51
|
Li Y, Zhang Y, Zhang X, Sun J, Hao J. BMP4/Smad Signaling Pathway Induces the Differentiation of Mouse Spermatogonial Stem Cells via Upregulation of Sohlh2. Anat Rec (Hoboken) 2014; 297:749-57. [DOI: 10.1002/ar.22891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/10/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Yi Li
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
- Obstetric Genetic Disease Laboratory; Maternal and Child Health Hospital of Zibo City; Zibo 255029 People's Republic of China
| | - Yuecun Zhang
- Department of Gynaecology and Obstetrics; Qilu Hospital, Shandong University; Jinan 250012 People's Republic of China
| | - Xiaoli Zhang
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| | - Jinhao Sun
- Department of Human Anatomy; School of Medicine; Shandong University; Jinan 250012 People's Republic of China
| | - Jing Hao
- Department of Histology and Embryology; School of Medicine, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University; Jinan 250012 People's Republic of China
| |
Collapse
|
52
|
Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells. Reprod Toxicol 2014; 45:87-93. [PMID: 24503145 DOI: 10.1016/j.reprotox.2014.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes.
Collapse
|
53
|
Youn H, Kim SH, Choi KA, Kim S. Characterization of Oct4-GFP spermatogonial stem cell line and its application in the reprogramming studies. J Cell Biochem 2013; 114:920-8. [PMID: 23097321 DOI: 10.1002/jcb.24431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022]
Abstract
Establishment of mouse spermatogonial stem cell (SSC) culture systems offers a useful stem cell model for studies of proliferation and self-renewal of mammalian germline stem cells. In addition, spontaneous development of pluripotent stem cells from cultured SSCs emphasizes their possible applications in regenerative medicine as a substitute for embryonic stem cells (ESCs). These pluripotent stem cells termed multipotent germline stem cells (mGSCs) or germline-derived pluripotent stem cells (gPSCs) exhibit almost identical properties in terms of morphology and gene expression patterns to mouse ESCs (mESCs). In this study, to help understand mechanisms underlying reprogramming of SSCs into pluripotent stem cells, we established a culture system of SSCs derived from mice harboring green fluorescence protein (GFP) transgene whose expression is modulated by Oct4 regulatory sequences. Our results indicated that GFP intensity faithfully reflected cellular states upon reprogramming of SSCs or treatment with a selective extracellular signal-regulated kinase (ERK) inhibitor PD0325901. Moreover, in contrast to mESCs, regulation of Nanog expression did not appear to couple to the Oct4 level in SSCs. Further analysis of Oct4-GFP SSCs demonstrated that a posttranscriptional control of pluripotency marker genes such as Oct4 and Sox2 might play an important role as an inhibitory mechanism preventing the acquisition of pluripotency.
Collapse
Affiliation(s)
- Haesun Youn
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
54
|
Sá R, Miranda C, Carvalho F, Barros A, Sousa M. Expression of stem cell markers: OCT4, KIT, ITGA6, and ITGB1 in the male germinal epithelium. Syst Biol Reprod Med 2013; 59:233-43. [PMID: 23758503 DOI: 10.3109/19396368.2013.804964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Efforts have been made for the isolation and characterization of human stem spermatogonia (SG) which would be of major interest for fertility preservation in oncologic patients. We evaluated the expression of mammalian SG stem cell markers, KIT, OCT4, integrin alpha 6 (ITGA6), and integrin beta 1 (ITGB1) as possible indicators for the isolation of those cells in humans. Two different types of SG were individually isolated by micromanipulation from testicular biopsies of men with conserved spermatogenesis. Expression of mRNA showed the absence of KIT and ITGB1 markers in SG. By immunocytochemistry (IC), protein expression for KIT and integrins revealed two types of SG populations, negative (type-1) and positive (type-2). By immunohistochemistry (IH), protein expression for KIT and ITGB1 also revealed two kinds of SG populations, negative (SG A-dark) and positive (SG A-pale). Results suggest that in humans it may be possible to obtain pure populations of stem SG by using negative KIT((-))/ITGB1((-)) sorting.
Collapse
Affiliation(s)
- Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Biomedical Research Multidisciplinary Unit (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS) , University of Porto
| | | | | | | | | |
Collapse
|
55
|
Shakeri M, Kohram H, Shahverdi A, Shahneh AZ, Tavakolifar F, Pirouz M, Shahrebabak HM, Koruji M, Baharvand H. Behavior of mouse spermatogonial stem-like cells on an electrospun nanofibrillar matrix. J Assist Reprod Genet 2013; 30:325-332. [PMID: 23274510 PMCID: PMC3607679 DOI: 10.1007/s10815-012-9916-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Spermatogonial stem cells are affected by the interactions of extrinsic signals produced by components of the microenvironment niche, in addition to the chemical and physical properties of the extracellular matrix. Therefore, this study was initiated to assess the interaction of these cells on a synthetic nanofibrillar extracellular matrix that mimicked the geometry and nanotopography of the basement membrane for cellular growth. METHODS This study has used a variety of experimental approaches to investigate the interaction of mouse neonatal-derived spermatogonial stem-like cells on a synthetic random oriented three-dimensional nanofibrillar matrix composed of electrospun polyamide nanofibers (Ultra-Web™). RESULTS Spermatogonial stem-like cell colonies were characterized by their ability to express α6-integrin, Thy-1, PLZF, and β1-integrin. After culture of cells on the nanofibrillar surfaces for 7 days, the number of colonies, the number of cells in each colony, and the average area of colonies were increased (P < 0.05). However, the expression difference of related markers in both groups was not significant. A significantly higher proliferation and survival was observed in the nanofibrillar group (P < 0.05). After transplantation into the testes of busulfan-treated adult mice, spermatogonial stem-like cell colonies that were cultured on the nanofibrillar surface demonstrated functionality, as verified by their ability to migrate to the seminiferous basal membrane, where they produced additional colonies. CONCLUSIONS These results have suggested that electrospun nanofibrillar surfaces could provide a more favorable microenvironment for in vitro short term culture of spermatogonial stem-like cell colonies.
Collapse
Affiliation(s)
- Malak Shakeri
- />Department of Animal Science, Agricultural Campus, University of Tehran, Karaj, Iran
| | - Hamid Kohram
- />Department of Animal Science, Agricultural Campus, University of Tehran, Karaj, Iran
| | - Abdolhossein Shahverdi
- />Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395–4644, Tehran, Iran
- />Department of Embryology, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ahmad Zare Shahneh
- />Department of Animal Science, Agricultural Campus, University of Tehran, Karaj, Iran
| | - Faranak Tavakolifar
- />Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395–4644, Tehran, Iran
| | - Mehdi Pirouz
- />Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395–4644, Tehran, Iran
| | | | - Morteza Koruji
- />Department of Anatomical Sciences, School of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- />Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395–4644, Tehran, Iran
- />Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
56
|
GABA exists as a negative regulator of cell proliferation in spermatogonial stem cells. [corrected]. Cell Mol Biol Lett 2013; 18:149-62. [PMID: 23430456 PMCID: PMC6275874 DOI: 10.2478/s11658-013-0081-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
γ-amino butyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA is also found in many peripheral tissues, where it has important functions during development. Here, we identified the existence of the GABA system in spermatogonial stem cells (SSCs) and found that GABA negatively regulates SSC proliferation. First, we demonstrated that GABA and its synthesizing enzymes were abundant in the testes 6 days postpartum (dpp), suggesting that GABA signaling regulates SSCs function in vivo. In order to directly examine the effect of GABA on SSC proliferation, we then established an in vitro culture system for long-term expansion of SSCs. We showed that GABAA receptor subunits, including α1, α5, β1, β2, β3 and γ3, the synthesizing enzyme GAD67, and the transporter GAT-1, are expressed in SSCs. Using phosphorylated histone H3 (pH3) staining, we demonstrated that GABA or the GABAAR-specific agonist muscimol reduced the proliferation of SSCs. This GABA regulation of SSC proliferation was shown to be independent of apoptosis using the TUNEL assay. These results suggest that GABA acts as a negative regulator of SSC proliferation to maintain the homeostasis of spermatogenesis in the testes.
Collapse
|
57
|
Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? BIOMED RESEARCH INTERNATIONAL 2013; 2013:903142. [PMID: 23509797 PMCID: PMC3581117 DOI: 10.1155/2013/903142] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation.
Collapse
|
58
|
Berkovits BD, Wolgemuth DJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr Top Dev Biol 2013; 102:293-326. [PMID: 23287038 DOI: 10.1016/b978-0-12-416024-8.00011-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The double bromodomain-containing BET (bromodomain and extra terminal) family of proteins is highly conserved from yeast to humans and consists not just of transcriptional regulators but also histone-interacting chromatin remodelers. The four mammalian BET genes are each expressed at unique times during spermatogenesis, and the testis-specific gene Brdt is essential for spermatogenesis. Loss of the first bromodomain of BRDT results in improper/incomplete spermatid elongation and severely morphologically defective sperm. The elongation defects observed in mutant spermatids can be directly tied to altered postmeiotic chromatin architecture. BRDT is required for creation/maintenance of the chromocenter of round spermatids, a structure that forms just after completion of meiosis. The chromocenter creates a defined topology in spermatids, and the presence of multiple chromocenters rather than a single intact chromocenter correlates with loss of spermatid polarity, loss of heterochromatin foci at the nuclear envelope, and loss of proper spermatid elongation. BRDT is not only essential for proper chromatin organization but also involved in regulation of transcription and in cotranscriptional processing. That is, transcription and alternative splicing are altered in spermatocytes and spermatids that lack full-length BRDT. Additionally, the transcription of mRNAs with short 3' UTRs, which is characteristic of round spermatids, is also altered. Examination of the genes regulated by BRDT yields many possible targets that could in part explain the morphologically abnormal sperm produced by the BRDT mutant testes. Thus, BRDT and possibly the other BET genes are required for proper spermatogenesis, which opens up the possibility that the recently discovered small molecule inhibitors of the BET family could be useful as reversible male contraceptives.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
59
|
Jahnukainen K, Stukenborg JB. Clinical review: Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab 2012; 97:4341-51. [PMID: 23038680 DOI: 10.1210/jc.2012-3065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Rapid progress in fertility preservation strategies has led to the investigation of ways in which fertile gametes could be generated from cryopreserved immature testicular tissue. Childhood cancer patients remain the major group that can benefit from these techniques. Other potential candidates include patients undergoing gonadectomy and patients with Klinefelter's syndrome and cryptorchid testes. This review aims to present an overview of the current state of knowledge in experimental germ cell transplantation, testicular tissue transplantation, and germ cell culture as fertility preservation methods for males. METHODOLOGY We included English articles published in PubMed as well as personal files with the focus on studies including human or nonhuman material. MAIN FINDINGS Germ cell and testicular tissue transplantation demonstrate clinical options to mature germ cells from immature primate testicular tissue. The most promising approach involves autologous grafting of immature testicular tissue, whereas germ cell maturation in vitro provides the best strategies to overcome problems of cancer contamination in cryopreserved testicular tissue. Three-dimensional and organ culture systems offer the possibility to differentiate immature male germ cells up to the stage of elongated spermatids. Further characterization of early germ cell development in humans is needed to modify these systems for clinical use.
Collapse
Affiliation(s)
- Kirsi Jahnukainen
- Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska University Hospital and Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | |
Collapse
|
60
|
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 2012; 7:e36020. [PMID: 22536454 PMCID: PMC3334991 DOI: 10.1371/journal.pone.0036020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Water buffalo is an economically important livestock species and about half of its total world population exists in India. Development of stem cell technology in buffalo can find application in targeted genetic modification of this species. Testis has emerged as a source of pluripotent stem cells in mice and human; however, not much information is available in buffalo. OBJECTIVES AND METHODS Pou5f1 (Oct 3/4) is a transcription factor expressed by pluripotent stem cells. Therefore, in the present study, expression of POU5F1 transcript and protein was examined in testes of both young and adult buffaloes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Further, using the testis transplantation assay, a functional assay for spermatogonial stem cells (SSCs), stem cell potential of gonocytes/spermatogonia isolated from prepubertal buffalo testis was also determined. RESULTS Expression of POU5F1 transcript and protein was detected in prepubertal and adult buffalo testes. Western blot analysis revealed that the POU5F1 protein in the buffalo testis exists in two isoforms; large (∼47 kDa) and small (∼21 kDa). Immunohistochemical analysis revealed that POU5F1 expression in prepubertal buffalo testis was present in gonocytes/spermatogonia and absent from somatic cells. In the adult testis, POU5F1 expression was present primarily in post-meiotic germ cells such as round spermatids, weakly in spermatogonia and spermatocytes, and absent from elongated spermatids. POU5F1 protein expression was seen both in cytoplasm and nuclei of the stained germ cells. Stem cell potential of prepubertal buffalo gonocytes/spermatogonia was confirmed by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. CONCLUSION/SIGNIFICANCE These findings strongly indicate that gonocytes/spermatogonia, isolated for prepubertal buffalo testis can be a potential target for establishing a germ stem cell line that would enable genetic modification of buffaloes.
Collapse
|
61
|
Abstract
Stem cell-mediated tissue repair is a promising approach in regenerative medicine. Intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. Recently, using lineage tracing and molecular marker labeling, intestinal stem cells (ISCs) have been identified in Drosophila adult midgut. ISCs reside at the basement membrane and are multipotent as they produce both enterocytes and enteroendocrine cells. The adult Drosophila midgut provides an excellent in vivo model organ to study ISC behavior during aging, stress, regeneration, and infection. It has been demonstrated that Notch, Janus kinase/signal transducer and activator of transcription, epidermal growth factor receptor/mitogen-activated protein kinase, Hippo, and wingless signaling pathways regulate ISCs proliferation and differentiation. There are plenty of genetic tools and markers developed in recent years in Drosophila stem cell studies. These tools and markers are essential in the precise identification of stem cells as well as manipulation of genes in stem cell regulation. Here, we describe the details of genetic tools, markers, and immunolabeling techniques used in identification and characterization of adult midgut stem cells in Drosophila.
Collapse
|
62
|
Guan K, Cheng IF, Baazm M. Human spermatagonial stem cells: a novel therapeutic hope for cardiac regeneration and repair? Future Cardiol 2012; 8:39-51. [DOI: 10.2217/fca.11.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the identification and characterization of human spermatogonial stem cells was reported nearly 50 years ago, great progress has been made only in the last few years. Spermatogonial stem cells attract a great deal of researchers’ attention because of their unique characteristics, including the ability to be converted spontaneously into pluripotent germline stem cells with embryonic stem cell-like properties. Pluripotent stem cells are able to differentiate into any desired cell type in the body; therefore, they are the most promising cell source for organ regeneration. The advantages of pluripotent germline stem cells over other stem cells are that they maintain a high degree of DNA integrity and can resolve some ethical and immunological problems related to human embryonic stem cells. In this article we address the origin, characteristics and pluripotency of spermatogonial stem cells. Their contribution to stem cell-based organ regeneration therapy with special emphasis on cardiac regeneration and repair in the future is also discussed.
Collapse
Affiliation(s)
| | - I-Fen Cheng
- Department of Cardiology & Pneumology, Robert-Koch-Str. 40, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Maryam Baazm
- Department of Cardiology & Pneumology, Robert-Koch-Str. 40, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Liu S, Tang Z, Xiong T, Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol 2011; 9:141. [PMID: 22018465 PMCID: PMC3235066 DOI: 10.1186/1477-7827-9-141] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/24/2011] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. METHODS The disassociation of spermatogonial stem cells (SSCs) were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4)-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. RESULTS The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. CONCLUSIONS The two-step enzyme digestion (by type I collagenase and trypsin) process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.
Collapse
Affiliation(s)
- Shixue Liu
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Tang
- West China Medical College, Sichuan University, Chengdu 610041, China
| | - Tao Xiong
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
64
|
Kokkinaki M, Djourabtchi A, Golestaneh N. Long-term Culture of Human SSEA-4 Positive Spermatogonial Stem Cells (SSCs). ACTA ACUST UNITED AC 2011; 2. [PMID: 24466499 DOI: 10.4172/2157-7633.s2-003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently we and two other groups have shown that human spermatogonial stem cells (SSCs) have the potential to become pluripotent in vitro in defined culture conditions and to differentiate into cells of the three embryonic germ layers. This discovery could open new avenues for autologous cell-based therapy in degenerative diseases, bypassing the ethical and immunological problems related to the human embryonic stem cells. In addition, human SSCs could be used to treat infertility in cancer survival children. However, in order to reprogram SSCs into pluripotency, or to preserve them for repopulation of infertile testes, the first and limiting step is to have access to a highly purified human SSC population that could be multiplied and efficiently cultured in vitro maintaining their molecular and cellular characteristics. Although various studies have attempted to identify molecular markers of human SSCs, to date there is still limited information related to the specific markers that could be used for their isolation and optimized purification that allows long-term in vitro culture of isolated human SSCs. Here using SSEA-4 as an optimal marker for isolation of a subpopulation of SSCs, we show that SSEA-4 positive cells express the highest level of SSC genes compared to other subpopulations isolated with different markers, and can be maintained in culture for over 14 passages which we were unable to obtain with other SSCs markers including GPR125 and ITGA6. In addition, we have established a new technology for cell sorting and long-term culture of human SSC-SSEA-4 positive cells that maximizes the purity and viability of the sorted cells. Our findings are crucial and could be used for the most efficient isolation, purification and long-term culture of SSCs for clinical applications in regenerative medicine, or for preparation of human SSCs for autologous treatment of infertility in cancer survival children.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| | - Ardalan Djourabtchi
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology
| | - Nady Golestaneh
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| |
Collapse
|