51
|
Soghomonyan D, Margaryan A, Trchounian K, Ohanyan K, Badalyan H, Trchounian A. The Effects of Low Doses of Gamma-Radiation on Growth and Membrane Activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochem Biophys 2017; 76:209-217. [PMID: 29039057 DOI: 10.1007/s12013-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
Abstract
Microorganisms are part of the natural environments and reflect the effects of different physical factors of surrounding environment, such as gamma (γ) radiation. This work was devoted to the study of the influence of low doses of γ radiation with the intensity of 2.56 μW (m2 s)-1 (absorbed doses were 3.8 mGy for the radiation of 15 min and 7.2 mGy-for 30 min) on Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild type cells. The changes of bacterial, growth, survival, morphology, and membrane activity had been studied after γ irradiation. Verified microbiological (specific growth rate, lag phase duration, colony-forming units (CFU) number, and light microscopy digital image analysis), biochemical (ATPase activity of bacterial membrane vesicles), and biophysical (H+ fluxes throughout cytoplasmic membrane of bacteria) methods were used for assessment of radiation implications on bacteria. It was shown that growth specific rate, lag phase duration and CFU number of these bacteria were lowered after irradiation, and average cell surface area was decreased too. Moreover ion fluxes of bacteria were changed: for P. aeruginosa they were decreased and for E. coli-increased. The N,N'-dicyclohexylcarbodiimide (DCCD) sensitive fluxes were also changed which were indicative for the membrane-associated F0F1-ATPase enzyme. ATPase activity of irradiated membrane vesicles was decreased for P. aeruginosa and stimulated for E. coli. Furthermore, DCCD sensitive ATPase activity was also changed. The results obtained suggest that these bacteria especially, P. aeruginosa are sensitive to γ radiation and might be used for developing new monitoring methods for estimating environmental changes after γ irradiation.
Collapse
Affiliation(s)
- D Soghomonyan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Margaryan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Ohanyan
- Department of Nuclear Physics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - H Badalyan
- Department of General Physics and Astrophysics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
- Department of Biochemistry Microbiology and Biotechnology, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
52
|
Liu Y, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Home Alone: Elimination of All but One Alternative Sigma Factor in Listeria monocytogenes Allows Prediction of New Roles for σ B. Front Microbiol 2017; 8:1910. [PMID: 29075236 PMCID: PMC5641562 DOI: 10.3389/fmicb.2017.01910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Among Listeria monocytogenes' four alternative σ factors, σB controls the largest regulon. As σB-dependent transcription of some genes may be masked by overlaps among regulons, and as some σB-dependent genes are expressed only under very specific conditions, we hypothesized that the σB regulon is not yet fully defined. To further extend our understanding of the σB regulon, we used RNA-seq to identify σB-dependent genes in an L. monocytogenes strain that expresses σB following rhamnose induction, and in which genes encoding the other alternative sigma factors have been deleted. Analysis of RNA-seq data with multiple bioinformatics approaches, including a sliding window method that detects differentially transcribed 5' untranslated regions (UTRs), identified 105 σB-dependent transcription units (TUs) comprising 201 genes preceded by σB-dependent promoters. Of these 105 TUs, 7 TUs comprising 15 genes had not been identified previously as σB-dependent. An additional 23 genes not reported previously as σB-dependent were identified in 9 previously recognized σB-dependent TUs. Overall, 38 of these 201 genes had not been identified previously as members of the L. monocytogenes σB regulon. These newly identified σB-dependent genes encode proteins annotated as being involved in transcriptional regulation, oxidative and osmotic stress response, and in metabolism of energy, carbon and nucleotides. In total, 18 putative σB-dependent promoters were newly identified. Interestingly, a number of genes previously identified as σB-dependent did not show significant evidence for σB-dependent transcription in our experiments. Based on promoter analyses, a number of these genes showed evidence for co-regulation by σB and other transcriptional factors, suggesting that some σB-dependent genes require additional transcriptional regulators along with σB for transcription. Over-expression of a single alternative sigma factor in the absence of all other alternative sigma factors allowed us to: (i) identify new σB-dependent functions in L. monocytogenes, such as regulation of genes involved in 1,2-propanediol utilization (LMRG_00594-LMRG_00611) and biosynthesis of pyrimidine nucleotides (LMRG_00978-LMRG_00985); and (ii) identify new σB-dependent genes involved in stress response and pathogenesis functions. These data further support that σB not only regulates stress response functions, but also plays a broad role in L. monocytogenes homeostasis and resilience.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
53
|
Sadiq FA, Flint S, Li Y, Ou K, Yuan L, He GQ. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol 2017; 12:1087-1107. [DOI: 10.2217/fmb-2017-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
Collapse
Affiliation(s)
- Faizan A Sadiq
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Steve Flint
- School of Food & Nutrition, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand
| | - YanJun Li
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Kai Ou
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Lei Yuan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guo Qing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
54
|
Abstract
At the end of the multistep transcription process, the elongating RNA polymerase (RNAP) is dislodged from the DNA template either at specific DNA sequences, called the terminators, or by a nascent RNA-dependent helicase, Rho. In Escherichia coli, about half of the transcription events are terminated by the Rho protein. Rho utilizes its RNA-dependent ATPase activities to translocate along the mRNA and eventually dislodges the RNAP via an unknown mechanism. The transcription elongation factor NusG facilitates this termination process by directly interacting with Rho. In this review, we discuss current models describing the mechanism of action of this hexameric transcription terminator, its regulation by different cis and trans factors, and the effects of the termination process on physiological processes in bacterial cells, particularly E. coli and Salmonella enterica Typhimurium.
Collapse
Affiliation(s)
- Pallabi Mitra
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| | - Gairika Ghosh
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Md Hafeezunnisa
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| |
Collapse
|
55
|
Bhowmik D, Bhardwaj N, Chatterji D. Influence of Flexible "ω" on the Activity of E. coli RNA Polymerase: A Thermodynamic Analysis. Biophys J 2017; 112:901-910. [PMID: 28297649 DOI: 10.1016/j.bpj.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
The Escherichia coli RNA polymerase (RNAP) is a multisubunit protein complex containing the smallest subunit, ω. Despite the evolutionary conservation of ω and its role in assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of RNAP with the global chaperone protein GroEL. With an aim to get better insight into the structure and functional role of ω, we isolated a dominant negative mutant of ω (ω6), which is predominantly α-helical, in contrast to largely unstructured native ω, and then studied its assembly with reconstituted core1 (α2ββ') by a biophysical approach. The mutant showed higher binding affinity compared to native ω. We observed that the interaction between core1 and ω6 is driven by highly negative enthalpy and a small but unfavorable negative entropy term. Extensive structural alteration in ω6 makes it more rigid, the plasticity of the interacting domain formed by ω6 and core1 is compromised, which may be responsible for the entropic cost. Such tight binding of the structured mutant (ω6) affects initiation of transcription. However, once preinitiated, the complex elongates the RNA chain efficiently. The initiation of transcription requires recognition of appropriate σ-factors by the core enzyme (core2: α2ββ'ω). We found that the altered core enzyme (α2ββ'ω6) with mutant ω showed a decrease in binding affinity to the σ-factors (σ70, σ32 and σ38) compared to that of the core enzyme containing native ω. In the absence of unstructured ω, the association of σ-factors to the core is less efficient, suggesting that the flexible native ω plays a direct role in σ-factor recruitment.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Neerupma Bhardwaj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
56
|
Santos-Beneit F, Ordóñez-Robles M, Martín JF. Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochem Pharmacol 2016; 133:74-85. [PMID: 27894856 DOI: 10.1016/j.bcp.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a critical health issue today. Many pathogens have become resistant to many or all available antibiotics and limited new antibiotics are in the pipeline. Glycopeptides are used as a 'last resort' antibiotic treatment for many bacterial infections, but worryingly, glycopeptide resistance has spread to very important pathogens such as Enterococcus faecium and Staphylococcus aureus. Bacteria confront multiple stresses in their natural environments, including nutritional starvation and the action of cell-wall stressing agents. These stresses impact bacterial susceptibility to different antimicrobials. This article aims to review the links between glycopeptide resistance and different stresses, especially those related with cell-wall biosynthesis and inorganic phosphate metabolism, and to discuss promising alternatives to classical antibiotics to avoid the problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - María Ordóñez-Robles
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Juan F Martín
- Microbiology Area, Department of Molecular Biology, University of León, 24071 León, Spain.
| |
Collapse
|
57
|
Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli. Nucleic Acids Res 2016; 44:6660-75. [PMID: 26908653 PMCID: PMC5001579 DOI: 10.1093/nar/gkw115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Flexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes. As these 'stress-ribosomes' are specific for the MazF-processed mRNAs, the translational program is changed. To identify this 'MazF-regulon' we employed Poly-seq (polysome fractionation coupled with RNA-seq analysis) and analyzed alterations introduced into the transcriptome and translatome after mazF overexpression. Unexpectedly, our results reveal that the corresponding protein products are involved in all cellular processes and do not particularly contribute to the general stress response. Moreover, our findings suggest that translational reprogramming serves as a fast-track reaction to harsh stress and highlight the so far underestimated significance of selective translation as a global regulatory mechanism in gene expression. Considering the reported implication of toxin-antitoxin (TA) systems in persistence, our results indicate that MazF acts as a prime effector during harsh stress that potentially introduces translational heterogeneity within a bacterial population thereby stimulating persister cell formation.
Collapse
Affiliation(s)
- Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Max F. Perutz Laboratories, Department of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Konstantin Byrgazov
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| |
Collapse
|
58
|
Rodriguez-Escamilla Z, Martínez-Núñez MA, Merino E. Epigenetics knocks on synthetic biology's door. FEMS Microbiol Lett 2016; 363:fnw191. [PMID: 27521262 PMCID: PMC5012592 DOI: 10.1093/femsle/fnw191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 12/31/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression without concomitant changes in DNA sequence. Due to its relevance in development, differentiation and human health, epigenetics has recently become an emerging area of science with regard to eukaryotic organisms and has shown enormous potential in synthetic biology. However, significant examples of epigenetic regulation in bacterial synthetic biology have not yet been reported. In the current study, we present the first model of such an epigenetic circuit. We termed the circuit the alternator circuit because parental cells carrying this circuit and their progeny alternate between distinct and heritable cellular fates without undergoing changes in genome sequence. Furthermore, we demonstrated that the alternator circuit exhibits hysteresis because its output depends not only on its present state but also on its previous states.
Collapse
Affiliation(s)
- Zuemy Rodriguez-Escamilla
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos CP 62210, México
| | - Mario A Martínez-Núñez
- Laboratorio de Ecogenómica. Unidad Académica de Ciencias y Tecnología de Yucatán. Facultad de Ciencias, UNAM. Sierra Papacal-Chuburna Km 5. Mérida, Yucatán CP 97302, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
59
|
|
60
|
van de Weerd R, Boot M, Maaskant J, Sparrius M, Verboom T, van Leeuwen LM, Burggraaf MJ, Paauw NJ, Dainese E, Manganelli R, Bitter W, Appelmelk BJ, Geurtsen J. Inorganic Phosphate Limitation Modulates Capsular Polysaccharide Composition in Mycobacteria. J Biol Chem 2016; 291:11787-99. [PMID: 27044743 DOI: 10.1074/jbc.m116.722454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis is protected by an unusual and highly impermeable cell envelope that is critically important for the successful colonization of the host. The outermost surface of this cell envelope is formed by capsular polysaccharides that play an important role in modulating the initial interactions once the bacillus enters the body. Although the bioenzymatic steps involved in the production of the capsular polysaccharides are emerging, information regarding the ability of the bacterium to modulate the composition of the capsule is still unknown. Here, we study the mechanisms involved in regulation of mycobacterial capsule biosynthesis using a high throughput screen for gene products involved in capsular α-glucan production. Utilizing this approach we identified a group of mutants that all carried mutations in the ATP-binding cassette phosphate transport locus pst These mutants collectively exhibited a strong overproduction of capsular polysaccharides, including α-glucan and arabinomannan, suggestive of a role for inorganic phosphate (Pi) metabolism in modulating capsular polysaccharide production. These findings were corroborated by the observation that growth under low Pi conditions as well as chemical activation of the stringent response induces capsule production in a number of mycobacterial species. This induction is, in part, dependent on σ factor E. Finally, we show that Mycobacterium marinum, a model organism for M. tuberculosis, encounters Pi stress during infection, which shows the relevance of our findings in vivo.
Collapse
Affiliation(s)
- Robert van de Weerd
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands,
| | - Maikel Boot
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Janneke Maaskant
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Marion Sparrius
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Theo Verboom
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Lisanne M van Leeuwen
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Nanne J Paauw
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P. O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Elisa Dainese
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Wilbert Bitter
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands, Department of Molecular Microbiology, VU University Amsterdam, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands, and
| | - Ben J Appelmelk
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands,
| | - Jeroen Geurtsen
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| |
Collapse
|
61
|
Cdk12 Is A Gene-Selective RNA Polymerase II Kinase That Regulates a Subset of the Transcriptome, Including Nrf2 Target Genes. Sci Rep 2016; 6:21455. [PMID: 26911346 PMCID: PMC4766476 DOI: 10.1038/srep21455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Nrf2 transcription factor is well conserved throughout metazoan evolution and serves as a central regulator of adaptive cellular responses to oxidative stress. We carried out an RNAi screen in Drosophila S2 cells to better understand the regulatory mechanisms governing Nrf2 target gene expression. This paper describes the identification and characterization of the RNA polymerase II (Pol II) kinase Cdk12 as a factor that is required for Nrf2 target gene expression in cell culture and in vivo. Cdk12 is, however, not essential for bulk mRNA transcription and cells lacking CDK12 function are viable and able to proliferate. Consistent with previous findings on the DNA damage and heat shock responses, it emerges that Cdk12 may be specifically required for stress activated gene expression. Transcriptome analysis revealed that antioxidant gene expression is compromised in flies with reduced Cdk12 function, which makes them oxidative stress sensitive. In addition to supporting Reactive Oxygen Species (ROS) induced gene activation, Cdk12 suppresses genes that support metabolic functions in stressed conditions. We suggest that Cdk12 acts as a gene-selective Pol II kinase that engages a global shift in gene expression to switch cells from a metabolically active state to “stress-defence mode” when challenged by external stress.
Collapse
|
62
|
Li W, Bouveret E, Zhang Y, Liu K, Wang JD, Weisshaar JC. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli. Mol Microbiol 2015; 99:571-85. [PMID: 26480956 DOI: 10.1111/mmi.13252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
During amino acid starvation, bacterial cells rapidly synthesize the nucleotides (p)ppGpp, causing a massive re-programming of the transcriptional profile known as the stringent response. The (p)ppGpp synthase RelA is activated by ribosomes harboring an uncharged tRNA at the A site. It is unclear whether synthesis occurs while RelA is bound to the ribosome or free in the cytoplasm. We present a study of three Escherichia coli strains, each expressing a different RelA-fluorescent protein (RelA-FP) construct: RelA-YFP, RelA-mEos2 and RelA-Dendra2. Single-molecule localization and tracking studies were carried out under normal growth conditions and during amino acid starvation. Study of three labeling schemes enabled us to assess potential problems with FP labeling of RelA. The diffusive trajectories and axial spatial distributions indicate that amino acid starvation induces net binding of all three RelA-FP constructs to 70S ribosomes. The data are most consistent with a model in which RelA synthesizes (p)ppGpp while bound to the 70S ribosome. We suggest a 'short hopping time' model of RelA activity during starvation. Our results contradict an earlier study of RelA-Dendra2 diffusion that inferred off-ribosome synthesis of (p)ppGpp. The reasons for the discrepancy remain unclear.
Collapse
Affiliation(s)
- Wenting Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Emmanuelle Bouveret
- Laboratory of Macromolecular System Engineering (LISM), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Yan Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kuanqing Liu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Molecular Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
63
|
Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens. Microorganisms 2015; 3:746-58. [PMID: 27682115 PMCID: PMC5023268 DOI: 10.3390/microorganisms3040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022] Open
Abstract
The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.
Collapse
|
64
|
Tian N, Tang Y, Chen Y, Zhen Z, Long J, Liu Z, Liu S. WITHDRAWN: Identification of an antimycin gene cluster and characterization of the tryptophan 2,3-dioxygenase from the deep sea-derived Streptomyces somaliensis HND1201. Biochem Biophys Res Commun 2015:S0006-291X(15)30788-9. [PMID: 26525851 DOI: 10.1016/j.bbrc.2015.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Na Tian
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuwei Tang
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuhong Chen
- Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Zehua Zhen
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Jinhua Long
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Shuoqian Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China.
| |
Collapse
|
65
|
Taniguchi H, Wendisch VF. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 2015; 6:740. [PMID: 26257719 PMCID: PMC4510997 DOI: 10.3389/fmicb.2015.00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University Bielefeld, Germany
| |
Collapse
|
66
|
Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm and stringent response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:309-27. [PMID: 25408352 DOI: 10.1007/978-3-319-11280-0_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Bugrysheva JV, Pappas CJ, Terekhova DA, Iyer R, Godfrey HP, Schwartz I, Cabello FC. Characterization of the RelBbu Regulon in Borrelia burgdorferi Reveals Modulation of Glycerol Metabolism by (p)ppGpp. PLoS One 2015; 10:e0118063. [PMID: 25688856 PMCID: PMC4331090 DOI: 10.1371/journal.pone.0118063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.
Collapse
Affiliation(s)
- Julia V. Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Darya A. Terekhova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
- * E-mail:
| |
Collapse
|
68
|
Poole K. Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more. Can J Microbiol 2015; 60:783-91. [PMID: 25388098 DOI: 10.1139/cjm-2014-0666] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a notoriously antimicrobial-resistant organism that is increasingly refractory to antimicrobial chemotherapy. While the usual array of acquired resistance mechanisms contribute to resistance development in this organism a multitude of endogenous genes also play a role. These include a variety of multidrug efflux loci that contribute to both intrinsic and acquired antimicrobial resistance. Despite their roles in resistance, however, it is clear that these efflux systems function in more than just antimicrobial efflux. Indeed, recent data indicate that they are recruited in response to environmental stress and, therefore, function as components of the organism's stress responses. In fact, a number of endogenous resistance-promoting genes are linked to environmental stress, functioning as part of known stress responses or recruited in response to a variety of environmental stress stimuli. Stress responses are, thus, important determinants of antimicrobial resistance in P. aeruginosa. As such, they represent possible therapeutic targets in countering antimicrobial resistance in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
69
|
Abstract
The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacillus subtilis, (p)ppGpp production is primarily determined by the net activity of RelA, a bifunctional (p)ppGpp synthetase/hydrolase, and two monofunctional (p)ppGpp synthetases, YwaC and YjbM. We observe that in B. subtilis, a relA mutant grows exclusively as unchained, motile cells, phenotypes regulated by the alternative sigma factor SigD. Our data indicate that the relA mutant is trapped in a SigD "on" state during exponential growth, implicating RelA and (p)ppGpp levels in the regulation of cell chaining and motility in B. subtilis. Our results also suggest that minor variations in basal (p)ppGpp levels can significantly skew developmental decision-making outcomes.
Collapse
|
70
|
Mauri M, Klumpp S. A model for sigma factor competition in bacterial cells. PLoS Comput Biol 2014; 10:e1003845. [PMID: 25299042 PMCID: PMC4191881 DOI: 10.1371/journal.pcbi.1003845] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022] Open
Abstract
Sigma factors control global switches of the genetic expression program in bacteria. Different sigma factors compete for binding to a limited pool of RNA polymerase (RNAP) core enzymes, providing a mechanism for cross-talk between genes or gene classes via the sharing of expression machinery. To analyze the contribution of sigma factor competition to global changes in gene expression, we develop a theoretical model that describes binding between sigma factors and core RNAP, transcription, non-specific binding to DNA and the modulation of the availability of the molecular components. The model is validated by comparison with in vitro competition experiments, with which excellent agreement is found. Transcription is affected via the modulation of the concentrations of the different types of holoenzymes, so saturated promoters are only weakly affected by sigma factor competition. However, in case of overlapping promoters or promoters recognized by two types of sigma factors, we find that even saturated promoters are strongly affected. Active transcription effectively lowers the affinity between the sigma factor driving it and the core RNAP, resulting in complex cross-talk effects. Sigma factor competition is not strongly affected by non-specific binding of core RNAPs, sigma factors and holoenzymes to DNA. Finally, we analyze the role of increased core RNAP availability upon the shut-down of ribosomal RNA transcription during the stringent response. We find that passive up-regulation of alternative sigma-dependent transcription is not only possible, but also displays hypersensitivity based on the sigma factor competition. Our theoretical analysis thus provides support for a significant role of passive control during that global switch of the gene expression program. Bacteria respond to changing environmental conditions by switching the global pattern of expressed genes. A key mechanism for global switches of the transcriptional program depends on alternative sigma factors that bind the RNA polymerase core enzyme and direct it towards the appropriate stress response genes. Competition of different sigma factors for a limited amount of RNA polymerase is believed to play a central role in this global switch. Here, a theoretical approach is used towards a quantitative understanding of sigma factor competition and its effects on gene expression. The model is used to quantitatively describe in vitro competition assays and to address the question of indirect or passive control in the stringent response upon amino acids starvation. We show that sigma factor competition provides a mechanism for a passive up-regulation of the stress specific sigma-driven genes due to the increased availability of RNA polymerase in the stringent response. Moreover, we find that active separation of sigma factor from the RNA polymerase during early transcript elongation weakens the sigma factor-RNA polymerase equilibrium constant, raising the question of how their in vitro measure is relevant in the cell.
Collapse
Affiliation(s)
- Marco Mauri
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail:
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
71
|
Hnilicová J, Jirát Matějčková J, Šiková M, Pospíšil J, Halada P, Pánek J, Krásný L. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res 2014; 42:11763-76. [PMID: 25217589 PMCID: PMC4191392 DOI: 10.1093/nar/gku793] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/12/2022] Open
Abstract
Small RNAs (sRNAs) are molecules essential for a number of regulatory processes in the bacterial cell. Here we characterize Ms1, a sRNA that is highly expressed in Mycobacterium smegmatis during stationary phase of growth. By glycerol gradient ultracentrifugation, RNA binding assay, and RNA co-immunoprecipitation, we show that Ms1 interacts with the RNA polymerase (RNAP) core that is free of the primary sigma factor (σA) or any other σ factor. This contrasts with the situation in most other species where it is 6S RNA that interacts with RNAP and this interaction requires the presence of σA. The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with RNAP possibly reflects the difference in the composition of the transcriptional machinery between mycobacteria and other species. Unlike Escherichia coli, stationary phase M. smegmatis cells contain relatively few RNAP molecules in complex with σA. Thus, Ms1 represents a novel type of small RNAs interacting with RNAP.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jitka Jirát Matějčková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Michaela Šiková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jiří Pospíšil
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Petr Halada
- Department of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Josef Pánek
- Department of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Libor Krásný
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| |
Collapse
|
72
|
Furukawa S, Shimazaki J, Kawaharada K, Matsuda T, Aoyagi H, Wakabayashi H, Ogihara H, Yamasaki M, Morinaga Y. Acid resistance contributes to the high-pressure carbon dioxide resistance of Escherichia coli K-12. Curr Microbiol 2014; 70:1-5. [PMID: 25119308 DOI: 10.1007/s00284-014-0674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Effect of deletion of acid resistant genes of E. coli on the high-pressure carbon dioxide (HPC) resistance was investigated. Genes coding amino acid decarboxylases, such as lysine, arginine, and glutamate decarboxylase, were found to contribute to HPC resistance. Protonophore-treated cells showed hypersensitivity to HPC, confirming that HPC induced cytoplasm acidification and exerted severe damage on cells by intrusion of gaseous carbon dioxide into cytoplasm.
Collapse
Affiliation(s)
- Soichi Furukawa
- Department of Food Bioscience and Biotechnology College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Daily expression pattern of protein-encoding genes and small noncoding RNAs in synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2014; 80:5195-206. [PMID: 24928881 DOI: 10.1128/aem.01086-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many organisms harbor circadian clocks with periods close to 24 h. These cellular clocks allow organisms to anticipate the environmental cycles of day and night by synchronizing circadian rhythms with the rising and setting of the sun. These rhythms originate from the oscillator components of circadian clocks and control global gene expression and various cellular processes. The oscillator of photosynthetic cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, linked to a complex regulatory network. Synechocystis sp. strain PCC 6803 possesses the standard cyanobacterial kaiABC gene cluster plus multiple kaiB and kaiC gene copies and antisense RNAs for almost every kai transcript. However, there is no clear evidence of circadian rhythms in Synechocystis sp. PCC 6803 under various experimental conditions. It is also still unknown if and to what extent the multiple kai gene copies and kai antisense RNAs affect circadian timing. Moreover, a large number of small noncoding RNAs whose accumulation dynamics over time have not yet been monitored are known for Synechocystis sp. PCC 6803. Here we performed a 48-h time series transcriptome analysis of Synechocystis sp. PCC 6803, taking into account periodic light-dark phases, continuous light, and continuous darkness. We found that expression of functionally related genes occurred in different phases of day and night. Moreover, we found day-peaking and night-peaking transcripts among the small RNAs; in particular, the amounts of kai antisense RNAs correlated or anticorrelated with those of their respective kai target mRNAs, pointing toward the regulatory relevance of these antisense RNAs. Surprisingly, we observed that the amounts of 16S and 23S rRNAs in this cyanobacterium fluctuated in light-dark periods, showing maximum accumulation in the dark phase. Importantly, the amounts of all transcripts, including small noncoding RNAs, did not show any rhythm under continuous light or darkness, indicating the absence of circadian rhythms in Synechocystis.
Collapse
|
74
|
Steuten B, Hoch PG, Damm K, Schneider S, Köhler K, Wagner R, Hartmann RK. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol 2014; 11:508-21. [PMID: 24786589 DOI: 10.4161/rna.28827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whereas, the majority of bacterial non-coding RNAs and functional RNA elements regulate post-transcriptional processes, either by interacting with other RNAs via base-pairing or through binding of small ligands (riboswitches), 6S RNAs affect transcription itself by binding to the housekeeping holoenzyme of RNA polymerase (RNAP). Remarkably, 6S RNAs serve as RNA templates for bacterial RNAP, giving rise to the de novo synthesis of short transcripts, termed pRNAs (product RNAs). Hence, 6S RNAs prompt the enzyme to act as an RNA-dependent RNA polymerase (RdRP). Synthesis of pRNAs exceeding a certain length limit (~13 nt) persistently rearrange the 6S RNA structure, which in turn, disrupts the 6S RNA:RNAP complex. This pRNA synthesis-mediated "reanimation" of sequestered RNAP molecules represents the conceivably fastest mechanism for resuming transcription in cells that enter a new exponential growth phase. The many different 6S RNAs found in a wide variety of bacteria do not share strong sequence homology but have in common a conserved rod-shaped structure with a large internal loop, termed the central bulge; this architecture mediates specific binding to the active site of RNAP. In this article, we summarize the overall state of knowledge as well as very recent findings on the structure, function, and physiological effects of 6S RNA examples from the two model organisms, Escherichia coli and Bacillus subtilis. Comparison of the presently known properties of 6S RNAs in the two organisms highlights common principles as well as diverse features.
Collapse
Affiliation(s)
- Benedikt Steuten
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Katrin Damm
- Philipps-Universität Marburg; Marburg, Germany
| | - Sabine Schneider
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Rolf Wagner
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | |
Collapse
|
75
|
Jonas K. To divide or not to divide: control of the bacterial cell cycle by environmental cues. Curr Opin Microbiol 2014; 18:54-60. [PMID: 24631929 DOI: 10.1016/j.mib.2014.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/26/2022]
Abstract
Whether to divide or not is an important decision that nearly all cells have to make, especially bacteria that are exposed to drastic environmental changes. Under adverse conditions proliferation and growth could compromise cellular integrity and hence must be downregulated. To this end, bacteria have evolved sophisticated mechanisms to transduce environmental information into the cell cycle engine. Recent studies in Escherichia coli, Bacillus subtilis and Caulobacter crescentus indicate that these mechanisms often involve small molecule-based signaling, regulated proteolysis, as well as protein-protein interactions. Most of them delay replication initiation or septum formation by targeting the key regulators DnaA or FtsZ, respectively. Remarkably, while the targets are conserved, the precise mechanisms show a considerable degree of diversity among different species.
Collapse
Affiliation(s)
- Kristina Jonas
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.
| |
Collapse
|
76
|
Singh V. Recent advancements in synthetic biology: Current status and challenges. Gene 2014; 535:1-11. [DOI: 10.1016/j.gene.2013.11.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
|
77
|
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biol 2014; 12:4. [PMID: 24461193 PMCID: PMC3923258 DOI: 10.1186/1741-7007-12-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
Background At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a σ-factor to recognize the genomic location at which the process initiates. Although the crucial role of σ-factors has long been appreciated and characterized for many individual promoters, we do not yet have a genome-scale assessment of their function. Results Using multiple genome-scale measurements, we elucidated the network of σ-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 σ-factor-specific promoters corresponding to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative σ-factors (the σ70 and σ38 regulons), confirming the competition model of σ substitution and negative regulation by alternative σ-factors. Comparison with σ-factor binding in Klebsiella pneumoniae showed that transcriptional regulation of conserved genes in closely related species is unexpectedly divergent. Conclusions The reconstructed network reveals the regulatory complexity of the promoter architecture in prokaryotic genomes, and opens a path to the direct determination of the systems biology of their transcriptional regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
78
|
Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC, Papoutsakis ET. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 2013; 14:849. [PMID: 24299206 PMCID: PMC3879012 DOI: 10.1186/1471-2164-14-849] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
Background Small non-coding RNAs (sRNA) are emerging as major components of the cell’s regulatory network, several possessing their own regulons. A few sRNAs have been reported as being involved in general or toxic-metabolite stress, mostly in Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of sRNAs in the stress response remains poorly understood at the genome-scale level. It was previously shown that toxic-metabolite stress is one of the most comprehensive and encompassing stress responses in the cell, engaging both the general stress (or heat-shock protein, HSP) response as well as specialized metabolic programs. Results Using RNA deep sequencing (RNA-seq) we examined the sRNome of C. acetobutylicum in response to the native but toxic metabolites, butanol and butyrate. 7.5% of the RNA-seq reads mapped to genome outside annotated ORFs, thus demonstrating the richness and importance of the small RNome. We used comparative expression analysis of 113 sRNAs we had previously computationally predicted, and of annotated mRNAs to set metrics for reliably identifying sRNAs from RNA-seq data, thus discovering 46 additional sRNAs. Under metabolite stress, these 159 sRNAs displayed distinct expression patterns, a select number of which was verified by Northern analysis. We identified stress-related expression of sRNAs affecting transcriptional (6S, S-box & solB) and translational (tmRNA & SRP-RNA) processes, and 65 likely targets of the RNA chaperone Hfq. Conclusions Our results support an important role for sRNAs for understanding the complexity of the regulatory network that underlies the stress response in Clostridium organisms, whether related to normophysiology, pathogenesis or biotechnological applications.
Collapse
|
79
|
Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. Microbiologyopen 2013; 2:674-83. [PMID: 23873667 PMCID: PMC3948609 DOI: 10.1002/mbo3.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/15/2013] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
Several reports mention the presence of antibiotic resistance genes in natural and polluted environments, but many studies are based on their detection via polymerase chain reaction (PCR amplification of known genes and not on an activity screening. We constructed a metagenomic fosmid bank from DNA isolated from a polluted river in Brussels, Belgium, the Zenne. A total of 120,000 clones were pooled and plated directly on solid media containing different antibiotics. Several clones were isolated which could grow in the presence of ampicillin. The DNA from several clones was extracted and subjected to restriction analysis and, based on their restriction pattern, two different clones were found. One of the clones was selected for further study as it showed a higher level of resistance to different β-lactams antibiotics (ticarcilline and ceftazidime). To find out which gene is responsible for the resistance, an in vitro transposon mutagenesis was performed and clones having lost the resistance phenotype were analyzed via inverse PCR amplification. Several clones had an insert in a gene encoding a new type of β-lactamase. The amplified fosmid DNA was fully sequenced revealing an insert of 41 kb containing 39 open reading frames (ORFs). Transposon insertions inactivating the resistance to β-lactams were also found in the ORF upstream of the blaA gene, encoding an aminotransferase, suggesting a polar effect on the transcription of the gene downstream. In addition, other genes were found such as histidine biosynthesis genes, which were found to be scattered on the insert, a relA/spoT gene, and genes belonging to type II toxin–antitoxin system. This predicted system was experimentally validated in Escherichia coli using an inducible expression system.
Collapse
Affiliation(s)
- Ken Vercammen
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
80
|
Pavlogiannis A, Mozhayskiy V, Tagkopoulos I. A flood-based information flow analysis and network minimization method for gene regulatory networks. BMC Bioinformatics 2013; 14:137. [PMID: 23617932 PMCID: PMC3672003 DOI: 10.1186/1471-2105-14-137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. RESULTS This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. CONCLUSIONS The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.
Collapse
Affiliation(s)
- Andreas Pavlogiannis
- Department of Computer Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
81
|
Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks. Nat Commun 2013; 4:1755. [DOI: 10.1038/ncomms2743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 03/15/2013] [Indexed: 12/11/2022] Open
|
82
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
83
|
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol 2013; 21:174-80. [PMID: 23419217 DOI: 10.1016/j.tim.2013.01.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/24/2023]
Abstract
Bacteria inhabit enormously diverse niches and have a correspondingly large array of regulatory mechanisms to adapt to often inhospitable and variable environments. The stringent response (SR) allows bacteria to quickly reprogram transcription in response to changes in nutrient availability. Although the proteins controlling this response are conserved in almost all bacterial species, recent work has illuminated considerable diversity in the starvation cues and regulatory mechanisms that activate stringent signaling proteins in bacteria from different environments. In this review, we describe the signals and genetic circuitries that control the stringent signaling systems of a copiotroph, a bacteriovore, an oligotroph, and a mammalian pathogen -Escherichia coli, Myxococcus xanthus, Caulobacter crescentus, and Mycobacterium tuberculosis, respectively - and discuss how control of the SR in these species is adapted to their particular lifestyles.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
84
|
Global stress response in a prokaryotic model of DJ-1-associated Parkinsonism. J Bacteriol 2013; 195:1167-78. [PMID: 23292772 DOI: 10.1128/jb.02202-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YajL is the most closely related Escherichia coli homolog of Parkinsonism-associated protein DJ-1, a protein with a yet-undefined function in the oxidative-stress response. YajL protects cells against oxidative-stress-induced protein aggregation and functions as a covalent chaperone for the thiol proteome, including FeS proteins. To clarify the cellular responses to YajL deficiency, transcriptional profiling of the yajL mutant was performed. Compared to the parental strain, the yajL mutant overexpressed genes coding for chaperones, proteases, chemical chaperone transporters, superoxide dismutases, catalases, peroxidases, components of thioredoxin and glutaredoxin systems, iron transporters, ferritins and FeS cluster biogenesis enzymes, DNA repair proteins, RNA chaperones, and small regulatory RNAs. It also overexpressed the RNA polymerase stress sigma factors sigma S (multiple stresses) and sigma 32 (protein stress) and activated the OxyR and SoxRS oxidative-stress transcriptional regulators, which together trigger the global stress response. The yajL mutant also overexpressed genes involved in septation and adopted a shorter and rounder shape characteristic of stressed bacteria. Biochemical experiments showed that this upregulation of many stress genes resulted in increased expression of stress proteins and improved biochemical function. Thus, protein defects resulting from the yajL mutation trigger the onset of a robust and global stress response in a prokaryotic model of DJ-1-associated Parkinsonism.
Collapse
|
85
|
Panchapakesan SSS, Unrau PJ. E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA (NEW YORK, N.Y.) 2012; 18:2251-9. [PMID: 23118417 PMCID: PMC3504675 DOI: 10.1261/rna.034785.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The 6S RNA in Escherichia coli suppresses housekeeping transcription by binding to RNA polymerase holoenzyme (core polymerase + σ⁷⁰) under low nutrient conditions and rescues σ⁷⁰-dependent transcription in high nutrient conditions by the synthesis of a short product RNA (pRNA) using itself as a template. Here we characterize a kinetic intermediate that arises during 6S RNA release. This state, consisting of 6S RNA and core polymerase, is related to the formation of a top-strand "release" hairpin that is conserved across the γ-proteobacteria. Deliberately slowing the intrinsic 6S RNA release rate by nucleotide feeding experiments reveals that σ⁷⁰ ejection occurs abruptly once a pRNA length of 9 nucleotides (nt) is reached. After σ⁷⁰ ejection, an additional 4 nt of pRNA synthesis is required before the 6S:pRNA complex is finally released from core polymerase. Changing the E. coli 6S RNA sequence to preclude formation of the release hairpin dramatically slows the speed of 6S RNA release but, surprisingly, does not alter the abruptness of σ⁷⁰ ejection. Rather, the pRNA size required to trigger σ⁷⁰ release increases from 9 nt to 14 nt. That a precise pRNA length is required to trigger σ⁷⁰ release either with or without a hairpin implicates an intrinsic "scrunching"-type release mechanism. We speculate that the release hairpin serves two primary functions in the γ-proteobacteria: First, its formation strips single-stranded "-10" 6S RNA interactions away from σ⁷⁰. Second, the formation of the hairpin accumulates RNA into a region of the polymerase complex previously associated with DNA scrunching, further destabilizing the 6S:pRNA:polymerase complex.
Collapse
Affiliation(s)
- Shanker Shyam S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
86
|
Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci U S A 2012; 109:E3278-87. [PMID: 23112171 DOI: 10.1073/pnas.1209823109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.
Collapse
|
87
|
Caballero VC, Toledo VP, Maturana C, Fisher CR, Payne SM, Salazar JC. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator. BMC Microbiol 2012; 12:226. [PMID: 23035718 PMCID: PMC3542578 DOI: 10.1186/1471-2180-12-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Collapse
Affiliation(s)
- Valeria C Caballero
- Program of Microbiology and Mycology, Institute of Biomedical Science-ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
88
|
Lakhotia SC. Long non-coding RNAs coordinate cellular responses to stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:779-96. [PMID: 22976942 DOI: 10.1002/wrna.1135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following the initial discovery of the heat shock RNA omega (hsrω) gene of Drosophila melanogaster to be non-coding (nc) and also inducible by cell stress, other stress-inducible long non-coding RNAs (lncRNA) have been described in diverse organisms. In view of the rapid sequence divergence of lncRNAs, present knowledge of stress trasncriptome is limited and fragmented. Several known stress-related lncRNAs, associated with specific nuclear speckled domains or nucleolus, provide structural base for sequestering diverse RNA-processing/regulatory proteins. Others have roles in transcriptional or translational inhibition during stress or in signaling pathways; functions of several other lncRNAs are not yet known. Most stress-related lncRNAs act primarily by modulating activity of the proteins to which they bind or by sequestering specific sets of proteins away from the active pool. A common emerging theme is that a given lncRNA targets one or more protein/s with key role/s in the cascade of events triggered by the stress and therefore has a widespread integrative effect. Since proteins associate with RNA through short sequence motifs, the overall base sequence of functionally similar ncRNAs is often not conserved except for specific motifs. The rapid evolvability of ncRNA sequences provides elegant modules for adaptability to changing environment as binding of one or the other protein to ncRNA can alter its structure and functions in distinct ways. Thus the stress-related lncRNAs act as hubs in the cellular networks to coordinate activities of the members within and between different networks to maintain cellular homeostasis for survival or to trigger cell death.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
89
|
Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 2012; 67:2069-89. [PMID: 22618862 DOI: 10.1093/jac/dks196] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria encounter a myriad of stresses in their natural environments, including, for pathogens, their hosts. These stresses elicit a variety of specific and highly regulated adaptive responses that not only protect bacteria from the offending stress, but also manifest changes in the cell that impact innate antimicrobial susceptibility. Thus exposure to nutrient starvation/limitation (nutrient stress), reactive oxygen and nitrogen species (oxidative/nitrosative stress), membrane damage (envelope stress), elevated temperature (heat stress) and ribosome disruption (ribosomal stress) all impact bacterial susceptibility to a variety of antimicrobials through their initiation of stress responses that positively impact recruitment of resistance determinants or promote physiological changes that compromise antimicrobial activity. As de facto determinants of antimicrobial, even multidrug, resistance, stress responses may be worthy of consideration as therapeutic targets.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
90
|
Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 2012; 20:227-34. [PMID: 22424589 DOI: 10.1016/j.tim.2012.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/25/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
91
|
|
92
|
Singh AB, Sharma AK, Mukherjee KJ. Analyzing the metabolic stress response of recombinant Escherichia coli cultures expressing human interferon-beta in high cell density fed batch cultures using time course transcriptomic data. MOLECULAR BIOSYSTEMS 2011; 8:615-28. [PMID: 22134216 DOI: 10.1039/c1mb05414g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fed batch cultures expressing recombinant interferon beta under the T7 promoter were run with different exponential feeding rates of a complex substrate and induced at varying cell densities. Post-induction profiles of the specific product formation rates showed a strong dependence on the specific growth rate with the maximum product yield obtained at 0.2 h(-1). A study of the relative transcriptomic profiles as a function of pre-induction μ was therefore done to provide insight into the role of cellular physiology in enhancing recombinant protein expression. Hierarchical clustering analysis of the significantly regulated genes allowed us to identify biologically important groups of genes which fall under specific master regulators. The groups were: rpoH, ArcB, CreB, Lrp, RelA, Fis and Hfq. The response of these regulators, which exert a feedback control on the growth and product formation rates correlated well with the expression levels obtained. Thus at the optimum pre-induction μ, the alternative sigma factors and ribosomal machinery genes did not get depressed till the 6th hour post-induction unlike at other specific growth rates, demonstrating a critical role for the genes in sustaining recombinant protein expression.
Collapse
Affiliation(s)
- Anuradha B Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
93
|
Antibiotics shaping bacterial genome: deletion of an IS91 flanked virulence determinant upon exposure to subinhibitory antibiotic concentrations. PLoS One 2011; 6:e27606. [PMID: 22096603 PMCID: PMC3214074 DOI: 10.1371/journal.pone.0027606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly(-)). Generation of Hly(-) clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly(-) clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly(-) derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly(-) clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Collapse
|
94
|
Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2011; 36:131-48. [PMID: 22091839 DOI: 10.1111/j.1574-6976.2011.00310.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5 years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth.
Collapse
Affiliation(s)
- Douglas Higgins
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
95
|
Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 2011; 154:101-13. [DOI: 10.1016/j.jbiotec.2011.01.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/05/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
|
96
|
Lerbs-Mache S. Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? PLANT MOLECULAR BIOLOGY 2011; 76:235-49. [PMID: 21107995 DOI: 10.1007/s11103-010-9714-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/09/2010] [Indexed: 05/04/2023]
Abstract
Plastid gene expression is rather complex. Transcription is performed by three different RNA polymerases, two of them are nucleus-encoded, monomeric, of the phage-type (named RPOTp and RPOTmp) and one of them is plastid-encoded, multimeric, of the eubacterial-type (named PEP). The activity of the eubacterial-type RNA polymerase is regulated by up to six nucleus-encoded transcription initiation factors of the sigma-type. This complexity of the plastid transcriptional apparatus is not yet well understood and raises the question of whether it is subject to any regulation or just ensures constitutive transcription of the plastid genome. On the other hand, considerable advances have been made during the last years elucidating the role of sigma factors for specific promoter recognition and selected transcription of some plastid genes. Sigma-interacting proteins have been identified and phosphorylation-dependent functional changes of sigma factors have been revealed. The present review aims to summarize these recent advances and to convince the reader that plastid gene expression is regulated on the transcriptional level by sigma factor action.
Collapse
Affiliation(s)
- Silva Lerbs-Mache
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, CEA-Grenoble, UMR 5168, Université Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble cedex, France.
| |
Collapse
|
97
|
Gubellini F, Verdon G, Karpowich NK, Luff JD, Boël G, Gauthier N, Handelman SK, Ades SE, Hunt JF. Physiological response to membrane protein overexpression in E. coli. Mol Cell Proteomics 2011; 10:M111.007930. [PMID: 21719796 PMCID: PMC3205863 DOI: 10.1074/mcp.m111.007930] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially contributing to the difficulties encountered in IMP crystallization.
Collapse
Affiliation(s)
- Francesca Gubellini
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ionescu M, Elgrably-Weiss M, Elad T, Rasouly A, Yagur-Kroll S, Belkin S. Negative regulation of σ70-driven promoters by σ70. Res Microbiol 2011; 162:461-9. [DOI: 10.1016/j.resmic.2011.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/14/2011] [Indexed: 11/26/2022]
|
99
|
The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS One 2011; 6:e19235. [PMID: 21573101 PMCID: PMC3089606 DOI: 10.1371/journal.pone.0019235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/23/2011] [Indexed: 12/31/2022] Open
Abstract
Background Among the seven different sigma factors in E. coli σ70 has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting σ70-dependent transcription at the onset of stationary growth. Although binding of Rsd to σ70 has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. Methodology/Principal Findings We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with σ70, with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with σ38, the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and σ38- or σ70-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of σ70-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned out to be important for efficient rsd transcription. Conclusions/Significance The results contribute to a better understanding of the intricate mechanism of Rsd-mediated sigma factor specificity changes during stationary phase.
Collapse
|
100
|
Zou SB, Roy H, Ibba M, Navarre WW. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence. Virulence 2011; 2:147-51. [PMID: 21317554 DOI: 10.4161/viru.2.2.15039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved lysine residue in the translation factor elongation factor P (EF-P). Strains in which EF-P is unmodified due to the absence of PoxA or YjeK are attenuated for virulence and display highly pleiotropic phenotypes, including hypersusceptibility to a wide range of unrelated antimicrobial compounds. Work from our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar changes in the translation machinery during stress adaptation, indicating that the role of these factors in physiology may be broadly conserved.
Collapse
Affiliation(s)
- S Betty Zou
- Department of Molecular Genetics, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|