is no correlation between the microbiome of FLA and the extent of wastewater treatment. To our knowledge, this is the first work in which the bacterial microbiome of FLA isolated from wastewater is studied. Obtained results indicate that FLA are hosts of potentially pathogenic bacteria in treated wastewater used for irrigation, which may pose a public health threat.
Collapse
Affiliation(s)
- Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
58
|
Farrag HMM, Mostafa FAAM, Mohamed ME, Huseein EAM. Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Exp Parasitol 2020; 219:108031. [PMID: 33091422 DOI: 10.1016/j.exppara.2020.108031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fungi represent an interesting candidate for the synthesis of nanoparticles. The biosynthesis of silver nanoparticles (AgNPs) has many industrial and biomedical indications. We aimed in this work to biologically synthesize silver nanoparticles using Aspergillus niger and to evaluate its effect against the newly identified Allovahlkampfia spelaea that causes resistant human keratitis. MATERIAL AND METHODS Aspergillus niger (soil isolate) was treated with silver nitrate to produce silver nanoparticles. AgNPs were characterized by Ultraviolet-Visible Spectroscopy, Transmission Electron Microscopy, and Fourier Transform Infrared Spectroscopy. The effect of the synthesized nanoparticles against Allovahlkampfia spelaea growth, encystation, excystation, and toxicity in host cells was evaluated. RESULTS AgNPs exhibited significant inhibition of Allovahlkampfia spelaea viability and growth of both trophozoites and cysts, with a reduction of amoebic cytotoxic activity in host cells. CONCLUSION AgNPs may give a promising future to the treatment of Allovahlkampfia spelaea infections in humans.
Collapse
Affiliation(s)
- Haiam Mohamed Mahmoud Farrag
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt; Faculty of Applied Medical Sciences, Shaqra University, Saudi Arabia.
| | | | - Mona Embarek Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
59
|
Hubert F, Rodier MH, Minoza A, Portet-Sulla V, Cateau E, Brunet K. Free-living amoebae promote Candida auris survival and proliferation in water. Lett Appl Microbiol 2020; 72:82-89. [PMID: 32978979 DOI: 10.1111/lam.13395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Candida auris is an emerging species responsible for life-threatening infections. Its ability to be resistant to most systemic antifungal classes and its capacity to persist in a hospital environment have led to health concerns. Currently, data about environmental reservoirs are limited but remain essential in control of C. auris spread. The aim of our study was to explore the interactions between C. auris and two free-living amoeba (FLA) species, Vermamoeba vermiformis and Acanthamoeba castellanii, potentially found in the same water environment. Candida auris was incubated with FLA trophozoites or their culture supernatants. The number of FLA and yeasts was determined at different times and transmission electron microscopy (TEM) was performed. Supernatants of FLAs promoted yeast survival and proliferation. Internalization of viable C. auris within both FLA species was also evidenced by TEM. A water environmental reservoir of C. auris can therefore be considered through FLAs and contamination of the hospital water networks would consequently be possible.
Collapse
Affiliation(s)
- F Hubert
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France
| | - M-H Rodier
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France.,UMR CNRS 7267, Poitiers, France
| | - A Minoza
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France
| | - V Portet-Sulla
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France
| | - E Cateau
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France.,UMR CNRS 7267, Poitiers, France
| | - K Brunet
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France.,Département des agents infectieux, Service de Mycologie-Parasitologie, CHU Poitiers, Poitiers, France.,INSERM U1070, Poitiers, France
| |
Collapse
|
60
|
Zhou L, Liu L, Chen WY, Sun JJ, Hou SW, Kuang TX, Wang WX, Huang XD. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114683. [PMID: 32388300 DOI: 10.1016/j.envpol.2020.114683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO3-N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei-Yuan Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ji-Jia Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shi-Wei Hou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tian-Xu Kuang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xian-De Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
61
|
Wekerle M, Engel J, Walochnik J. Anti-Acanthamoeba disinfection: hands, surfaces and wounds. Int J Antimicrob Agents 2020; 56:106122. [PMID: 32739477 DOI: 10.1016/j.ijantimicag.2020.106122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Acanthamoebae are facultative parasites causing rare but serious infections such as keratitis and encephalitis and are also known as vectors for several bacterial pathogens, including legionellae and pseudomonads. Acanthamoeba cysts are particularly resilient and enable the amoebae to withstand desiccation and to resist disinfection and therapy. While the search for new therapeutic options has been intensified in the past years, hand and surface disinfectants as well as topical antiseptics for preventing infections have not been studied in detail to date. The aim of this study was to screen well-known and commonly used antimicrobial products in various formulations and different concentrations for their efficacy against Acanthamoeba trophozoites and cysts, including aliphatic alcohols, quaternary ammonium compounds (QACs), peracetic acid (PAA), potassium peroxymonosulfate sulfate (PPMS) and octenidine dihydrochloride (OCT). Of all products tested, OCT and QACs showed the highest efficacy, totally eradicating both trophozoites and cysts within 1 min. The determined 50% effective concentration (EC50) for cysts was 0.196 mg/mL for OCT and 0.119 mg/mL for QACs after 1 min of exposure. PAA and PPMS showed reliable cysticidal efficacies only with prolonged incubation times of 30 min and 60 min, respectively. Aliphatic alcohols generally had limited efficacy, and only against trophozoites. In conclusion, OCT and QACs are potent actives against Acanthamoeba trophozoites and cysts at concentrations used in commercially available products, within contact times suitable for surface and hand disinfection as well as topical antisepsis.
Collapse
Affiliation(s)
- Maximilian Wekerle
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Jan Engel
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
62
|
Fricke C, Xu J, Jiang F, Liu Y, Harms H, Maskow T. Rapid culture-based detection of Legionella pneumophila using isothermal microcalorimetry with an improved evaluation method. Microb Biotechnol 2020; 13:1262-1272. [PMID: 32212253 PMCID: PMC7264898 DOI: 10.1111/1751-7915.13563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The detection and quantification of Legionella pneumophila (responsible for legionnaire's disease) in water samples can be achieved by various methods. However, the culture-based ISO 11731:2017, which is based on counts of colony-forming units per ml (CFU·ml-1 ) is still the gold standard for quantification of Legionella species (spp.). As a powerful alternative, we propose real-time monitoring of the growth of L. pneumophila using an isothermal microcalorimeter (IMC). Our results demonstrate that, depending on the initial concentration of L. pneumophila, detection times of 24-48 h can be reliably achieved. IMC may, therefore, be used as an early warning system for L. pneumophila contamination. By replacing only visual detection of growth by a thermal sensor, but otherwise maintaining the standardized protocol of the ISO 11731:2017, the new procedure could easily be incorporated into existing standards. The exact determination of the beginning of metabolic heat is often very difficult because at the beginning of the calorimetric signal the thermal stabilization and the metabolic heat development overlap. Here, we propose a new data evaluation based on the first derivation of the heat flow signal. The improved evaluation method can further reduce detection times and significantly increase the reliability of the IMC approach.
Collapse
Affiliation(s)
- Christian Fricke
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Juan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Feng‐Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Hauke Harms
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Thomas Maskow
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
63
|
Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front Mol Biosci 2020; 7:112. [PMID: 32656228 PMCID: PMC7325957 DOI: 10.3389/fmolb.2020.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires’ disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.
Collapse
Affiliation(s)
- Theo J Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarath C Dantu
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lee Sewell
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Katherine Richardson
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rosie Shaw
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
64
|
Goñi P, Benito M, LaPlante D, Fernández MT, Sánchez E, Chueca P, Miguel N, Mosteo R, Ormad MP, Rubio E. Identification of free-living amoebas and amoeba-resistant bacteria accumulated in Dreissena polymorpha. Environ Microbiol 2020; 22:3315-3324. [PMID: 32436345 DOI: 10.1111/1462-2920.15093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
To identify the free-living amoeba (FLA) and amoeba-resistant bacteria (ARB) accumulated in zebra mussels and in the water in which they are found, mussels were collected at two locations in the Ebro river basin (North East Spain). FLAs and bacteria were isolated from mussel extracts and from natural water. PCR techniques were used to identify the FLAs and endosymbiont bacteria (Legionella, Mycobacterium, Pseudomonas and cyanobacteria), and to detect Giardia and Cryptosporidium. The most frequently found FLAs were Naegleria spp. The presence of Legionella, Mycobacterium and Pseudomonas inside the FLA was demonstrated, and in some cases both Legionella and Pseudomonas were found together. Differences between FLAs and ARB identified inside the mussels and in the water were detected. In addition, Escherichia coli, Clostridium perfringens, Salmonella spp. and Enterococcus spp. were accumulated in mussels in concentrations unconnected with those found in water. The results show the ability of the zebra mussel to act as a reservoir of potentially pathogenic FLAs, which are associated with potentially pathogenic ARB, although the lack of association between microorganisms inside the mussels and in the water suggests that they are not useful for monitoring microbiological contamination at a specific time.
Collapse
Affiliation(s)
- Pilar Goñi
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| | - María Benito
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Daniella LaPlante
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - María T Fernández
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Physiatry and Nursery, Faculty of Health Sciences University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - Elena Sánchez
- Service of Microbiology and Parasitology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, C/San Juan Bosco, 15, 50009, Spain
| | - Patricia Chueca
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - Natividad Miguel
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Rosa Mosteo
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - María P Ormad
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Encarnación Rubio
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
65
|
Edagawa A, Kimura A, Miyamoto H. Investigations on Contamination of Environmental Water Samples by Legionella using Real-Time Quantitative PCR Combined with Amoebic Co-Culturing. Biocontrol Sci 2020; 24:213-220. [PMID: 31875613 DOI: 10.4265/bio.24.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We analyzed the contamination of environmental water samples with Legionella spp. using a conventional culture method, real-time quantitative PCR (qPCR), and real-time qPCR combined with an amoebic co-culture method. Samples (n = 110) were collected from 19 cooling towers, 31 amenity water facilities, and 60 river water sources of tap water in Japan. Legionella was detected in only three samples (3/110, 2.7%) using the culture method. The rate of Legionella detection using amoebic co-culture followed by qPCR was 74.5%, while that using qPCR without amoebic co-culture was 75.5%. A higher than 10-fold bacterial count was observed in 19 samples (19/110, 17.3%) using real-time qPCR subsequent to amoebic co-culture, compared with identical samples analyzed without co-culture. Of these 19 samples, 13 were identified as Legionella spp., including L. pneumophila and L. anisa, and the non-culturable species were identified as L. lytica and L. rowbothamii. This study showed that the detection of Legionella spp., even in those samples where they were not detected by the culture method, was possible using real-time qPCR and an amoebic co-culture method. In addition, this analytical test combination is a useful tool to detect viable and virulent Legionella spp..
Collapse
Affiliation(s)
- Akiko Edagawa
- Department of Environment Health, Osaka Prefectural Institute of Public Health
| | - Akio Kimura
- Department of Environment Health, Osaka Prefectural Institute of Public Health
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology Faculty of Medicine, Saga University
| |
Collapse
|
66
|
Encystment Induces Down-Regulation of an Acetyltransferase-Like Gene in Acanthamoeba castellanii. Pathogens 2020; 9:pathogens9050321. [PMID: 32357498 PMCID: PMC7281194 DOI: 10.3390/pathogens9050321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Acanthamoeba castellanii is a ubiquitous free-living amoeba. Pathogenic strains are causative agents of Acanthamoeba keratitis and granulomatous amoebic encephalitis. In response to adverse conditions, A. castellanii differentiate into cysts, which are metabolically inactive and resistant cells. This process, also named encystment, involves biochemical and genetic modifications that remain largely unknown. This study characterizes the role of the ACA1_384820 Acanthamoeba gene during encystment. This gene encodes a putative N-acetyltransferase, belonging to the Gcn5-related N-acetyltransferase (GNAT) family. We showed that expression of the ACA1_384820 gene was down-regulated as early as two hours after induction of encystment in A. castellanii. Interestingly, overexpression of the ACA1_384820 gene affects formation of cysts. Unexpectedly, the search of homologs of ACA1_384820 in the Eukaryota gene datasets failed, except for some species in the Acanthamoeba genus. Bioinformatics analysis suggested a possible lateral acquisition of this gene from prokaryotic cells. This study enabled us to describe a new Acanthamoeba gene that is down-regulated during encystment.
Collapse
|
67
|
Core gene-based molecular detection and identification of Acanthamoeba species. Sci Rep 2020; 10:1583. [PMID: 32005846 PMCID: PMC6994504 DOI: 10.1038/s41598-020-57998-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Acanthamoeba spp. are predominant free-living amoebae of water and soil. They have been used as tools for the isolation and culture of microbes that resist after their phagocytosis, such as Legionella-like bacteria, and, more recently giant viruses for which differences in permissiveness have been reported. However, problems have been reported regarding their identification at the species level. The present work implemented specific PCR systems for the detection and identification of Acanthamoeba species through comparison of sequences and phylogenetic analyses. Thirty-three Acanthamoeba isolates were studied, including 20 reference strains and 13 isolates retrieved from water, soil or clinical samples. Previous delineation of a core genome encompassing 826 genes based on draft genome sequences from 14 Acanthamoeba species allowed designing PCR systems for one of these core genes that encodes an alanine-tRNA ligase. These primers allowed an efficient and specific screening to detect Acanthamoeba presence. In addition, they identified all 20 reference strains, while partial and complete sequences coding for 18S ribosomal RNA identified only 11 (55%). We found that four isolates may be considered as new Acanthamoeba species. Consistent with previous studies, we demonstrated that some Acanthamoeba isolates were incorrectly assigned to species using the 18S rDNA sequences. Our implemented tool may help determining which Acanthamoeba strains are the most efficient for the isolation of associated microorganisms.
Collapse
|
68
|
First Molecular Evidences of Acanthamoeba T3, T4 and T5 Genotypes in Hemodialysis Units in Iran. Acta Parasitol 2019; 64:911-915. [PMID: 31552581 DOI: 10.2478/s11686-019-00122-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acanthamoeba is a genus of the free-living amoeba that is widespread in the environment and is a causative agent of opportunistic infections in human. This study aimed to investigate the existence and genotyping of Acanthamoeba species in hemodialysis units in Iran. METHODS In the present study, forty water samples of hydraulic systems and twenty dust samples were collected from two hemodialysis units in Mazandaran Province, northern Iran. The samples were cultivated on non-nutrient agar and genotyping was performed by targeting the 18S rRNA gene. RESULTS Both morphology and molecular analyses showed that 17.5% (7/40) of water samples and 50% (10/20) of dust samples were positive for Acanthamoeba spp. The sequencing analysis of these isolates was found to be T3, T4 and T5 genotypes. DISCUSSION To the best of our knowledge, this is the first investigation to identify of Acanthamoeba species in hydraulic system of hemodialysis units in Iran. High contamination of hemodialysis units with virulent T4 genotype of Acanthamoeba may poses a risk for biofilm formation. Our results support urgent need to improve filtration methods in dialysis units and monitoring hemodialysis patients for Acanthamoeba infections.
Collapse
|
69
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
70
|
Type II Secretion Promotes Bacterial Growth within the Legionella-Containing Vacuole in Infected Amoebae. Infect Immun 2019; 87:IAI.00374-19. [PMID: 31405960 DOI: 10.1128/iai.00374-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
It was previously determined that the type II secretion system (T2SS) promotes the ability of Legionella pneumophila to grow in coculture with amoebae. Here, we discerned the stage of intracellular infection that is potentiated by comparing the wild-type and T2SS mutant legionellae for their capacity to parasitize Acanthamoeba castellanii Whereas the mutant behaved normally for entry into the host cells and subsequent evasion of degradative lysosomes, it was impaired in the ability to replicate, with that defect being first evident at approximately 9 h postentry. The replication defect was initially documented in three ways: by determining the numbers of CFU recovered from the lysates of the infected monolayers, by monitoring the levels of fluorescence associated with amoebal monolayers infected with green fluorescent protein (GFP)-expressing bacteria, and by utilizing flow cytometry to quantitate the amounts of GFP-expressing bacteria in individual amoebae. By employing confocal microscopy and newer imaging techniques, we further determined the progression in volume and shape of the bacterial vacuoles and found that the T2SS mutant grows at a decreased rate and does not attain maximally sized phagosomes. Overall, the entire infection cycle (i.e., entry to egress) was considerably slower for the T2SS mutant than it was for the wild-type strain, and the mutant's defect was maintained over multiple rounds of infection. Thus, the T2SS is absolutely required for L. pneumophila to grow to larger numbers in its intravacuolar niche within amoebae. Combining these results with those of our recent analysis of macrophage infection, T2SS is clearly a major component of L. pneumophila intracellular infection.
Collapse
|
71
|
Microbial Dynamics of Biosand Filters and Contributions of the Microbial Food Web to Effective Treatment of Wastewater-Impacted Water Sources. Appl Environ Microbiol 2019; 85:AEM.01142-19. [PMID: 31227556 DOI: 10.1128/aem.01142-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Biosand filtration systems are widely used for drinking water treatment, from household-level, intermittently operated filters to large-scale continuous municipal systems. While it is well-established that microbial activity within the filter is essential for the removal of potential pathogens and other contaminants, the microbial ecology of these systems and how microbial succession relates to their performance remain poorly resolved. We determined how different source waters influence the composition, temporal dynamics, and performance of microbial communities in intermittently operated biosand filters. We operated lab-scale biosand filters, adding daily inputs from two contrasting water sources with differing nutrient concentrations and found that total coliform removal increased and became less variable after 4 weeks, regardless of water source. Total effluent biomass was also lower than total influent biomass for both water sources. Bacterial community composition, assessed via cultivation-independent DNA sequencing, varied by water source, sample type (influent, effluent, or sand), and time. Despite these differences, we identified specific taxa that were consistently removed, including common aquatic and wastewater bacteria. In contrast, taxa consistently more abundant in the sand and effluent included predatory, intracellular, and symbiotic bacteria.IMPORTANCE Although microbial activities are known to contribute to the effectiveness of biosand filtration for drinking water treatment, we have a limited understanding of what microbial groups are most effectively removed, colonize the sand, or make it through the filter. This study tracked the microbial communities in the influent, sand, and effluent of lab-scale, intermittently operated biosand filters over 8 weeks. These results represent the most detailed and time-resolved investigation of the microbial communities in biosand filters typical of those implemented at the household level in many developing countries. We show the importance of the microbial food web in biosand filtration, and we identified taxa that are preferentially removed from wastewater-impacted water sources. We found consistent patterns in filter effectiveness from source waters with differing nutrient loads and, likewise, identified specific bacterial taxa that were consistently more abundant in effluent waters, taxa that are important targets for further study and posttreatment.
Collapse
|
72
|
Inkinen J, Jayaprakash B, Siponen S, Hokajärvi AM, Pursiainen A, Ikonen J, Ryzhikov I, Täubel M, Kauppinen A, Paananen J, Miettinen IT, Torvinen E, Kolehmainen M, Pitkänen T. Active eukaryotes in drinking water distribution systems of ground and surface waterworks. MICROBIOME 2019; 7:99. [PMID: 31269979 PMCID: PMC6610866 DOI: 10.1186/s40168-019-0715-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/20/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and survival. METHODS Eukaryotes were characterized by Illumina high-throughput sequencing targeting 18S rRNA gene (DNA) that estimates the total community and the 18S rRNA gene transcript (RNA) that is more representative of the active part of the community. DWDS cold water (N = 124), hot water (N = 40), and biofilm (N = 16) samples were collected from four cities in Finland. The sampled DWDSs were from two waterworks A-B with non-disinfected, recharged groundwater as source water and from three waterworks utilizing chlorinated water (two DWDSs of surface waterworks C-D and one of ground waterworks E). In each DWDS, samples were collected from three locations during four seasons of 1 year. RESULTS A beta-diversity analysis revealed that the main driver shaping the eukaryotic communities was the DWDS (A-E) (R = 0.73, P < 0.001, ANOSIM). The kingdoms Chloroplastida (green plants and algae), Metazoa (animals: rotifers, nematodes), Fungi (e.g., Cryptomycota), Alveolata (ciliates, dinoflagellates), and Stramenopiles (algae Ochrophyta) were well represented and active-judging based on the rRNA gene transcripts-depending on the surrounding conditions. The unchlorinated cold water of systems (A-B) contained a higher estimated total number of taxa (Chao1, average 380-480) than chlorinated cold water in systems C-E (Chao1 ≤ 210). Within each DWDS, unique eukaryotic communities were identified at different locations as was the case also for cold water, hot water, and biofilms. A season did not have a consistent impact on the eukaryotic community among DWDSs. CONCLUSIONS This study comprehensively characterized the eukaryotic community members within the DWDS of well-maintained ground and surface waterworks providing good quality water. The study gives an indication that each DWDS houses a unique eukaryotic community, mainly dependent on the raw water source and water treatment processes in place at the corresponding waterworks. In particular, disinfection as well as hot water temperature seemed to represent a strong selection pressure that controlled the number of active eukaryotic species.
Collapse
Affiliation(s)
- Jenni Inkinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Sallamaari Siponen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna Pursiainen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jenni Ikonen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ivan Ryzhikov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ari Kauppinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ilkka T. Miettinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Mikko Kolehmainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
73
|
Maghsoodloorad S, Maghsoodloorad E, Tavakoli Kareshk A, Motazedian MH, Yusuf MA, Solgi R. Thermotolerant Acanthamoeba spp. isolated from recreational water in Gorgan City, north of Iran. J Parasit Dis 2019; 43:240-245. [PMID: 31263329 PMCID: PMC6570728 DOI: 10.1007/s12639-018-01081-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022] Open
Abstract
Acanthamoeba as free-living parasites are scattered ubiquitously, throughout the world. This study was aimed to evaluate the presence of Acanthamoeba spp. genotypes in the recreational water sources in Gorgan County, the capital of Golestan Province using both morphological and molecular approaches. Thirty water samples were collected from different recreational waters in Gorgan, the capital of Golestan Province, northern Iran during 2015-2016. Samples were filtered and followed by culture in non-nutrient agar. Acanthamoeba were identified both by morphological and molecular analysis. The pathogenical potential of positive cloned samples were also determined using tolerance test. Twenty-six percent of recreational water were identified as Acanthamoeba spp. based on the morphological analysis and from these positive samples, five samples were successfully sequenced after molecular studies. Phylogenetic analysis showed the clustering of four samples in T4 genotype group and only one sample as T15 genotype. Thermotolerance test revealed that all cloned samples were highly positive. Since the attractiveness of recreational places for people is increasing, the potential risk of this water should be monitored routinely in each region. More studies are needed to better evaluate the risk of this ubiquitous parasite for the human.
Collapse
Affiliation(s)
- Somayeh Maghsoodloorad
- Department of Parasitology and Mycology, School of Medicine, Golestan University of Medical Science, Gorgān, Iran
| | | | - Amir Tavakoli Kareshk
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Motazedian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mustapha Ahmed Yusuf
- Department of Medical Entomology and Vector Control, School of Public Health, International Campus, Tehran University of Medical Science, Tehran, Iran
| | - Rahmat Solgi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
74
|
Transcriptional analysis of flagellar and putative virulence genes of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii. Arch Microbiol 2019; 201:1075-1083. [DOI: 10.1007/s00203-019-01678-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 05/11/2019] [Indexed: 11/26/2022]
|
75
|
Zarei M, Ghahfarokhi ME, Fazlara A, Bahrami S. Effect of the bacterial growth phase and coculture conditions on the interaction of Acanthamoeba castellanii with Shigella dysenteriae, Shigella flexneri, and Shigella sonnei. J Basic Microbiol 2019; 59:735-743. [PMID: 30980722 DOI: 10.1002/jobm.201900075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/11/2019] [Accepted: 03/23/2019] [Indexed: 11/05/2022]
Abstract
Shigella species and Acanthamoeba castellanii share the same ecological niches, and their interaction has been addressed in a limited number of research. However, there are still uncertain aspects and discrepant findings of this interaction. In the present study, the effects of the bacterial growth phase, cocultivation temperature and the type of culture media on the interaction of A. castellanii with Shigella dysenteriae, Shigella sonnei and Shigella flexneri were evaluated. In nutrient-poor page's amoeba saline (PAS) medium, the number of recovered bacteria and the uptake rates were significantly higher in stationary phase cells than logarithmic phase cells. However, no significant differences were observed in the number of recovered bacteria and the uptake rates between logarithmic and stationary phase cells in nutrient-rich peptone-yeast extract-glucose (PYG) medium. While the number of recovered bacteria was significantly higher in nutrient-rich than nutrient-poor media, in all the three Shigella species, the bacterial uptake rates were significantly higher in nutrient-poor than nutrient-rich media at both cocultivation temperatures. In both nutrient-poor and nutrient-rich media and at both cocultivation temperatures, the number of viable Shigella species after 24 h incubation were not influenced by the presence of A. castellanii. Although Shigella species did not proliferate in A. castellanii trophozoites, a considerable number of bacteria were survived in the trophozoites up to 15 days. From the public health perspective, the results of this study are important for further understanding of the nature of the interaction of these organisms and to deal with Shigella species in the environment.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojdeh Emami Ghahfarokhi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Somayeh Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
76
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
77
|
Thapa S, Lukat N, Selhuber-Unkel C, Cherstvy AG, Metzler R. Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. J Chem Phys 2019; 150:144901. [PMID: 30981236 DOI: 10.1063/1.5086269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samudrajit Thapa
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nils Lukat
- Institute of Materials Science, Christian-Albrechts-Universität zu Kiel, 24143 Kiel, Germany
| | | | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
78
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
79
|
Maal-Bared R, Dixon B, Axelsson-Olsson D. Fate of internalized Campylobacter jejuni and Mycobacterium avium from encysted and excysted Acanthamoeba polyphaga. Exp Parasitol 2019; 199:104-110. [PMID: 30902623 DOI: 10.1016/j.exppara.2019.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
Association of the water- and foodborne pathogen Campylobacter jejuni with free-living Acanthamoeba spp. trophozoites enhances C. jejuni survival and resistance to biocides and starvation. When facing less than optimal environmental conditions, however, the Acanthamoeba spp. host can temporarily transform from trophozoite to cyst and back to trophozoite, calling the survival of the internalized symbiont and resulting public health risk into question. Studies investigating internalized C. jejuni survival after A. castellanii trophozoite transformation have neither been able to detect its presence inside the Acanthamoeba cyst after encystation nor to confirm its presence upon excystation of trophozoites through culture-based techniques. The purpose of this study was to detect C. jejuni and Mycobacterium avium recovered from A. polyphaga trophozoites after co-culture and induction of trophozoite encystation using three different encystation methods (Neff's medium, McMillen's medium and refrigeration), as well as after cyst excystation. Internalized M. avium was used as a positive control, since studies have consistently detected the organism after co-culture and after host excystation. Concentrations of C. jejuni in A. polyphaga trophozoites were 4.5 × 105 CFU/ml, but it was not detected by PCR or culture post-encystation. This supports the hypothesis that C. jejuni may be digested during encystation of the amoebae. M. avium was recovered at a mean concentration of 1.9 × 104 from co-cultured trophozoites and 4.4 × 101 CFU/ml after excystation. The results also suggest that M. avium recovery post-excystation was statistically significantly different based on which encystation method was used, ranging from 1.3 × 101 for Neff's medium to 5.4 × 101 CFU/ml for refrigeration. No M. avium was recovered from A. polyphaga cysts when trophozoites were encysted by McMillen's medium. Since C. jejuni internalized in cysts would be more likely to survive harsh environmental conditions and disinfection, a better understanding of potential symbioses between free-living amoebae and campylobacters in drinking water distribution systems and food processing environments is needed to protect public health. Future co-culture experiments examining survival of internalized C. jejuni should carefully consider the encystation media used, and include molecular detection tools to falsify the hypothesis that C. jejuni may be present in a viable but not culturable state.
Collapse
Affiliation(s)
- Rasha Maal-Bared
- Centre for Research on Environmental Microbiology, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Diana Axelsson-Olsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
80
|
Cucina A, Filali S, Risler A, Febvay C, Salmon D, Pivot C, Pelandakis M, Pirot F. Dual 0.02% chlorhexidine digluconate - 0.1% disodium EDTA loaded thermosensitive ocular gel for Acanthamoeba keratitis treatment. Int J Pharm 2019; 556:330-337. [PMID: 30553004 DOI: 10.1016/j.ijpharm.2018.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Poor bioavailability and low residence time limit the efficiency of conventional biguanide-based eye drops against Acanthamoeba keratitis. The aim of this work was to formulate an original anti-amoebic thermoreversible ocular gel combining biguanide and metalloproteases inhibitor - chelating agent. Chlorhexidine digluconate (CHX)-ethylenediaminetetraacetic acid disodium salt (Na2EDTA) were compounded in poloxamer 407 saline solution. 0.02% CHX - 0.1% Na2EDTA loaded thermosensitive ocular gel exhibited appropriate pH (5.73 ± 0.06), iso-osmolality (314 ± 5 mOsm/kg), viscosity (ranged between 15 and 25 mPa.s) and thermal gelation (26.5 °C and 33 °C) properties. Bioadhesion of gel was successfully tested onto isolated bovine eyes as well as the assessment of CHX penetration into the cornea. Intracorneal CHX concentration was found greater than trophozoite minimum amoebicidal concentration and minimal cysticidal concentration after 15-min and 2-h ocular exposure, respectively, while any CHX permeation through the cornea was detected (<51 ng/cm2/h). Improvement of CHX ocular bioavailability was attributed to probable solubilization of tear film lipid layer by poloxamer. In vitro efficiency of CHX-Na2EDTA ocular gel was confirmed from the drastic reduction of trophozoite and cyst survival (to 25% and 2%, respectively), confirming the potential of the multicomponent pharmaceutical material strategy for the treatment of Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Annamaria Cucina
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Samira Filali
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Arnaud Risler
- Laboratoire Lorrain de Chimie Moléculaire, Faculté des Sciences et Techniques, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre les Nancy, France
| | - Camille Febvay
- Service d'Ophtalmologie, Groupement Hospitalier Edouard Herriot, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Damien Salmon
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Christine Pivot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Michel Pelandakis
- Université de Lyon, Laboratoire de Microbiologie, Adaptation et Pathogénie, UMR 5240, ISPB-Faculté de Pharmacie Laboratoire L3, 8, avenue Rockefeller - 69373 Lyon Cedex 08, France
| | - Fabrice Pirot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France. http://fripharm.com
| |
Collapse
|
81
|
Isolation and molecular identification of free-living amoebae from dishcloths in Tenerife, Canary Islands, Spain. Parasitol Res 2019; 118:927-933. [DOI: 10.1007/s00436-018-06193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
|
82
|
Gutekunst SB, Siemsen K, Huth S, Möhring A, Hesseler B, Timmermann M, Paulowicz I, Mishra YK, Siebert L, Adelung R, Selhuber-Unkel C. 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomater Sci Eng 2019; 5:1784-1792. [PMID: 30984820 PMCID: PMC6457568 DOI: 10.1021/acsbiomaterials.8b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Porous hydrogel scaffolds are ideal candidates for mimicking cellular microenvironments, regarding both structural and mechanical aspects. We present a novel strategy to use uniquely designed ceramic networks as templates for generating hydrogels with a network of interconnected pores in the form of microchannels. The advantages of this new approach are the high and guaranteed interconnectivity of the microchannels, as well as the possibility to produce channels with diameters smaller than 7 μm. Neither of these assets can be ensured with other established techniques. Experiments using the polyacrylamide substrates produced with our approach have shown that the migration of human pathogenic Acanthamoeba castellanii trophozoites is manipulated by the microchannel structure in the hydrogels. The parasites can even be captured inside the microchannel network and removed from their incubation medium by the porous polyacrylamide, indicating the huge potential of our new technique for medical, pharmaceutical, and tissue engineering applications.
Collapse
Affiliation(s)
- Sören B Gutekunst
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Katharina Siemsen
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Steven Huth
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Anneke Möhring
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Britta Hesseler
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Michael Timmermann
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | | | - Yogendra Kumar Mishra
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Leonard Siebert
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Rainer Adelung
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| |
Collapse
|
83
|
Abd El Wahab WM, El-Badry AA, Hamdy DA. Molecular characterization and phylogenetic analysis of Acanthamoeba isolates in tap water of Beni-Suef, Egypt. Acta Parasitol 2018; 63:826-834. [PMID: 30367777 DOI: 10.1515/ap-2018-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022]
Abstract
The genus Acanthamoeba is a free-living amoeba widely distributed in various aquatic environments. It is an etiologic cause of amoebic encephalitis and keratitis particularly for immunocompromised individuals. The purpose of the present study was to investigate Acanthamoeba species prevalence in household and hospital potable water in Beni-Suef governorate, Egypt, and to employ sequencing methods to identify positive Acanthamoeba species isolates and their potential health risks. Sixty tap water samples (30 household and 30 governmental and private hospital settings) collected from Beni-Suef governorate, Egypt were filtered, cultured on non-nutrient agar, identified by morphotyping keys after staining with Giemsa stain and then confirmed by PCR using Acanthamoeba specific primers. Twenty positive samples were successfully genetically characterized and phylogenetically analyzed to identify Acanthamoeba species. The total detection rate for Acanthamoeba was 48/60 (80%); Acanthamoeba contamination in water collected from domestic houses was higher than in hospitals; 27/30 (90%) versus 21/30 (70%) with statistical significant value (P value = 0.05). Sequencing of 20 positive isolates revealed Acanthamoeba T4 in 65% and T2 in 35%. To our knowledge, this is the first research that documents the occurrence and phylogeny of Acanthamoeba species in Beni-Suef, Egypt. The presence of a higher percentage of Acanthamoeba species in tap water, in particular T4, highlights the potential health hazards for immunocompromised individuals and emphasizes the urgent need for the implementation of effective filtration and disinfection measures.
Collapse
Affiliation(s)
- Wegdan M Abd El Wahab
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman A El-Badry
- Department of Microbiology-Medical Parasitology Section, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Doaa A Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
84
|
Identification of free-living amoebae isolated from tap water in Istanbul, Turkey. Exp Parasitol 2018; 195:34-37. [DOI: 10.1016/j.exppara.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/03/2018] [Accepted: 10/13/2018] [Indexed: 12/26/2022]
|
85
|
Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, Leach JE. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS One 2018; 13:e0202941. [PMID: 30142182 PMCID: PMC6108499 DOI: 10.1371/journal.pone.0202941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/23/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Free-living amoebae (FLA) are voracious feeders, consuming bacteria and other microbes during colonization of the phytobiome. FLA are also known to secrete bacteriocidal or bacteriostatic compounds into their growth environment. METHODOLOGY AND PRINCIPAL FINDINGS Here, we explore the impacts of co-cultivation of five FLA species, including Acanthamoeba castellanii, A. lenticulata, A. polyphaga, Dictyostelium discoideum and Vermamoeba vermiformis, on survival of two devastating bacterial pathogens of rice, Xanthomonas oryzae pathovars (pv.) oryzae and oryzicola. In co-cultivation assays, the five FLA species were either bacteriostatic or bactericidal to X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Despite these effects, bacteria were rarely detected inside amoebal cells. Furthermore, amoebae did not disrupt X. oryzae biofilms. The bactericidal effects persisted when bacteria were added to a cell-free supernatant from amoebal cultures, suggesting some amoebae produce an extracellular bactericidal compound. CONCLUSIONS/SIGNIFICANCE This work establishes novel, basal dynamics between important plant pathogenic bacteria and diverse amoebae, and lays the framework for future mechanistic studies.
Collapse
Affiliation(s)
- John J. Long
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Courtney E. Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andrea Sánchez-Hidalgo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
86
|
Taravaud A, Ali M, Lafosse B, Nicolas V, Féliers C, Thibert S, Lévi Y, Loiseau PM, Pomel S. Enrichment of free-living amoebae in biofilms developed at upper water levels in drinking water storage towers: An inter- and intra-seasonal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:157-166. [PMID: 29573682 DOI: 10.1016/j.scitotenv.2018.03.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous organisms present in various natural and artificial environments, such as drinking water storage towers (DWST). Some FLA, such as Acanthamoeba sp., Naegleria fowleri, and Balamuthia mandrillaris, can cause severe infections at ocular or cerebral level in addition to being potential reservoirs of other pathogens. In this work, the abundance and diversity of FLA was evaluated in two sampling campaigns: one performed over five seasons in three DWST at three different levels (surface, middle and bottom) in water and biofilm using microscopy and PCR, and one based on the kinetics analysis in phase contrast and confocal microscopy of biofilm samples collected every two weeks during a 3-month period at the surface and at the bottom of a DWST. In the seasonal study, the FLA were detected in each DWST water in densities of ~20 to 25amoebaeL-1. A seasonal variation of amoeba distribution was observed in water samples, with maximal densities in summer at ~30amoebaeL-1 and minimal densities in winter at ~16amoebaeL-1. The FLA belonging to the genus Acanthamoeba were detected in two spring sampling campaigns, suggesting a possible seasonal appearance of this potentially pathogenic amoeba. Interestingly, a 1 log increase of amoebae density was observed in biofilm samples collected at the surface of all DWST compared to the middle and the bottom where FLA were at 0.1-0.2amoebae/cm2. In the kinetics study, an increase of amoebae density, total cell density, and biofilm thickness was observed as a function of time at the surface of the DWST, but not at the bottom. To our knowledge, this study describes for the first time a marked higher FLA density in biofilms collected at upper water levels in DWST, constituting a potential source of pathogenic micro-organisms.
Collapse
Affiliation(s)
- Alexandre Taravaud
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Myriam Ali
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Bernard Lafosse
- Véolia Eau-Compagnie Générale des Eaux, 2 avenue Guynemer, 94600 Choisy-Le-Roi, France
| | - Valérie Nicolas
- UMS IPSIT, Plate-Forme D'imagerie Cellulaire, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Cédric Féliers
- Véolia Eau d'Île de France, Le Vermont, 28 boulevard de Pesaro, 92751 Nanterre, France
| | - Sylvie Thibert
- Syndicat des Eaux d'Île de France, 120 boulevard Saint-Germain, 75006 Paris, France
| | - Yves Lévi
- Groupe Santé Publique et Environnement, UMR CNRS 8079 Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Philippe M Loiseau
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Sébastien Pomel
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
87
|
Balczun C, Scheid PL. Lyophilisation as a simple and safe method for long-term storage of free-living amoebae at ambient temperature. Parasitol Res 2018; 117:3333-3336. [PMID: 30094540 DOI: 10.1007/s00436-018-6029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
Abstract
Free-living amoebae (FLA) are protozoa ubiquitously found in nature. As some species or strains of these FLA are pathogenic for humans and animals, they represent objects of medical and parasitological research worldwide. Storage of valuable FLA strains in laboratories is often time- and energy-consuming and expensive. The shipment of such strains as frozen stocks is cumbersome and challenging in terms of cooling requirements as well as of transport regulations. To overcome these difficulties and challenges in maintenance and transport, we present a new method to generate lyophilised samples of non-cyst-forming FLA (Ripella (Vannella) spp.) and cyst-forming FLA (Acanthamoeba spp.) strains which guarantees a simple mechanism for long-term storage at ambient temperature, as well as easy handling and/or shipment. The survival rate of all FLA lyophilisates after short-term storage (2 months) was comparable to the survival rate of freeze cultures of the respective strains. Furthermore, the viability of Acanthamoeba spp. cysts after storage for 29 months was 20 to 40% following lyophilisation and rehydration, with strain variation.
Collapse
Affiliation(s)
- Carsten Balczun
- Department XXI (Med. Microbiology), Laboratory of Medical Parasitology, Central Military Hospital Koblenz, Andernacherstrasse 100, 56070, Koblenz, Germany.
- Institute of Integrated Sciences, Department of Biology, Parasitology and Infection Biology Group, University of Koblenz-Landau, Universitätsstrasse 1, 56070, Koblenz, Germany.
| | - Patrick L Scheid
- Department XXI (Med. Microbiology), Laboratory of Medical Parasitology, Central Military Hospital Koblenz, Andernacherstrasse 100, 56070, Koblenz, Germany
- Institute of Integrated Sciences, Department of Biology, Parasitology and Infection Biology Group, University of Koblenz-Landau, Universitätsstrasse 1, 56070, Koblenz, Germany
| |
Collapse
|
88
|
Rutherford V, Yom K, Ozer EA, Pura O, Hughes A, Murphy KR, Cudzilo L, Mitchel D, Hauser AR. Environmental reservoirs for exoS+ and exoU+ strains of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:485-492. [PMID: 29687624 PMCID: PMC6108916 DOI: 10.1111/1758-2229.12653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa uses its type III secretion system to inject the effector proteins ExoS and ExoU into eukaryotic cells, which subverts these cells to the bacterium's advantage and contributes to severe infections. We studied the environmental reservoirs of exoS+ and exoU+ strains of P. aeruginosa by collecting water, soil, moist substrates and plant samples from environments in the Chicago region and neighbouring states. Whole-genome sequencing was used to determine the phylogeny and type III secretion system genotypes of 120 environmental isolates. No correlation existed between geographic separation of isolates and their genetic relatedness, which confirmed previous findings of both high genetic diversity within a single site and the widespread distribution of P. aeruginosa clonal complexes. After excluding clonal isolates cultured from the same samples, 74 exoS+ isolates and 16 exoU+ isolates remained. Of the exoS+ isolates, 41 (55%) were from natural environmental sites and 33 (45%) were from man-made sites. Of the exoU+ isolates, only 3 (19%) were from natural environmental sites and 13 (81%) were from man-made sites (p < 0.05). These findings suggest that man-made water systems may be a reservoir from which patients acquire exoU+ P. aeruginosa strains.
Collapse
Affiliation(s)
- Victoria Rutherford
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kelly Yom
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivia Pura
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami Hughes
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine R. Murphy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Laura Cudzilo
- Department of Biology, St. John’s University, Collegeville, Minnesota
| | - David Mitchel
- Department of Biology, St. John’s University, Collegeville, Minnesota
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
89
|
Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, Traunspurger W, Walterscheid A, Wey JK. The food web perspective on aquatic biofilms. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1315] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Weitere
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Martina Erken
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Nabil Majdi
- Department of Animal Ecology; University of Bielefeld; Konsequenz 45 33615 Bielefeld Germany
| | - Hartmut Arndt
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Helge Norf
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
- Department Aquatic Ecosystem Analyses and Management; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
| | - Michael Reinshagen
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Walter Traunspurger
- Department of Animal Ecology; University of Bielefeld; Konsequenz 45 33615 Bielefeld Germany
| | - Anja Walterscheid
- General Ecology; Zoological Institute; Cologne Biocenter; University of Cologne; Zülpicher Strasse 47b 50674 Cologne Germany
| | - Jennifer K. Wey
- Department River Ecology; Helmholtz Centre of Environmental Research - UFZ; Brückstrasse 3a 39114 Magdeburg Germany
- Department of Animal Ecology; Federal Institute of Hydrology; Am Mainzer Tor 1 56068 Koblenz Germany
| |
Collapse
|
90
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. WATER RESEARCH 2018; 134:261-279. [PMID: 29428779 DOI: 10.1016/j.watres.2017.12.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
The use of reclaimed water brings new challenges for the water industry in terms of maintaining water quality while increasing sustainability. Increased attention has been devoted to opportunistic pathogens, especially Legionella pneumophila, due to its growing importance as a portion of the waterborne disease burden in the United States. Infection occurs when a person inhales a mist containing Legionella bacteria. The top three uses for reclaimed water (cooling towers, spray irrigation, and toilet flushing) that generate aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk assessment (QMRA). Risks are compared using data from nineteen United States reclaimed water utilities measured with culture-based methods, quantitative PCR (qPCR), and ethidium-monoazide-qPCR. Median toilet flushing annual infection risks exceeded 10-4 considering multiple toilet types, while median clinical severity infection risks did not exceed this value. Sprinkler and cooling tower risks varied depending on meteorological conditions and operational characteristics such as drift eliminator performance. However, the greatest differences between risk scenarios were due to 1) the dose response model used (infection or clinical severity infection) 2) population at risk considered (residential or occupational) and 3) differences in laboratory analytical method. Theoretical setback distances necessary to achieve a median annual infection risk level of 10-4 are proposed for spray irrigation and cooling towers. In both cooling tower and sprinkler cases, Legionella infection risks were non-trivial at potentially large setback distances, and indicate other simultaneous management practices could be needed to manage risks. The sensitivity analysis indicated that the most influential factors for variability in risks were the concentration of Legionella and aerosol partitioning and/or efficiency across all models, highlighting the importance of strategies to manage Legionella occurrence in reclaimed water.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Patrick Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Zia Bukhari
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Mark LeChevallier
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
91
|
Heredero-Bermejo I, Hernández-Ros JM, Sánchez-García L, Maly M, Verdú-Expósito C, Soliveri J, Javier de la Mata F, Copa-Patiño JL, Pérez-Serrano J, Sánchez-Nieves J, Gómez R. Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
92
|
Agustí G, Le Calvez T, Trouilhé MC, Humeau P, Codony F. Presence of Waddlia chondrophila in hot water systems from non-domestic buildings in France. JOURNAL OF WATER AND HEALTH 2018; 16:44-48. [PMID: 29424717 DOI: 10.2166/wh.2017.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The presence of Waddlia chondrophila has been related to respiratory tract infections and human and animal fetal death. Although several sources of infection have been suggested, the actual source remains unknown and limited information exists on the prevalence of W. chondrophila in the environment. This pathogen has been previously detected in well water but its presence has not been confirmed in water networks. Since these bacteria have been detected in water reservoirs, it has been hypothesized that they can access artificial water systems and survive until they find appropriate conditions to proliferate. In this work, their presence in water samples from 19 non-domestic water networks was tested by quantitative polymerase chain reaction (qPCR). Approximately half of the networks (47%) were positive for W. chondrophila and the overall results revealed 20% positive samples (12/59). Furthermore, most of the samples showed low concentrations of the pathogen (<200 genomic units/L). This finding demonstrates that W. chondrophila can colonize some water networks. Therefore, they must be considered as potential infection sources in future epidemiological studies.
Collapse
Affiliation(s)
- Gemma Agustí
- Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain and GenIUL, Carrer de la Ciutat d'Assunción 4, Barcelona 08030, Spain E-mail:
| | - Thomas Le Calvez
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France
| | - Marie-Cecile Trouilhé
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France; Centre Scientifique et Technique du Bâtiment, Direction Opérationnelle HES - Division Canalisations, 84 avenue Jean Jaurès, Champs-sur-Marne, Marne-la-Vallée cedex 2 77447, France
| | - Philippe Humeau
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France
| | - Francesc Codony
- Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain and GenIUL, Carrer de la Ciutat d'Assunción 4, Barcelona 08030, Spain E-mail:
| |
Collapse
|
93
|
Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, Jackson M. Yersinia pestis Survival and Replication in Potential Ameba Reservoir. Emerg Infect Dis 2018; 24:294-302. [PMID: 29350155 PMCID: PMC5782900 DOI: 10.3201/eid2402.171065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense.
Collapse
|
94
|
Waso M, Dobrowsky PH, Hamilton KA, Puzon G, Miller H, Khan W, Ahmed W. Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5700-5710. [PMID: 29230646 DOI: 10.1007/s11356-017-0870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 102 to 3.6 × 104 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 101 to 7.8 × 104 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing associated public health risks.
Collapse
Affiliation(s)
- Monique Waso
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Penelope Heather Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Kerry Ann Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia
| | - Geoffrey Puzon
- CSIRO Land and Water, Private Bag No.5, Wembley, WA, 6913, Australia
| | - Haylea Miller
- CSIRO Land and Water, Private Bag No.5, Wembley, WA, 6913, Australia
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
95
|
Trnková K, Kotrbancová M, Špaleková M, Fulová M, Boledovičová J, Vesteg M. MALDI-TOF MS analysis as a useful tool for an identification of Legionella pneumophila, a facultatively pathogenic bacterium interacting with free-living amoebae: A case study from water supply system of hospitals in Bratislava (Slovakia). Exp Parasitol 2017; 184:97-102. [PMID: 29225047 DOI: 10.1016/j.exppara.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023]
Abstract
Legionellae, i.e. Legionella pneumophila, are human bacterial hydrophilic facultative pathogens causing pneumonia (Legionnaires' disease). Free-living amoebae (FLA) can serve as natural hosts and thus as reservoirs of many amoebae-resistant bacteria. An encysted amoeba can contribute to the resistance of intracellular L. pneumophila to various chemical and physical treatments. Humans can be infected by droplets containing bacteria from an environmental source or human-made devices such as shower heads, bathtubs, air-conditioning units or whirlpools. In this study, we were investigating the presence of FLA and L. pneumophila in plumbing systems of healthcare facilities in Bratislava (Slovakia) by standard diagnostic methods, while the presence of L. pneumophila was verified also by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) analysis. The results showed the occurrence of L. pneumophila and FLA in 62.26% and 66.4% of samples taken from four paediatric clinics, respectively. Both standard methods and MALDI-TOF MS showed comparable results and they can be successfully applied for the identification of L. pneumophila strains in environmental samples. Our approach could be useful for further monitoring, prevention and decreasing risk of Legionella infection also in other hospitals.
Collapse
Affiliation(s)
- Katarína Trnková
- Department of the Environment, Faculty of Natural Sciences, Matej Bel University, Tajovského 55, 974 01 Banská Bystrica, Slovakia.
| | - Martina Kotrbancová
- Institute of Epidemiology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Margita Špaleková
- Institute of Epidemiology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Miriam Fulová
- Institute of Epidemiology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Jana Boledovičová
- Children's Faculty Hospital and Clinic, Limbová 1, 833 40, Bratislava, Slovakia.
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia.
| |
Collapse
|
96
|
Costa D, Bossard V, Brunet K, Fradin B, Imbert C. Planktonic free-living amoebae susceptibility to dental unit waterlines disinfectants. Pathog Dis 2017; 75:4082732. [PMID: 28911034 DOI: 10.1093/femspd/ftx099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
A high diversity of microorganisms is encountered inside dental unit waterlines (DUWL). Among those the presence of free-living amoebae (FLA) appears currently underestimated, although human infections may occur due to contact with FLA-contaminated water during dental cares. In order to limit microbial DUWL contamination, disinfectants are provided by dental unit manufacturer, however, with limited documentation on their activities against FLA. The aim of this study was to evaluate the efficiency of three commercial DUWL disinfectants: the Calbenium© (Airel, Champigny-sur-Marne, France), the Oxygenal 6© (Kavo, Biberach, Germany) and the Sterispray© (Gammasonic, Billom, France), against two FLA species, i.e. Acanthamoeba castellanii and Vermamoeba vermiformis alone or co-cultured with Pseudomonas aeruginosa and Candida albicans at concentrations ranging from 0% to 5% (v/v). Results showed varied efficacies of disinfectants: the Oxygenal 6© did not exhibit FLA killing activity, while the Sterispray© and the Calbenium© displayed concentration- and species-dependent activities with a maximum eradication rates of 100% and 86%, and 79% and 97% for A. castellani and V. vermiformis, respectively. None of the disinfectants were able to totally eradicate FLA at concentrations recommended by manufacturers. Present results highlight unsatisfactory anti-FLA activities of 3 DUWL disinfectant preparations advocating deeper investigation of antimicrobial spectra of commercial disinfectants in use for DUWL maintenance.
Collapse
Affiliation(s)
- Damien Costa
- UMR CNRS 7267, Laboratory of Ecology and Biology of Interactions, Faculty of Medecine and Pharmacy, University of Poitiers, Bat D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Valentin Bossard
- UMR CNRS 7267, Laboratory of Ecology and Biology of Interactions, Faculty of Medecine and Pharmacy, University of Poitiers, Bat D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Kévin Brunet
- UMR CNRS 7267, Laboratory of Ecology and Biology of Interactions, Faculty of Medecine and Pharmacy, University of Poitiers, Bat D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Benjamin Fradin
- UMR CNRS 7267, Laboratory of Ecology and Biology of Interactions, Faculty of Medecine and Pharmacy, University of Poitiers, Bat D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Christine Imbert
- UMR CNRS 7267, Laboratory of Ecology and Biology of Interactions, Faculty of Medecine and Pharmacy, University of Poitiers, Bat D1, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| |
Collapse
|
97
|
CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga. Appl Environ Microbiol 2017; 83:AEM.01600-17. [PMID: 28916560 PMCID: PMC5666138 DOI: 10.1128/aem.01600-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that is recognized as the leading cause of human bacterial gastroenteritis. The widespread use of antibiotics in medicine and in animal husbandry has led to an increased incidence of antibiotic resistance in Campylobacter In addition to a role in multidrug resistance (MDR), the Campylobacter CmeABC resistance-nodulation-division (RND)-type efflux pump may be involved in virulence. As a vehicle for pathogenic microorganisms, the protozoan Acanthamoeba is a good model for investigations of bacterial survival in the environment and the molecular mechanisms of pathogenicity. The interaction between C. jejuni 81-176 and Acanthamoeba polyphaga was investigated in this study by using a modified gentamicin protection assay. In addition, a possible role for the CmeABC MDR pump in this interaction was explored. Here we report that this MDR pump is beneficial for the intracellular survival and multiplication of C. jejuni in A. polyphaga but is dispensable for biofilm formation and motility.IMPORTANCE The endosymbiotic relationship between amoebae and microbial pathogens may contribute to persistence and spreading of the latter in the environment, which has significant implications for human health. In this study, we found that Campylobacter jejuni was able to survive and to multiply inside Acanthamoeba polyphaga; since these microorganisms can coexist in the same environment (e.g., on poultry farms), the latter may increase the risk of infection with Campylobacter Our data suggest that, in addition to its role in antibiotic resistance, the CmeABC MDR efflux pump plays a role in bacterial survival within amoebae. Furthermore, we demonstrated synergistic effects of the CmeABC MDR efflux pump and TetO on bacterial resistance to tetracycline. Due to its role in both the antibiotic resistance and the virulence of C. jejuni, the CmeABC MDR efflux pump could be considered a good target for the development of antibacterial drugs against this pathogen.
Collapse
|
98
|
Moreno-Mesonero L, Moreno Y, Alonso JL, Ferrús MA. Detection of viable Helicobacter pylori inside free-living amoebae in wastewater and drinking water samples from Eastern Spain. Environ Microbiol 2017; 19:4103-4112. [PMID: 28707344 DOI: 10.1111/1462-2920.13856] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
Helicobacter pylori is one of the most concerning emerging waterborne pathogens. It has been suggested that it could survive in water inside free-living amoebae (FLA), but nobody has studied this relationship in the environment yet. Thus, we aimed to detect viable H. pylori cells from inside FLA in water samples. Sixty-nine wastewater and 31 drinking water samples were collected. FLA were purified and identified by PCR and sequencing. For exclusively detecting H. pylori inside FLA, samples were exposed to sodium hypochlorite and assayed by specific PMA-qPCR, DVC-FISH and culture. FLA were detected in 38.7% of drinking water and 79.7% of wastewater samples, even after disinfection. In wastewater, Acanthamoeba spp. and members of the family Vahlkampfiidae were identified. In drinking water, Acanthamoeba spp. and Echinamoeba and/or Vermamoeba were present. In 39 (58.2%) FLA-positive samples, H. pylori was detected by PMA-qPCR. After DVC-FISH, 21 (31.3%) samples harboured viable H. pylori internalized cells. H. pylori was cultured from 10 wastewater samples. To our knowledge, this is the first report that demonstrates that H. pylori can survive inside FLA in drinking water and wastewater, strongly supporting the hypothesis that FLA could play an important role in the transmission of H. pylori to humans.
Collapse
Affiliation(s)
- Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia 46022, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia 46022, Spain
| | - José Luis Alonso
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia 46022, Spain
| | - M Antonia Ferrús
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia 46022, Spain
- Biotechnology Department, Universitat Politècnica de València, Valencia 46022, Spain
| |
Collapse
|
99
|
Reyes-Batlle M, Martín-Rodríguez AJ, López-Arencibia A, Sifaoui I, Liendo AR, Bethencourt Estrella CJ, García Méndez AB, Chiboub O, Hajaji S, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J. In vitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi. Exp Parasitol 2017; 183:167-170. [PMID: 28917709 DOI: 10.1016/j.exppara.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Free-living amoebae (FLA) are opportunistic protozoa widely distributed in the environment. They are frequently found in water and soil samples, but they have also been reported to be associated with bacterial human pathogens such as Legionella spp. Campylobacter spp or Vibrio cholerae among others. Including within Vibrio spp. V. harveyi (Johnson and Shunk, 1936) is a bioluminescent marine bacteria which has been found swimming freely in tropical marine waters, being part of the stomach and intestine microflora of marine animals, and as both a primary and opportunistic pathogen of marine animals. Our aim was to study the interactions between Vibrio harveyi and Acanthamoeba castellanii Neff. Firstly, in order to analyze changes in it cultivability, V. harveyi was coincubated with A. castellanii Neff axenic culture and with Acanthamoeba Conditioned Medium (ACM) at different temperatures in aerobic conditions. Interestingly, at 4 °C and 18-20 °C bacteria were still cultivable in marine agar, at 28 °C, in aerobic conditions, but there weren't significant differences comparing with the controls. We also noted an enhanced migration of Acanthamoeba toward V. harveyi on non-nutrient agar plates compared to controls with no bacteria.
Collapse
Affiliation(s)
- María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain.
| | | | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Aitor Rizo Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Carlos J Bethencourt Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ana B García Méndez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Laboratoire Matériaux-Molécules et Applications, IPEST, B.P 51 2070, La Marsa, University of Cathage, Tunisia
| | - Soumaya Hajaji
- Laboratoire de Parasitologie, Université de La Manouba, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Tunisia
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Enrique Martínez-Carretero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| |
Collapse
|
100
|
Occurrence of Infected Free-Living Amoebae in Cooling Towers of Southern Brazil. Curr Microbiol 2017; 74:1461-1468. [PMID: 28840339 DOI: 10.1007/s00284-017-1341-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
This study determined the occurrence of potentially pathogenic free-living amoebae (FLA) and bacteria associated with amoebae in air-conditioning cooling towers in southern Brazil. Water samples were collected from 36 cooling systems from air-conditioning in the state of Rio Grande do Sul, Brazil. The organisms were identified using polymerase chain reaction (PCR) and sequencing automated. The results showed that these aquatic environments, with variable temperature, are potential "hot spots" for emerging human pathogens like free-living amoebae and bacteria associated. In total, 92% of the cooling-tower samples analyzed were positive for FLA, and Acanthamoeba was the dominant genus by culture and PCR. Amoebal isolates revealed intracellular bacteria in 39.3% of them and all were confirmed as members of the genus Pseudomonas. The results obtained show the important role of cooling towers as a source of amoebae-associated pathogens.
Collapse
|