51
|
Endo Y, Furuta A, Nishino I. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol 2015; 129:391-8. [PMID: 25589223 DOI: 10.1007/s00401-015-1385-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
Danon disease is an X-linked disorder clinically characterized by the triad of hypertrophic cardiomyopathy, myopathy, and intellectual disability. Cardiomyopathy is a severe and life-threatening problem, for which cardiac transplantation is the only therapeutic option. The most striking finding in muscle biopsy samples is small basophilic granules scattered in myofibers, which are in fact small autophagic vacuoles surrounded by membranes with sarcolemmal features characterized by the recruitment of sarcolemmal proteins and acetylcholine esterase and by the presence of basal lamina on its luminal side. The mechanism underlying the formation of these autophagic vacuoles with unique sarcolemmal features (AVSF) still remains a mystery and its origin is unknown. In heart, cardiomyocytes show dramatically increased vacuolation and degenerative features, including myofibrillar disruption and lipofuscin accumulation. In brain, pale granular neurons and neurons with lipofuscin-like granules may be seen. Danon disease is caused by loss-of-function mutations in the LAMP2 gene, which encodes lysosome-associated membrane protein 2 (LAMP-2), a single-spanned transmembrane protein localized in the limiting membranes of lysosomes and late endosomes. Most mutations lead to splicing defects or protein truncation, resulting in a loss of transmembrane and/or cytoplasmic domains, leading to LAMP-2 protein deficiency. LAMP-2 is required for the maturation of autophagosomes by fusion with lysosomes; therefore, LAMP-2 deficiency leads to a failure in macroautophagy. There are three LAMP-2 isoforms, LAMP-2A, -2B, and -2C. Clinical features of Danon disease are thought to be mediated by loss of the LAMP-2B isoform which is the major isoform expressed in muscle. It is also known that LAMP-2 plays a role in chaperone-mediated autophagy and RNA- and DNA-targeting autophagy. However, the precise pathophysiological mechanism through which LAMP-2 deficiency causes Danon disease is still not fully understood and its elucidation would promote the development of new therapies.
Collapse
Affiliation(s)
- Yukari Endo
- Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | | | | |
Collapse
|
52
|
Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D’Hooge R, Saftig P, Blanz J. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun 2015; 3:6. [PMID: 25637286 PMCID: PMC4359523 DOI: 10.1186/s40478-014-0182-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022] Open
Abstract
The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington’s and Parkinson’s disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
Collapse
|
53
|
Walker MW, Lloyd-Evans E. A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles. Methods Cell Biol 2015; 126:21-43. [PMID: 25665439 DOI: 10.1016/bs.mcb.2014.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers.
Collapse
|
54
|
Jin L, Feng T, Chai J, Ghazalli N, Gao D, Zerda R, Li Z, Hsu J, Mahdavi A, Tirrell DA, Riggs AD, Ku HT. Colony-forming progenitor cells in the postnatal mouse liver and pancreas give rise to morphologically distinct insulin-expressing colonies in 3D cultures. Rev Diabet Stud 2014; 11:35-50. [PMID: 25148366 DOI: 10.1900/rds.2014.11.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed "Dark" colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133⁺CD49f(low)CD107b(low) phenotype, while pancreatic CFU-Dark are CD133⁻. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth.
Collapse
Affiliation(s)
- Liang Jin
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Tao Feng
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jing Chai
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Nadiah Ghazalli
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Dan Gao
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Ricardo Zerda
- Electron Microscopy Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Zhuo Li
- Electron Microscopy Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jasper Hsu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Alborz Mahdavi
- Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Arthur D Riggs
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hsun Teresa Ku
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
55
|
Sun J, Chu YJ, Zhang FB, Zheng C. Correlation among hepatic biopsy pathohistology, expression of LAMP2 and laboratory parameters in patients with primary biliary cirrhosis. Shijie Huaren Xiaohua Zazhi 2014; 22:868-873. [DOI: 10.11569/wcjd.v22.i6.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To search some laboratory parameters reflecting hepatic pathological changes and to observe lysosomal granule membrane protein (LAMP2) expression in patients with primary biliary cirrhosis (PBC).
METHODS: Forty-five patients with PBC who underwent hepatic pathological examination and tests for liver function, blood coagulation function, autoimmune antibody and immunoglobulin from June 2003 to December 2012 were included. The correlation was assessed between hepatic pathohistology and laboratory findings. The expression of LAMP2 in hepatic tissue was also studied by immunohistochemical method.
RESULTS: Pathological stage was significantly correlated with the expression of LAMP2 (P < 0.05). Pathological stage and expression of LAMP2 were correlated with gamma glutamyltranspeptidase (GGT), alkaline phosphatase (ALP), direct bilirubin (DBIL) and albumin (ALB). Prothrombin time (PT), fibrinogen (FIB), IgG, IgM, antinuclear antibodies (ANA), anti-mitochondrial antibody (AMA), and anti-mitochondrial antibody M2 (AMA-M2) had no correlation with pathological stage or expression of LAMP2.
CONCLUSION: The abnormal expression of LAMP2 may have a role in the pathogenesis of PBC. Some laboratory parameters are helpful for judging hepatic pathological stage of PBC.
Collapse
|
56
|
Pereira EM, do Monte SJH, do Nascimento FF, de Castro JAF, Sousa JLM, Filho HCSALC, da Silva RN, Labilloy A, Monte Neto JT, da Silva AS. Lysosome-associated protein 1 (LAMP-1) and lysosome-associated protein 2 (LAMP-2) in a larger family carrier of Fabry disease. Gene 2014; 536:118-22. [PMID: 24334114 DOI: 10.1016/j.gene.2013.11.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 11/11/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p=0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD.
Collapse
Affiliation(s)
- Ester M Pereira
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil.
| | - Semiramis J H do Monte
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Fernando F do Nascimento
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Jose A F de Castro
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Jackeline L M Sousa
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Henrique C S A L C Filho
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Raimundo N da Silva
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Anatália Labilloy
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - José T Monte Neto
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| | - Adalberto S da Silva
- Laboratory of Immunogenetics and Molecular Biology, Universidade Federal do Piauí, Campus Petrônio Portela, Bloco 16, Teresina, Piauí, Brazil
| |
Collapse
|
57
|
Jacobs BL, Goodman CA, Hornberger TA. The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 2014; 35:11-21. [PMID: 24162376 PMCID: PMC3981920 DOI: 10.1007/s10974-013-9367-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
It is well recognized that mechanical signals play a critical role in the regulation of skeletal muscle mass, and the maintenance of muscle mass is essential for mobility, disease prevention and quality of life. Furthermore, over the last 15 years it has become established that signaling through a protein kinase called the mammalian (or mechanistic) target of rapamycin (mTOR) is essential for mechanically-induced changes in protein synthesis and muscle mass, however, the mechanism(s) via which mechanical stimuli regulate mTOR signaling have not been defined. Nonetheless, advancements are being made, and an emerging body of evidence suggests that the late endosome/lysosomal (LEL) system might play a key role in this process. Therefore, the purpose of this review is to summarize this body of evidence. Specifically, we will first explain why the Ras homologue enriched in brain (Rheb) and phosphatidic acid (PA) are considered to be direct activators of mTOR signaling. We will then describe the process of endocytosis and its involvement in the formation of LEL structures, as well as the evidence which indicates that mTOR and its direct activators (Rheb and PA) are all enriched at the LEL. Finally, we will summarize the evidence that has implicated the LEL in the regulation of mTOR by various growth regulatory inputs such as amino acids, growth factors and mechanical stimuli.
Collapse
Affiliation(s)
- Brittany L Jacobs
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | | | | |
Collapse
|
58
|
Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Dis Model Mech 2014; 7:351-62. [PMID: 24487409 PMCID: PMC3944495 DOI: 10.1242/dmm.014050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.
Collapse
Affiliation(s)
- Xiang Y Kong
- Department of Bioscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang L, Wang J, Shi Y, Zhou X, Wang X, Li Z, Huang X, Wang J, Han Z, Li T, Wang M, Wang R, Fan D, Han Y. Identification of a primary biliary cirrhosis associated protein as lysosome-associated membrane protein-2. J Proteomics 2013; 91:569-79. [DOI: 10.1016/j.jprot.2013.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 11/25/2022]
|
60
|
What is the evidence for antibodies to LAMP-2 in the pathogenesis of ANCA associated small vessel vasculitis? Curr Opin Rheumatol 2013; 25:26-34. [PMID: 23169102 DOI: 10.1097/bor.0b013e32835b4f8f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review critically analyses the data implicating antibodies to lysosome associated membrane protein-2 (hLAMP-2) in ANCA-associated vasculitis (AAV). It addresses recent controversies over prevalence of anti-hLAMP-2 antibodies as well as their potential for diagnosis and monitoring disease activity. RECENT FINDINGS Anti-hLAMP-2 antibodies were first described in the 1990s and have become the focus of intense clinical interest in the past 4 years. This followed the demonstration of their very high prevalence in untreated patients presenting with AAV but absence when patients were in remission. The data also demonstrated molecular mimicry between hLAMP-2 and the bacterial protein FimH. The same group later confirmed the original findings and showed the anti-hLAMP-2 autoantibodies have different kinetics to those recognising myeloperoxidase and proteinase-3 and are less likely to be detectable when the disease is in remission. By contrast, a different group reported a lower prevalence of anti-hLAMP-2 antibodies in AAV and questioned their relevance to pathogenesis. Critical analysis of these studies suggests that the differences are largely attributable to selection criteria of the AAV patients studied and the assays used. SUMMARY Anti-hLAMP-2 antibodies are frequently found in AAV but attempts to define their consequences have been frustrated by lack of generally available assays for them.
Collapse
|
61
|
Kallunki T, Olsen OD, Jäättelä M. Cancer-associated lysosomal changes: friends or foes? Oncogene 2013; 32:1995-2004. [PMID: 22777359 DOI: 10.1038/onc.2012.292] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated changes in the lysosomal compartment can be regarded as friends or foes. Most of them are clearly transforming as they promote invasive growth, angiogenesis and drug resistance. The same changes can, however, strongly sensitize cells to lysosomal membrane permeabilization and thereby to lysosome-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.
Collapse
Affiliation(s)
- T Kallunki
- Cell Death and Metabolism and Centre for Genotoxic Stress Research, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | |
Collapse
|
62
|
The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp Cell Res 2013; 319:12-20. [DOI: 10.1016/j.yexcr.2012.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 11/17/2022]
|
63
|
Appelqvist H, Sandin L, Björnström K, Saftig P, Garner B, Ollinger K, Kågedal K. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS One 2012; 7:e50262. [PMID: 23166840 PMCID: PMC3500374 DOI: 10.1371/journal.pone.0050262] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/17/2012] [Indexed: 01/17/2023] Open
Abstract
Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
64
|
Wilke S, Krausze J, Büssow K. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol 2012; 10:62. [PMID: 22809326 PMCID: PMC3409847 DOI: 10.1186/1741-7007-10-62] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/19/2012] [Indexed: 01/09/2023] Open
Abstract
Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.
Collapse
Affiliation(s)
- Sonja Wilke
- Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany
| | | | | |
Collapse
|
65
|
Majer F, Vlaskova H, Krol L, Kalina T, Kubanek M, Stolnaya L, Dvorakova L, Elleder M, Sikora J. Danon disease: a focus on processing of the novel LAMP2 mutation and comments on the beneficial use of peripheral white blood cells in the diagnosis of LAMP2 deficiency. Gene 2012; 498:183-95. [PMID: 22365987 DOI: 10.1016/j.gene.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 11/17/2022]
Abstract
Danon disease (DD) is a monogenic X-linked disorder characterized by cardiomyopathy, skeletal myopathy and variable degrees of intellectual disability. DD develops due to mutations in the gene encoding lysosomal-associated membrane protein 2 (LAMP2). We report on a family exhibiting the clinical phenotype comprising of hypertrophic cardiomyopathy and ventricular pre-excitation, myopia and mild myopathy in two male patients and cardiomyopathy and myopia in a female patient. The diagnosis of DD in this family was based on the assessment of the clinical phenotypes and the absence of LAMP2 in skeletal and/or cardiac muscle biopsy specimens. Sequence analysis of the LAMP2 gene and its mRNA revealed a novel LAMP2 mutation (c.940delG) in all three patients. Approximately 25% of the female patient's cardiomyocytes were LAMP2 positive apparently due to the unfavorable skewing of X chromosome inactivation. We further performed qualitative LAMP2 immunohistochemistry on peripheral white blood cells using the smear technique and revealed the absence of LAMP2 in the male patients. LAMP2 expression was further assessed in granulocytes, CD4+ and CD8+ T lymphocytes, CD20+ B lymphocytes, CD14+ monocytes and CD56+ natural killer cells by quantitative polychromatic flow cytometry. Whereas the male DD patients lacked LAMP2 in all WBC populations, the female patient expressed LAMP2 in 15.1% and 12.8% of monocytes and granulocytes, respectively. LAMP2 expression ratiometrics of highly vs. weakly expressing WBC populations discriminated the DD patients from the healthy controls. WBCs are thus suitable for initial LAMP2 expression testing when DD is a differential diagnostic option. Moreover, flow cytometry represents a quantitative method to assess the skewing of LAMP2 expression in female heterozygotes. Because LAMP2 is a major protein constituent of the membranes of a number of lysosome-related organelles, we also tested the exocytic capacity of the lytic granules from CD8+ T lymphocytes in the patient samples. The degranulation triggered by a specific stimulus (anti-CD3 antibody) was normal. Therefore, this process can be considered LAMP2 independent in human T cells. The c.940delG mutation results in a putatively truncated protein (p.A314QfsX32), which lacks the transmembrane domain and the cytosolic tail of the wild-type LAMP2. We tested whether this variant becomes exocytosed because of a failure in targeting to late endosomes/lysosomes. Western blotting of cardiac muscle, WBCs and cultured skin fibroblasts (and their culture media) showed no intra- or extracellular truncated LAMP2. By comparing the expression pattern and intracellular targeting in cultured skin fibroblasts of normal LAMP2 isoforms (A, B and C) tagged with green fluorescent protein (GFP) and the A314Qfs32-GFP fusion, we found that the A314Qfs32-GFP protein is not even expressed. These observations suggest that the truncated protein is unstable and is co-translationally or early post-translationally degraded.
Collapse
Affiliation(s)
- F Majer
- Charles University in Prague, 1st Faculty of Medicine, Institute of Inherited Metabolic Disorders, Ke Karlovu 2, 128 08 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Intracellular cholesterol amounts, distribution and traffic are tightly regulated to maintain the healthy eukaryotic cell function. However, how intracellular pathogens that require cholesterol, interact with the host cholesterol homeostasis and traffic is not well understood. Anaplasma phagocytophilum is an obligatory intracellular and cholesterol-robbing bacterium, which causes human granulocytic anaplasmosis. Here we found that a subset of cholesterol-binding membrane protein, Niemann-Pick type C1 (NPC1)-bearing vesicles devoid of lysosomal markers were upregulated in HL-60 cells infected with A. phagocytophilum, and trafficked to live bacterial inclusions. The NPC1 localization to A. phagocytophilum inclusions was abolished by low-density lipoprotein (LDL)-derived cholesterol traffic inhibitor U18666A. Studies using NPC1 siRNA and the cell line with cholesterol traffic defect demonstrated that the NPC1 function is required for bacterial cholesterol acquisition and infection. Furthermore, trans-Golgi network-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptors, vesicle-associated membrane protein (VAMP4) and syntaxin 16, which are associated with NPC1 and LDL-derived cholesterol vesicular transport were recruited to A. phagocytophilum inclusions, and VAMP4 was required for bacteria infection. Taken together, A. phagocytophilum is the first example of a pathogen that subverts the NPC1 pathway of intracellular cholesterol transport and homeostasis for bacterial inclusion membrane biogenesis and cholesterol capture.
Collapse
Affiliation(s)
- Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
67
|
Lipids in autophagy: constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1133-45. [PMID: 22269166 DOI: 10.1016/j.bbalip.2012.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
68
|
Appelqvist H, Nilsson C, Garner B, Brown AJ, Kågedal K, Ollinger K. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:629-39. [PMID: 21281795 DOI: 10.1016/j.ajpath.2010.10.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/24/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|