51
|
Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy. Stem Cells Int 2016; 2016:1905846. [PMID: 26880936 PMCID: PMC4736960 DOI: 10.1155/2016/1905846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/18/2015] [Indexed: 12/13/2022] Open
Abstract
Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.
Collapse
|
52
|
Klein D, Schmetter A, Imsak R, Wirsdörfer F, Unger K, Jastrow H, Stuschke M, Jendrossek V. Therapy with Multipotent Mesenchymal Stromal Cells Protects Lungs from Radiation-Induced Injury and Reduces the Risk of Lung Metastasis. Antioxid Redox Signal 2016; 24:53-69. [PMID: 26066676 DOI: 10.1089/ars.2014.6183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Previous thorax irradiation promotes metastatic spread of tumor cells to the lung. We hypothesized that vascular damage facilitates lung metastasis after thorax irradiation and that therapeutically applied multipotent mesenchymal stromal cells (MSCs) with reported repair activity may prevent these adverse effects of ionizing radiation by protecting lung endothelia from radiation-induced damage. RESULTS Previous whole-thorax irradiation (WTI) with 15 Gy significantly enhanced seeding and metastatic growth of tumor cells in the lung. WTI was further associated with endothelial cell damage, senescence of lung epithelial cells, and upregulation of invasion- and inflammation-promoting soluble factors, for example, endothelial matrix metalloproteinase 2 (Mmp2), its activator Mmp14, the cofactor tissue inhibitor of metalloproteinases 2 (Timp2), chemokine (C-C motif) ligand 2 (Ccl2), and urokinase-type plasminogen activator (Plau/uPA), and recruitment of CD11b+CD11c- myelomonocytic cells. Inhibition of Mmp2 counteracted radiation-induced vascular dysfunction without preventing increased metastasis. In contrast, therapy with bone marrow or aorta-derived MSCs within 2 weeks postirradiation antagonized radiation-induced damage to resident cells as well as the resulting secretome changes and abrogated the metastasis-promoting effects of WTI. INNOVATION Therapy with MSCs protects lungs from radiation-induced injury and reduces the risk of lung metastasis. MSC-mediated inhibition of Mmp2 mediates their protective effects at the vasculature. Furthermore, local and systemic effects such as inhibition of radiation-induced senescence of bronchial epithelial cells and associated secretion of immunomodulatory factors may participate in the inhibitory effect of MSCs on lung metastasis. CONCLUSION MSC therapy is a promising strategy to prevent radiation-induced lung injury and the resulting increased risk of metastasis.
Collapse
Affiliation(s)
- Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Alexandra Schmetter
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Roze Imsak
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Kristian Unger
- 2 Research Unit Radiation Cytogenetics, Helmholtz-Zentrum München, German Research Center for Environmental Health , Neuherberg, Germany and Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz-Zentrum München, Neuherberg, Germany
| | - Holger Jastrow
- 3 Institute of Anatomy, University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Martin Stuschke
- 4 Department of Radiotherapy, University Hospital, University of Duisburg-Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
53
|
Salem MY, El-Eraky El-Azab N, Helal OK, Gabr Metwaly H, Abd El-Halim Bayoumi HE. Does selenium improve the stem cell therapeutic effect on isoproterenol-induced myocardial infarction in rats? A histological and immunohistochemical study. THE EGYPTIAN JOURNAL OF HISTOLOGY 2015; 38:679-691. [DOI: 10.1097/01.ehx.0000475224.41506.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
54
|
Fan L, Zhang C, Yu Z, Shi Z, Dang X, Wang K. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and osteogenesis in rabbit femoral head osteonecrosis. Bone 2015; 81:544-553. [PMID: 26363339 DOI: 10.1016/j.bone.2015.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Osteonecrosis of the femoral head may be a disease resulting from abnormal proliferation or differentiation of mesenchymal stem cells. The present investigation explored the novel strategy of hypoxia-preconditioned BMMSCs to reverse the impairment of osteonecrosis BMMSCs and enhance the therapeutic potential of hypoxia-treated BMMSC transplantation. METHODS BMMSCs from the anterior superior iliac spine region of osteonecrosis rabbit were cultured under 20% O2 or 2% O2 conditions. Normal BMMSCs were cultured under 20% O2 condition as control. Growth factors secreted were examined by enzyme-linked immunosorbent assay. 20% O2 or 2% O2 BMMSCs were injected into the femoral head of rabbits after core decompression. Cell viability and apoptosis were assessed in vitro, and TUNEL staining of the femoral head was analyzed after transplantation. Angiogenesis (capillary-like structure formation, CD31 immunohistochemical staining and ink infusion angiography) and osteogenesis (Alizarin red-S staining, micro-CT scanning and OCN immunohistochemical staining) tests were conducted as well. RESULTS 2% O2 exposure up-regulated growth factor secretion in BMMSCs. Apoptosis in 2% O2 group was lower when compared with that in 20% O2 osteonecrosis group. Cell viability in 2% O2 was significantly higher when compared with that in 20% O2 osteonecrosis group. Growth factor secretion, cell viability, apoptosis, capillary-like structure formation, Alizarin red-S staining, and ALP staining showed no difference between the 2% O2 BMMSC and normal BMMSC groups. Transplantation of 2% O2 versus 20% O2 mesenchymal stem cells after core decompression resulted in an increase in angiogenesis function and a decrease in local tissue apoptosis. Our study also found that osteogenesis function was improved after hypoxic stem cell transplantation. CONCLUSION Hypoxic preconditioning of BMMSCs is an effective means of reversing the impairment of osteonecrosis BMMSCs, promoting their regenerative capability and therapeutic potential for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Chen Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zefeng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
55
|
Hou J, Yan P, Guo T, Xing Y, Zheng S, Zhou C, Huang H, Long H, Zhong T, Wu Q, Wang J, Wang T. Cardiac stem cells transplantation enhances the expression of connexin 43 via the ANG II/AT1R/TGF-beta1 signaling pathway in a rat model of myocardial infarction. Exp Mol Pathol 2015; 99:693-701. [PMID: 26554848 DOI: 10.1016/j.yexmp.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND In this study, we hypothesized that CSCs mediated the expression of Cx43 after transplantation post MI via the ANG II/AT1R/TGF-beta1 signaling pathway. METHODS Myocardial infarction (MI) was induced in twenty male Sprague-Dawley rats. The rats were randomized into two groups and were then received the injection of 5 × 10(6) CSCs labeled with PKH26 in phosphate buffer solution (PBS) or equal PBS alone into the infarct anterior ventricular free wall two weeks after MI. Six weeks later, relevant signaling molecules involved were all examined. RESULTS In the CSCs group, an increased expression of Cx43 could be observed in different zones of the left ventricle (P<0.01). There was a significant reduction of the angiotensin II (ANG II) level in plasma and different regions of the left ventricular cardiac tissues (P<0.05; P<0.01). The angiotensin II type I receptor (AT1R) was decreased accompanied with an enhanced expression of angiotensin II type II receptor (AT2R) (P<0.01). Transforming growth factor beta-1(TGF-beta1) was downregulated (P<0.01). The expression of mothers against decapentaplegic homolog (SMAD) proteins including SMAD2 and SMAD3 was attenuated whereas SMAD7 was elevated (P<0.01, P<0.01, P<0.05). In addition, the expression of mitogen-activated protein kinases (MAPKs) including extracellular kinases 1/2 (ERK1/2) and p38 was also found to be reduced (P<0.01). CONCLUSION CSCs transplantation could enhance the level of Cx43 after MI. They might function through intervening the ANGII/AT1R/TGF-beta1 signaling pathway to regulate the expression of Cx43.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Ping Yan
- The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
56
|
Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov 2015; 1:15007. [PMID: 27551443 PMCID: PMC4981000 DOI: 10.1038/cddiscovery.2015.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
Paracrine effect is the major mechanism that underlies mesenchymal stem cells (MSC)-based therapy. This study aimed to examine how Rap1, telomeric repeat-binding factor 2-interacting protein 1 (Terf2IP), which is a novel modulator involved in the nuclear factor-kappaB (NF-κB) pathway, regulates the paracrine effects of MSC-mediated heart repair following infarction. NF-κB activity of stromal cells was increased by Rap1 as measured by pNF-κB-luciferase reporter activity, and this was abolished by IkB-dominant-negative protein. Knockdown of Rap1 with shRap1 resulted in diminished translocation of p65-NF-κB from the cytoplasm to nuclei in response to tumor necrosis factor-α (TNF-α) stimulation. Compared with BM-MSCs, Rap1−/−-BM-MSCs displayed a significantly reduced ratio of phosphorylated NF-κB to NF-κB-p65 and of Bax to Bcl-2, and increased resistance to hypoxia-induced apoptosis by the terminal deoxynucleotidal transferase-mediated dUTP nick end labeling (TUNEL) assay. In contrast, re-expression of Rap1 in Rap1−/−-BM-MSCs resulted in loss of resistance to apoptosis in the presence of hypoxia. Moreover, absence of Rap1 in BM-MSCs led to downregulation of NF-κB activity accompanied by reduced pro-inflammatory paracrine cytokines TNF-α, IL (interleukin)-6 and monocyte chemotactic protein-1 in Rap1−/−-BM-MSCs compared with BM-MSCs. The apoptosis of neonatal cardiomyocytes (NCMCs) induced by hypoxia was significantly reduced when cocultured with Rap1−/−-BM-MSC hypoxic-conditioned medium (CdM). The increased cardioprotective effects of Rap1−/−-BM-MSCs were reduced when Rap1−/−-BM-MSCs were reconstituted with Rap1 re-expression. Furthermore, in vivo study showed that transplantation of Rap1−/−-BM-MSCs significantly improved heart function, decreased infarct size, prevented cardiomyocyte apoptosis and inhibited inflammation compared with controls and BM-MSCs (P<0.01). This study reveals that Rap1 has a critical role in the regulation of MSC paracrine actions. Compared with BM-MSCs, Rap1−/−-BM-MSCs decreased NF-κB sensitivity to stress-induced pro-inflammatory cytokine production and reduced apoptosis. Selective inhibition of Rap1 in BM-MSCs may be a novel strategy to enhance MSC-based therapeutic efficacy in myocardial infarction.
Collapse
|
57
|
Behbahan IS, Keating A, Gale RP. Bone Marrow Therapies for Chronic Heart Disease. Stem Cells 2015; 33:3212-27. [PMID: 26086629 DOI: 10.1002/stem.2080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/16/2015] [Indexed: 12/20/2022]
Abstract
Chronic heart failure is a leading cause of death. The demand for new therapies and the potential regenerative capacity of bone marrow-derived cells has led to numerous clinical trials. We critically discuss current knowledge of the biology and clinical application of bone marrow cells. It appears unlikely that bone marrow cells can develop into functional cardiomyocyte after infusion but may have favorable paracrine effects. Most, but not all, clinical trials report a modest short- but not long-term benefit of infusing bone marrow-derived cells. Effect size appears to correlate with stringency of study-design: the most stringent trials report the smallest effect-sizes. We conclude there may be short- but not substantial long-term benefit of infusing bone marrow-derived cells into persons with chronic heart failure and any benefit observed is unlikely to result from trans-differentiation of bone marrow-derived cells into functioning cardiomyocytes.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Clinical Observer, Division of Hematology, Stanford MDS Center, Stanford University, Palo Alto, California, USA
| | - Armand Keating
- Division of Hematology, University of Toronto, Cell Therapy Program, Princess Margaret Hospital, Toronto, Canada
| | - Robert Peter Gale
- Section of Haematology, Division of Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
58
|
Zhang F, Ren T, Wu J. TGF-β1 induces apoptosis of bone marrow-derived mesenchymal stem cells via regulation of mitochondrial reactive oxygen species production. Exp Ther Med 2015; 10:1224-1228. [PMID: 26622469 DOI: 10.3892/etm.2015.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/11/2015] [Indexed: 01/25/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are the most promising seed cells in regenerative medicine. Our previous study demonstrated that transforming growth factor (TGF)-β1 induced BMSC senescence in vitro. Whether TGF-β1 affects the apoptosis of BMSCs has not been examined; therefore the aim of the present study was to investigate this effect. BMSCs were isolated from mouse bone marrow, and the third-passage cells were exposed to 0, 10 and 20 ng/ml TGF-β1 for 24 h. Cell proliferation was measured by MTT assay; apoptosis was assessed using DAPI staining; and the apoptotic signals Annexin V, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured using western blotting. Mitochondrial reactive oxygen species (ROS) were measured by flow cytometry following staining with MitoSOX™ Red mitochondrial superoxide indicator. The MTT assay showed that 10 and 20 ng/ml TGF-β1 inhibited BMSC proliferation. DAPI staining demonstrated that 10 and 20 ng/ml TGF-β1 promoted BMSC apoptosis, which was further confirmed by a western blotting assay showing a significant increase in the pro-apoptotic signals Annexin V and Bax but a decrease in the anti-apoptotic signal Bcl-2. It was also found that TGF-β1 markedly increased the mitochondrial ROS levels in BMSCs. It is well known that mitochondrial ROS are strong stimulators of cell apoptosis. These findings indicate that TGF-β1 can induce BMSC apoptosis, and the mechanism may involve mitochondrial ROS generation.
Collapse
Affiliation(s)
- Fenxi Zhang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China ; Stem Cell Center, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tongming Ren
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junfang Wu
- Morphology Laboratory, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
59
|
Han J, Kim B, Shin JY, Ryu S, Noh M, Woo J, Park JS, Lee Y, Lee N, Hyeon T, Choi D, Kim BS. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction. ACS NANO 2015; 9:2805-19. [PMID: 25688594 DOI: 10.1021/nn506732n] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies.
Collapse
Affiliation(s)
- Jin Han
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | - Jung-Youn Shin
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Seungmi Ryu
- §Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Myungkyung Noh
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | | | - Youjin Lee
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- ∥Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-744, Republic of Korea
| | - Nohyun Lee
- ⊥School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea
| | - Taeghwan Hyeon
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- ∥Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-744, Republic of Korea
| | | | - Byung-Soo Kim
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- §Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744, Republic of Korea
| |
Collapse
|
60
|
Reitmaier S, Kreja L, Gruchenberg K, Kanter B, Silva-Correia J, Oliveira JM, Reis RL, Perugini V, Santin M, Ignatius A, Wilke HJ. In vivo biofunctional evaluation of hydrogels for disc regeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 23:19-26. [PMID: 24121748 PMCID: PMC3897837 DOI: 10.1007/s00586-013-2998-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. METHODS In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. RESULTS Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. CONCLUSIONS None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioning.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Ludwika Kreja
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Katharina Gruchenberg
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Britta Kanter
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Joana Silva-Correia
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Valeria Perugini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Anita Ignatius
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | - Hans-Joachim Wilke
- Center of Musculoskeletal Research, Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| |
Collapse
|
61
|
Santhakumar R, Vidyasekar P, Verma RS. Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells. PLoS One 2014; 9:e114697. [PMID: 25521816 PMCID: PMC4270637 DOI: 10.1371/journal.pone.0114697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023] Open
Abstract
3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as ‘mesogel’. An optimized protocol was developed that resulted in efficient decellularization while providing the maximum yield of ECM. The proteins were sequentially solubilized using acetic acid, Sodium Dodecyl Sulfate (SDS) and Dithiothreitol (DTT). These proteins were then analyzed using surfactant-assisted in-solution digestion followed by nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). The results of these analyses revealed significant differences in their respective compositions and 17 significant ECM/matricellular proteins were differentially identified between cardiogel and mesogel. We observed that cardiogel also promoted cell proliferation, adhesion and migration while enhancing cardiomyogenic differentiation and angiogenesis. In conclusion, we developed a reproducible method for efficient extraction and solubilization of in vitro cultured cell-derived extracellular matrix. We report several important proteins differentially identified between cardiogel and mesogel, which can explain the biological properties of cardiogel. We also demonstrated the cardiomyogenic differentiation and angiogenic potential of cardiogel even in the absence of any external growth factors. The transplantation of Bone Marrow derived Stromal/Stem Cells (BMSCs) cultured on such a nanomatrix has potential applications in regenerative therapy for Myocardial Infarction (MI).
Collapse
Affiliation(s)
- Rajalakshmi Santhakumar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Prasanna Vidyasekar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
62
|
Transmyocardial Revascularization Enhances Bone Marrow Stem Cell Engraftment in Infarcted Hearts Through SCF—C-kit and SDF-1—CXCR4 Signaling Axes. Stem Cell Rev Rep 2014; 11:332-46. [DOI: 10.1007/s12015-014-9571-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
63
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
64
|
Narbona-Carceles J, Vaquero J, Suárez-Sancho SBS, Forriol F, Fernández-Santos ME. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest? Injury 2014; 45 Suppl 4:S42-7. [PMID: 25384474 DOI: 10.1016/s0020-1383(14)70009-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The most common method to obtain human mesenchymal stem cells (MSCs) is bone marrow aspiration from the iliac crest, but MSCs have also been isolated from different bones. The main purpose of this study was to compare bone marrow MSCs aspirated from the metaphysis of the distal femur and the proximal tibia with those obtained from the iliac crest, and to determine whether these locations represent potential alternative sources of MSCs for research and clinical application. MATERIALS AND METHODS Bone marrow was aspirated from the iliac crest and the metaphysis of the distal femur and the proximal tibia during total knee arthroplasty in 20 patients. The aspirates were centrifuged by density gradient, then mononucleated cell (MNC) concentration in the different aspirates was determined using a Coulter counter. MSCs were isolated, cultivated and characterised by their immunophenotype and by their in vitro potential for differentiation into osteoblasts, chondroblasts and adipocytes in specific media. Expansion and cell viability were quantified using trypan blue staining and cell counting with a haemocytometer (Neubauer chamber). The three sources were compared in terms of MNC concentration, viability of the cultures and presence of MSC using the Wilcoxon test. RESULTS MNC concentration was significantly higher in the iliac crest (10.05 Millions/ml) compared with the femur (0.67 Millions/ml) and tibia (1.7 Millions/ml). Culture success rates were 90%, 71% and 47% for MSCs from the iliac crest, femur and tibia, respectively. Flow cytometry analysis showed the presence of CD90+, CD105+, CD73+, VEGF+, CD71+, HLA-DR-, CD45-, CD34-, CD19-, and CD14- cells. The immunophenotype pattern of MSCs was similar for the three locations. Trilineage differentiation was achieved with all samples. CONCLUSIONS MSCs can be found in bone marrow from the metaphysis of both the distal femur and the proximal tibia. The phenotype and differentiation potential of these cells are similar to those of bone marrow MSCs from the iliac crest. Bone marrow aspiration from these locations is a relatively easy and safe alternative to that from the iliac crest for obtaining MSCs. Further study is required to assess whether the concentrations of MSCs obtained from these sources are sufficient for one-step therapeutic purposes.
Collapse
Affiliation(s)
| | - Javier Vaquero
- Orthopaedics Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Susana B S Suárez-Sancho
- Regenerative Medicine and Cellular Therapy Unit, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Francisco Forriol
- School of Medicine, University San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | | |
Collapse
|
65
|
Malyar NM, Radtke S, Malyar K, Arjumand J, Horn PA, Kröger K, Freisinger E, Reinecke H, Giebel B, Brock FE. Autologous bone marrow mononuclear cell therapy improves symptoms in patients with end-stage peripheral arterial disease and reduces inflammation-associated parameters. Cytotherapy 2014; 16:1270-9. [PMID: 24972744 DOI: 10.1016/j.jcyt.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to evaluate the effect of autologous bone marrow mononuclear cells (BM-MNCs) on symptoms and perfusion indices in severely symptomatic patients with peripheral arterial disease (PAD) without further option for endovascular or surgical revascularization. METHODS Only patients with severe symptomatic PAD (Fontaine class IIb-IV, Rutherford category 3-6) not amenable for revascularization were treated. Bone marrow from both cristae iliacae was harvested; MNCs were isolated by the Ficoll density-gradient method and transplanted by means of intra-arterial and intramuscular injection in the index limb. Functional (pain score, ulcer healing, maximum walking distance) and perfusion indices such as ankle-brachial-index and transcutaneous oxygen pressure were documented before and after BM-MNC therapy. Additionally, serum concentration of C-reactive protein and interleukin-6 were measured as markers of inflammation before and after BM-MNC treatment. RESULTS Sixteen consecutive patients (four women; mean age, 63.0 ± 13 years) were treated with a mean dose of 4.2 ± 2.2 × 10(8) BM-MNCs. At 6 months' follow-up, ankle-brachial-index, transcutaneous oxygen pressure and maximum walking distance significantly increased, whereas C-reactive protein and interleukin-6 conversely decreased (P < 0.01 versus baseline values), resulting in 88% limb salvage, 75% pain reduction and 71% complete wound healing and/or reduction of ulcer size. One major and one minor amputation were performed, both in patients with Rutherford category 6. CONCLUSIONS Autologous BM-MNC therapy in patients with end-stage PAD improves tissue perfusion indices and decreases markers of inflammation. If our observations could be confirmed by large-scale, randomized controlled trials, BM-MNC transplantation could become an alternative therapeutic option for patients with end-stage PAD.
Collapse
Affiliation(s)
- Nasser M Malyar
- Division of Vascular Medicine, Department of Cardiovascular Medicine, University of Muenster, Muenster, Germany.
| | - Stefan Radtke
- Institute for Transfusion Medicine, University of Duisburg-Essen, Essen, Germany
| | - Khalil Malyar
- Department of Angiology, University of Duisburg-Essen, Essen, Germany
| | - Jawed Arjumand
- Center of Angiology and Interventional Vascular Medicine, Agaplesion Bethesda Hospital Wuppertal, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University of Duisburg-Essen, Essen, Germany
| | - Knut Kröger
- Department of Angiology, HELIOS Klinik Krefeld, Germany
| | - Eva Freisinger
- Division of Vascular Medicine, Department of Cardiovascular Medicine, University of Muenster, Muenster, Germany
| | - Holger Reinecke
- Division of Vascular Medicine, Department of Cardiovascular Medicine, University of Muenster, Muenster, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
66
|
Li N, Pasha Z, Ashraf M. Reversal of ischemic cardiomyopathy with Sca-1+ stem cells modified with multiple growth factors. PLoS One 2014; 9:e93645. [PMID: 24705272 PMCID: PMC3976296 DOI: 10.1371/journal.pone.0093645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 03/09/2014] [Indexed: 01/09/2023] Open
Abstract
Background We hypothesized that bone marrow derived Sca-1+ stem cells (BM Sca-1+) transduced with multiple therapeutic cytokines with diverse effects will induce faster angiomyogenic differentiation in the infarcted myocardium. Methods and Results BM Sca-1+ were purified from transgenic male mice expressing GFP. Plasmids encoding for select quartet of growth factors, i.e., human IGF-1, VEGF, SDF-1α and HGF were prepared and used for genetic modification of Sca-1+ cells (GFSca-1+). Scramble transfected cells (ScSca-1+) were used as a control. RT-PCR and western blotting showed significantly higher expression of the growth factors in GFSca-1+. Besides the quartet of the therapeutic growth factors, PCR based growth factor array showed upregulation of multiple angiogenic and prosurvival factors such as Ang-1, Ang-2, MMP9, Cx43, BMP2, BMP5, FGF2, and NGF in GFSca-1+ (p<0.01 vsScSca-1+). LDH and TUNEL assays showed enhanced survival of GFSca-1+ under lethal anoxia (p<0.01 vs ScSca-1+). MTS assay showed significant increased cell proliferation in GFSca-1+ (p<0.05 vsScSca-1+). For in vivo study, female mice were grouped to receive the intramyocardial injection of 15 μl DMEM without cells (group-1) or containing 2.5×105ScSca-1+ (group-2) or GFSca-1+ (group-3) immediately after coronary artery ligation. As indicated by Sry gene, a higher survival of GFSca-1+ in group-3 on day4 (2.3 fold higher vs group-2) was observed with massive mobilization of stem and progenitor cells (cKit+, Mdr1+, Cxcr4+ cells). Heart tissue sections immunostained for actinin and Cx43 at 4 weeks post engraftment showed extensive myofiber formation and expression of gap junctions. Immunostaining for vWF showed increased blood vessel density in both peri-infarct and infarct regions in group-3. Infarct size was attenuated and the global heart function was improved in group-3 as compared to group-2. Conclusions Administration of BM Sca-1+ transduced with multiple genes is a novel approach to treat infarcted heart for its regeneration.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Zeeshan Pasha
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Muhammad Ashraf
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
67
|
Ramkisoensing AA, de Vries AAF, Atsma DE, Schalij MJ, Pijnappels DA. Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovasc Res 2014; 102:224-31. [DOI: 10.1093/cvr/cvu047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
68
|
Vogel S, Chatterjee M, Metzger K, Borst O, Geisler T, Seizer P, Müller I, Mack A, Schumann S, Bühring HJ, Lang F, Sorg RV, Langer H, Gawaz M. Activated platelets interfere with recruitment of mesenchymal stem cells to apoptotic cardiac cells via high mobility group box 1/Toll-like receptor 4-mediated down-regulation of hepatocyte growth factor receptor MET. J Biol Chem 2014; 289:11068-11082. [PMID: 24567328 DOI: 10.1074/jbc.m113.530287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of mesenchymal stem cells (MSC) following cardiac injury, such as myocardial infarction, plays a critical role in tissue repair and may contribute to myocardial recovery. However, the mechanisms that regulate migration of MSC to the site of tissue damage remain elusive. Here, we demonstrate in vitro that activated platelets substantially inhibit recruitment of MSC toward apoptotic cardiac myocytes and fibroblasts. The alarmin high mobility group box 1 (HMGB1) was released by platelets upon activation and mediated inhibition of the cell death-dependent migratory response through Toll-like receptor (TLR)-4 expressed on the MSC. Migration of MSC to apoptotic cardiac myocytes and fibroblasts was driven by hepatocyte growth factor (HGF), and platelet activation was followed by HMGB1/TLR-4-dependent down-regulation of HGF receptor MET on MSC, thereby impairing HGF-driven MSC recruitment. We identify a novel mechanism by which platelets, upon activation, interfere with MSC recruitment to apoptotic cardiac cells, a process that may be of particular relevance for myocardial repair and regeneration.
Collapse
Affiliation(s)
- Sebastian Vogel
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Madhumita Chatterjee
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Katja Metzger
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Oliver Borst
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Tobias Geisler
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Peter Seizer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Iris Müller
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Andreas Mack
- the Institute of Anatomy, Eberhard Karls University, 72076 Tübingen, Germany
| | - Susanne Schumann
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Hans-Jörg Bühring
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Florian Lang
- the Institute of Physiology, Eberhard Karls University, 72076 Tübingen, Germany and
| | - Rüdiger V Sorg
- the Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Harald Langer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
69
|
Shi B, Long X, Zhao R, Liu Z, Wang D, Xu G. Transplantation of mesenchymal stem cells carrying the human receptor activity-modifying protein 1 gene improves cardiac function and inhibits neointimal proliferation in the carotid angioplasty and myocardial infarction rabbit model. Exp Biol Med (Maywood) 2014; 239:356-65. [PMID: 24477823 DOI: 10.1177/1535370213517619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although transplanting mesenchymal stem cells (MSCs) can improve cardiac function and contribute to endothelial recovery in a damaged artery, natural MSCs may induce neointimal hyperplasia by directly or indirectly acting on vascular smooth muscle cells (VSMCs). Receptor activity-modifying protein 1 (RAMP1) is the component and the determinant of ligand specificity of calcitonin gene-related peptide (CGRP). It is recently reported that CGRP and its receptor involve the proliferation and the apoptosis in vivo and in vitro, and the exogenous RAMP1 enhances the antiproliferation effect of CGRP in VSMCs. Here, we investigated the effects of MSCs overexpressing the human receptor activity-modifying protein 1 (hRAMP1) on heart function and artery repair in rabbit models of myocardial infarction (MI) reperfusion and carotid artery injury. MSCs transfected with a recombinant adenovirus containing the hRAMP1 gene (EGFP-hRAMP1-MSCs) were injected into the rabbit models via the ear vein at 24 h after carotid artery injury and MI 7 days post-EGFP-hRAMP1-MSC transplantation. The cells that expressed both enhance green fluorescent protein (EGFP) and CD31 were detected in the neointima of the damaged artery via immunofluorescence. EGFP-hRAMP1 expression was observed in the injured artery and infarcted myocardium by western blot analysis, confirming that the engineered MSCs targeted the injured artery and infarcted myocardium and expressed hRAMP1 protein. Compared with the EGFP-MSCs group, the EGFP-hRAMP1-MSCs group had a significantly smaller infarcted area and improved cardiac function by 28 days after cell transplantation, as detected by triphenyltetrazolium chloride staining and echocardiography. Additionally, arterial hematoxylin-eosin staining revealed that the area of the neointima and the area ratio of intima/media were significantly decreased in the EGFP-hRAMP1-MSCs group. An immunohistological study showed that the expression of α-smooth muscle antigen and proliferating cell nuclear antigen in the neointima cells of the carotid artery of the EGFP-hRAMP1-MSCs group was approximately 50% lower than that of the EGFP-MSCs group, suggesting that hRAMP1 expression may inhibit VSMCs proliferation within the neointima. Therefore, compared with natural MSCs, EGFP-hRAMP1-engineered MSCs improved infarcted heart function and endothelial recovery from artery injury more efficiently, which will provide valuable information for the development of MSC-based therapy.
Collapse
Affiliation(s)
- Bei Shi
- Department of Cardiology, the First Affiliated Hospital of Zunyi Medical College, Zunyi City 563003, Guizhou Province, China
| | | | | | | | | | | |
Collapse
|
70
|
Stem cell therapies and regenerative medicine in China. SCIENCE CHINA-LIFE SCIENCES 2014; 57:157-61. [DOI: 10.1007/s11427-014-4608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
|
71
|
Santos Nascimento D, Mosqueira D, Sousa LM, Teixeira M, Filipe M, Resende TP, Araújo AF, Valente M, Almeida J, Martins JP, Santos JM, Bárcia RN, Cruz P, Cruz H, Pinto-do-Ó P. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther 2014; 5:5. [PMID: 24411922 PMCID: PMC4055157 DOI: 10.1186/scrt394] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results suggest that UCX® should be considered an alternative cell source when designing new therapeutic approaches to treat MI.
Collapse
|
72
|
Zheng SX, Weng YL, Zhou CQ, Wen ZZ, Huang H, Wu W, Wang JF, Wang T. Comparison of cardiac stem cells and mesenchymal stem cells transplantation on the cardiac electrophysiology in rats with myocardial infarction. Stem Cell Rev Rep 2014; 9:339-49. [PMID: 22544360 DOI: 10.1007/s12015-012-9367-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Whether transplanted cardiac stem cells (CSCs) and mesenchymal stem cells (MSCs) improved ventricular fibrillation threshold (VFT) similarly is still unclear. We sought to compare the effects of the CSC and MSC transplantation on the electrophysiological characteristics and VFT in rats with myocardial infarction (MI). METHODS MI was induced in 30 male Sprague-Dawley rats. Two weeks later, animals were randomized to receive 5 × 10(6) CSCs labeled with PKH26 in PBS or 5 × 10(6) MSCs labeled with PKH26 in phosphate buffer solution(PBS) or PBS alone injection into the infarcted anterior ventricular free wall. Six weeks after the injection, electrophysiological characteristics and VFT were measured. Labeled CSCs and MSCs were observed in 5 μm cryostat sections from each heart. RESULTS Malignant ventricular arrhythmias were significantly (P = 0.0055) less inducible in the CSC group than the MSC group. The VFTs were improved in the CSC group compared with the MSC group. Labeled CSCs and MSCs were identified in the infarct zone and infarct marginal zone. Labeled CSCs expressed Connexin-43, von Willebrand factor, α-smooth muscle actin and α-sarcomeric actin,while the Labeled MSCs expressed von Willebrand factor, α-smooth muscle actin and α-sarcomeric actin in vivo. CONCLUSIONS After 6 weeks of cell transplantation, CSCs are superior to MSCs in modulating the electrophysiological abnormality and improving the VFT in rats with MI. CSCs and MSCs express markers that suggest muscle, endothelium and vascular smooth muscle phenotypes in vivo, but MSCs rarely express Connexin-43.
Collapse
Affiliation(s)
- Shao-Xin Zheng
- Cardiovascular Medicine, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, 510120, China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Myocardial infarction leads to loss of cardiomyocytes, scar formation, ventricular remodeling and eventually deterioration of heart function. Over the past decade, stem cell therapy has emerged as a novel strategy for patients with ischemic heart disease and its beneficial effects have been demonstrated by substantial preclinical and clinical studies. Efficacy of several types of stem cells in the therapy of cardiovascular diseases has already been evaluated. However, repair of injured myocardium through stem cell transplantation is restricted by critical safety issues and ethic concerns. Recently, the discovery of cardiac stem cells (CSCs) that reside in the heart itself brings new prospects for myocardial regeneration and reconstitution of cardiac tissues. CSCs are positive for various stem cell markers and have the potential of self-renewal and multilineage differentiation. They play a pivotal role in the maintenance of heart homeostasis and cardiac repair. Elucidation of their biological characteristics and functions they exert in myocardial infarction are very crucial to further investigations on them. This review will focus on the field of cardiac stem cells and discuss technical and practical issues that may involve in their clinical applications in myocardial infarction.
Collapse
|
74
|
Xu Y, Hu X, Wang L, Jiang Z, Liu X, Yu H, Zhang Z, Chen H, Chen H, Steinhoff G, Li J. Preconditioning via angiotensin type 2 receptor activation improves therapeutic efficacy of bone marrow mononuclear cells for cardiac repair. PLoS One 2013; 8:e82997. [PMID: 24340072 PMCID: PMC3858344 DOI: 10.1371/journal.pone.0082997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/07/2013] [Indexed: 11/29/2022] Open
Abstract
Background The therapeutic efficiency of bone marrow mononuclear cells (BMMNCs) autologous transplantation for myocardial infarction (MI) remains low. Here we developed a novel strategy to improve cardiac repair by preconditioning BMMNCs via angiotensin II type 2 receptor (AT2R) stimulation. Methods and Results Acute MI in rats led to a significant increase of AT2R expression in BMMNCs. Preconditioning of BMMNCs via AT2R stimulation directly with an AT2R agonist CGP42112A or indirectly with angiotensin II plus AT1R antagonist valsartan led to ERK activation and increased eNOS expression as well as subsequent nitric oxide generation, ultimately improved cardiomyocyte protection invitro as measured by co-culture approach. Intramyocardial transplantation of BMMNCs preconditioned via AT2R stimulation improved survival of transplanted cells in ischemic region of heart tissue and reduced cardiomyocyte apoptosis and inflammation at 3 days after MI. At 4 weeks after transplantation, compared to DMEM and non-preconditioned BMMNCs group, AT2R stimulated BMMNCs group showed enhanced vessel density in peri-infarct region and attenuated infarct size, leading to global heart function improvement. Conclusions Preconditioning of BMMNCs via AT2R stimulation exerts protective effect against MI. Stimulation of AT2R in BMMNCs may provide a new strategy to improving therapeutic efficiency of stem cells for post MI cardiac repair.
Collapse
Affiliation(s)
- Yinchuan Xu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Jiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaocai Zhang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiqiang Chen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Chen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular key lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy, University of Rostock, Rostock, Germany
| | - Jun Li
- Clinical Stem Cell Research Center and Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (JW); (JL)
| |
Collapse
|
75
|
|
76
|
García-Elorriaga G, Rey-Pineda GD. Tuberculosis and hematopoietic stem cell transplant: Review of a difficult and often underestimated problem. World J Clin Infect Dis 2013; 3:70-78. [DOI: 10.5495/wjcid.v3.i4.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/10/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Recipients of solid organ transplants (SOT) and stem cell transplants (SCT) constitute a group of patients at risk for tuberculosis (TB) development. The prevalence of active TB in patients undergoing SOT is higher than in patients undergoing SCT, probably due to the shorter period of immunosuppression in the latter. We reviewed the importance of SCT in individuals with hematological malignancies. Most TB cases occur in transplant patients by reactivation of latent infection after immunosuppression, most often within the first year after transplant, leading to graft loss and in some cases, death. Relevant variables to assess the risk of TB infection in a transplant recipient include the donor’s and recipient’s medical histories, imaging results, microbiology and tuberculin skin test (TST) and interferon-gamma release assays (IGRA). TST is routinely performed in the donor and recipient before transplantation. If TST is > 5 mm in the recipient or > 10 mm in the donor, it is necessary to exclude active TB (pulmonary and renal). Chemoprophylaxis is recommended in TST (+) recipients and in recipients with recent seroconversion, in donors with a history of untreated TB or in contact with an individual with active TB, if radiological images are suspicious and the IGRA is (+). The drug of choice is isoniazid. These topics are herewith reviewed.
Collapse
|
77
|
Leonardini A, Avogaro A. Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes. Arch Physiol Biochem 2013; 119:179-87. [PMID: 23772700 DOI: 10.3109/13813455.2013.798334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic cardiomyopathy consists of a series of structural and functional changes. Accumulating evidence supports the concept that a "cardiac stem cell compartment disease" plays an important role in the pathophysiology of diabetic cardiomyopathy. In diabetic hearts, human cardiac stem/progenitor cells (CSPC) are reduced and manifest defective proliferative capacity. Hyperglycaemia, hyperlipidemia, inflammation, and the consequent oxidative stress are enhanced in diabetes: these conditions can induce defects in both growth and survival of these cells with an imbalance between cell death and cell replacement, thus favouring the onset of diabetic cardiomyopathy and its progression towards heart failure. The preservation of CSPC compartment can contribute to counteract the negative impact of diabetes on the myocardium. The recent studies summarized in this review have improved our understanding of the development and stem cell biology within the cardiovascular system. However, several issues remain unsolved before cell therapy can become a clinical therapeutically relevant strategy.
Collapse
Affiliation(s)
- Anna Leonardini
- Department of Emergency and Organ Transplantation - Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro , Bari , Italy and
| | | |
Collapse
|
78
|
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci 2013; 20:63. [PMID: 23985033 PMCID: PMC3765890 DOI: 10.1186/1423-0127-20-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/16/2022] Open
Abstract
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
79
|
Alvarez P, Carrillo E, Vélez C, Hita-Contreras F, Martínez-Amat A, Rodríguez-Serrano F, Boulaiz H, Ortiz R, Melguizo C, Prados J, Aránega A. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:312656. [PMID: 23844360 PMCID: PMC3703413 DOI: 10.1155/2013/312656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/22/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Abstract
Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM) and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.
Collapse
Affiliation(s)
- P. Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - E. Carrillo
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - C. Vélez
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - F. Hita-Contreras
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Health Science, University of Jaén, 23071 Jaén, Spain
| | - A. Martínez-Amat
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Health Science, University of Jaén, 23071 Jaén, Spain
| | - F. Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - H. Boulaiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - R. Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Health Science, University of Jaén, 23071 Jaén, Spain
| | - C. Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - J. Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - A. Aránega
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
80
|
Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Curr Opin Organ Transplant 2013; 17:670-4. [PMID: 23111645 DOI: 10.1097/mot.0b013e328359a617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize recent findings of endogenous cell-based tissue repair triggered by a multitude of approaches, especially stem cell therapy. RECENT FINDINGS The emerging evidence has demonstrated that an important role of transplanted cells is to act as an initiator to trigger endogenous stem cell-mediated tissue repair after injury. Multiple approaches may orchestrate endogenous regeneration. The low efficacy of endogenous stem cells may be due to deficiency of cytokines to activate and induce endogenous stem cell homing, relatively insufficient endogenous stem cell pool, diseases or aging-related dysfunction of endogenous stem cells, and hostile microenvironments that limit the capacity of endogenous stem cells to repair damaged tissue. In certain situations, external stimulation and/or exogenous stem cells may be required to catalyze the repair. SUMMARY Endogenous stem cells are playing an important role in tissue repair. An important role of transplanted cells is to act as an initiator to trigger endogenous stem cell-based tissue repair.
Collapse
|
81
|
Muscari C, Bonafè F, Martin-Suarez S, Valgimigli S, Valente S, Fiumana E, Fiorelli F, Rubini G, Guarnieri C, Caldarera CM, Capitani O, Arpesella G, Pasquinelli G. Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronan-based scaffold. J Cell Mol Med 2013; 17:518-30. [PMID: 23480821 PMCID: PMC3822652 DOI: 10.1111/jcmm.12039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/18/2013] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to investigate the blood perfusion and the inflammatory response of the myocardial infarct area after transplanting a hyaluronan-based scaffold (HYAFF(®) 11) with bone marrow mesenchymal stem cells (MSCs). Nine-week-old female pigs were subjected to a permanent left anterior descending coronary artery ligation for 4 weeks. According to the kind of the graft, the swine subjected to myocardial infarction were divided into the HYAFF(®) 11, MSCs, HYAFF(®) 11/MSCs and untreated groups. The animals were killed 8 weeks after coronary ligation. Scar perfusion, evaluated by Contrast Enhanced Ultrasound echography, was doubled in the HYAFF(®) 11/MSCs group and was comparable with the perfusion of the healthy, non-infarcted hearts. The inflammation score of the MSCs and HYAFF(®) 11/MSCs groups was near null, revealing the role of the grafted MSCs in attenuating the cell infiltration, but not the foreign reaction strictly localized around the fibres of the scaffold. Apart from the inflammatory response, the native tissue positively interacted with the HYAFF(®) 11/MSCs construct modifying the extracellular matrix with a reduced presence of collagene and increased amount of proteoglycans. The border-zone cardiomyocytes also reacted favourably to the graft as a lower degree of cellular damage was found. This study demonstrates that the transplantation in the myocardial infarct area of autologous MSCs supported by a hyaluronan-based scaffold restores blood perfusion and almost completely abolishes the inflammatory process following an infarction. These beneficial effects are superior to those obtained after grafting only the scaffold or MSCs, suggesting that a synergic action was achieved using the cell-integrated polymer construct.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biochemistry, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Schuh A, Kroh A, Konschalla S, Liehn EA, Sobota RM, Biessen EA, Bot I, Sönmez TT, Tolga Taha S, Schober A, Marx N, Weber C, Sasse A. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J Cell Mol Med 2013; 16:2311-20. [PMID: 22288686 PMCID: PMC3823424 DOI: 10.1111/j.1582-4934.2012.01539.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal-cell derived factor-1α (SDF-1α) facilitates proliferation and migration of endogenous progenitor cells into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1α-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF-1 infected EPCs compared to medium control. Intracoronary application of cells did not lead to significant differences compared to medium injected control hearts. Histology showed a significantly elevated rate of apoptotic cells and augmented proliferation after transplantation of EPCs and EPCs + SDF-1α in infarcted myocardium. In addition, a significant increased density of CD31+ vessel structures, a lower collagen content and higher numbers of inflammatory cells after transplantation of SDF-1 transgenic cells were detectable. Intramyocardial application of lentiviral-infected EPCs is associated with a significant improvement of myocardial function after infarction, in contrast to an intracoronary application. Histological results revealed a significant augmentation of neovascularization, lower collagen content, higher numbers of inflammatory cells and remarkable alterations of apoptotic/proliferative processes in infarcted areas after cell transplantation.
Collapse
Affiliation(s)
- Alexander Schuh
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, RWTH Aachen University, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bluguermann C, Wu L, Petrigliano F, McAllister D, Miriuka S, Evseenko DA. Novel aspects of parenchymal-mesenchymal interactions: from cell types to molecules and beyond. Cell Biochem Funct 2013; 31:271-80. [PMID: 23315627 DOI: 10.1002/cbf.2950] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs) were initially isolated from the bone marrow and received their name on the basis of their ability to differentiate into multiple lineages such as bone, cartilage, fat and muscle. However, more recent studies suggest that MSCs residing in perivascular compartments of the small and large blood vessels play a regulatory function supporting physiologic and pathologic responses of parenchymal cells, which define the functional representation of an organ or tissue. MSCs secrete or express factors that reach neighbouring parenchymal cells via either a paracrine effect or a direct cell-to-cell interaction promoting functional activity, survival and proliferation of the parenchymal cells. Previous concept of 'epithelial-stromal' interactions can now be widened. Given that MSC can also support hematopoietic, neuronal and other non-epithelial parenchymal lineages, terms 'parenchymal-stromal' or 'parenchymal-mesenchymal' interactions may better describe the supportive or 'trophic' functions of MSC. Importantly, in many cases, MSCs specifically provide supportive microenvironment for the most primitive stem or progenitor populations and therefore can play a role as 'stem/progenitor niche' forming cells. So far, regulatory roles of MSCs have been reported in many tissues. In this review article, we summarize the latest studies that focused on the supportive function of MSC. This thread of research leads to a new perspective on the interactions between parenchymal and mesenchymal cells and justifies a principally novel approach for regenerative medicine based on co-application of MSC and parenchymal cell for the most efficient tissue repair.
Collapse
Affiliation(s)
- Carolina Bluguermann
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
84
|
Penna C, Perrelli MG, Karam JP, Angotti C, Muscari C, Montero-Menei CN, Pagliaro P. Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival. J Cell Mol Med 2013; 17:192-204. [PMID: 23305078 PMCID: PMC3823149 DOI: 10.1111/j.1582-4934.2012.01662.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/10/2012] [Indexed: 01/22/2023] Open
Abstract
Resistance of transplanted mesenchymal stem cells (MSCs) in post-ischemic heart is limited by their poor vitality. Vascular-endothelial-growth-factor-A (VEGF-A) as such or slowly released by fibronectin-coated pharmacologically-active-microcarriers (FN-PAM-VEGF) could differently affect survival kinases and anti-apoptotic mediator (e.g. Bcl-2). Therefore VEGF-A or FN-PAM-VEGF could differently enhance cell proliferation, and/or resistance to hypoxia/reoxygenation (H/R) of MSCs. To test these hypotheses MSCs were incubated for 6-days with VEGF-A alone or with FN-PAM-VEGF. In addition, MSCs pre-treated for 24-hrs with VEGF-A or FN-PAM-VEGF were subsequently exposed to H/R (72-hrs 3% O2 and 3-hrs of reoxygenation). Cell-proliferation and post-hypoxic vitality were determined. Kinases were studied at 30-min., 1- and 3-days of treatment. Cell-proliferation increased about twofold (P < 0.01) 6-days after VEGF-A treatment, but by a lesser extent (55% increase) with FN-PAM-VEGF (P < 0.05). While MSC pre-treatment with VEGF-A confirmed cell-proliferation, pre-treatment with FN-PAM-VEGF protected MSCs against H/R. In the early phase of treatments, VEGF-A increased phospho-Akt, phospho-ERK-1/2 and phospho-PKCε compared to the untreated cells or FN-PAM-VEGF. Afterword, kinase phosphorylations were higher with VGEF, except for ERK-1/2, which was similarly increased by both treatments at 3 days. Only FN-PAM-VEGF significantly increased Bcl-2 levels. After H/R, lactate dehydrogenase release and cleaved Caspase-3 levels were mainly reduced by FN-PAM-VEGF. While VEGF-A enhances MSC proliferation in normoxia, FN-PAM-VEGF mainly hampers post-hypoxic MSC death. These different effects underscore the necessity of approaches suited to the various conditions. The use of FN-PAM-VEGF could be considered as a novel approach for enhancing MSC survival and regeneration in hostile environment of post-ischemic tissues.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
85
|
Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZACA. Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med 2012; 9:E252-66. [PMID: 23229816 DOI: 10.1002/term.1663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/04/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022]
Abstract
The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
Collapse
Affiliation(s)
- Noor Hayaty Abu Kasim
- Department of Conservative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- Hygieia Innovation Sdn. Bhd, Lot 1G-2G, Lanai Complex No.2, Persiaran Seri Perdana, Percint 10, Federal Territory of Putrajaya, Malaysia.,Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Nareshwaran Gnanasegaran
- Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Zeti Adura Che Ab Aziz
- Department of Conservative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
86
|
Noort WA, Oerlemans MIFJ, Rozemuller H, Feyen D, Jaksani S, Stecher D, Naaijkens B, Martens AC, Bühring HJ, Doevendans PA, Sluijter JPG. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med 2012; 16:1827-39. [PMID: 21973026 PMCID: PMC3822695 DOI: 10.1111/j.1582-4934.2011.01455.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although mesenchymal stromal cells (MSCs) have been applied clinically to treat cardiac diseases, it is unclear how and to which extent transplanted MSCs exert their beneficial effects. To address these questions, pre-clinical MSC administrations are needed for which pigs appear to be the species of choice. This requires the use of porcine cells to prevent immune rejection. However, it is currently unknown to what extent porcine MSCs (pMSCs) resemble human MSCs (hMSCs). Aim of this study was to compare MSC from porcine bone marrow (BM) with human cells for phenotype, multi-lineage differentiation potential, immune-modulatory capacity and the effect on cardiac function after transplantation in a mouse model of myocardial infarction. Flow cytometric analysis revealed that pMSC expressed surface antigens also found on hMSC, including CD90, MSCA-1 (TNAP/W8B2 antigen), CD44, CD29 and SLA class I. Clonogenic outgrowth was significantly enriched following selection of CD271+ cells from BM of human and pig (129 ± 29 and 1961 ± 485 fold, respectively). hMSC and pMSC differentiated comparably into the adipogenic, osteogenic or chondrogenic lineages, although pMSC formed fat much faster than hMSC. Immuno-modulation, an important feature of hMSC, was clearly demonstrated for pMSC when co-cultured with porcine peripheral blood cells stimulated with PMA and pIL-2. Finally, pMSC transplantation after myocardial infarction attenuated adverse remodelling to a similar extent as hMSC when compared to control saline injection. These findings demonstrate that pMSCs have comparable characteristics and functionality with hMSCs, making reliable extrapolation of pre-clinical pMSC studies into a clinical setting very well possible.
Collapse
Affiliation(s)
- W A Noort
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zhang J, Zhang L, Wu Q, Liu H, Huang L. Recombinant human brain natriuretic peptide therapy combined with bone mesenchymal stem cell transplantation for treating heart failure in rats. Mol Med Rep 2012; 7:628-32. [PMID: 23165804 DOI: 10.3892/mmr.2012.1185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 11/06/2012] [Indexed: 11/05/2022] Open
Abstract
This study aimed to investigate the effects of combined recombinant human brain natriuretic peptide (rhBNP) therapy and bone mesenchymal stem cell (BMSC) transplantation on cell survival in myocardial tissues and on heart function in a rat model of heart failure (HF). Rat BMSCs were isolated, amplified and adherent cultured in vitro. A rat model of HF was established via the intraperitoneal injection of doxorubicin (Adriamycin). The rats were randomly divided into normal, HF, BMSC, rhBNP and BMSC plus rhBNP groups. The BMSCs were administered once via tail vein injection and rhBNP was infused via the jugular vein. Echocardiography and polygraphy were used to evaluate heart function. An enzyme‑linked immunosorbent assay was used to detect the changes in brain natriuretic peptide (BNP) concentration prior to and following intervention. Western blot analysis was used to detect the expression of the myocardium‑specific proteins GATA-binding protein 4 (GATA-4), connexin 43 (Cx43) and cardiac troponin I (cTnI). The results of cardiac echocardiography and the hemodynamic data show that various indicators of left ventricular systolic function in the BMSC plus rhBNP group were significantly improved compared with those in the other groups (P<0.05). No significant differences in the improvement of cardiac function were observed between the BMSC and rhBNP groups (P>0.05). Following treatment, a significant difference in BNP levels was observed between the BMSC plus rhBNP and the BMSC groups (P<0.05). The GATA-4, Cx43 and cTnI expression levels in the BMSC plus rhBNP group were higher than those in the BMSC group. Compared with rhBNP treatment, BMSC transplantation alone does not significantly improve heart function. However, combining rhBNP therapy and BMSC transplantation increases the expression levels of GATA-4 and other proteins to improve cardiac systolic and diastolic function.
Collapse
Affiliation(s)
- Junbiao Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, P.R. China
| | | | | | | | | |
Collapse
|
88
|
Abstract
Myocardial regeneration therapy has emerged as an alternative therapy for heart failure and is expected to replace current conventional therapies. As a cell source, the presence of resident cardiac stem cells (RCSC) in the heart has been reported by many researchers. These RCSC show multi-potency and are considered to differentiate into myocytes. On the other hand, bone marrow stem cells have received the greatest attention as a source of cell transplantation therapy in the current era, with a larger number of clinical applications reported because of their ease and safety. Myoblasts have also emerged as a possible cell source for clinical applications. We previously found that myoblast-cell-sheet implantation improved cardiac function and ventricle thickness in a rat MI model. Furthermore, we conducted a pre-clinical large animal study using porcine MI and dog DCM models, and confirmed the effectiveness of skeletal myoblast sheets. Thereafter, we conducted clinical applications of skeletal myoblast implantation. It may eventually be possible to perform regeneration therapy as a routine therapeutic method.
Collapse
|
89
|
Wang H, Liu Z, Li D, Guo X, Kasper FK, Duan C, Zhou J, Mikos AG, Wang C. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med 2012; 16:1310-20. [PMID: 21838774 PMCID: PMC3227757 DOI: 10.1111/j.1582-4934.2011.01409.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, an injectable, biodegradable hydrogel composite of oligo[poly(ethylene glycol) fumarate] (OPF) was investigated as a carrier of mouse embryonic stem cells (mESCs) for the treatment of myocardial infarction (MI). The OPF hydrogels were used to encapsulate mESCs. The cell differentiation in vitro over 14 days was determined via immunohistochemical examination. Then, mESCs encapsulated in OPF hydrogels were injected into the LV wall of a rat MI model. Detailed histological analysis and echocardiography were used to determine the structural and functional consequences after 4 weeks of transplantation. With ascorbic acid induction, mESCs could differentiate into cardiomyocytes and other cell types in all three lineages in the OPF hydrogel. After transplantation, both the 24-hr cell retention and 4-week graft size were significantly greater in the OPF + ESC group than that of the PBS + ESC group (P < 0.01). Four weeks after transplantation, OPF hydrogel alone significantly reduced the infarct size and collagen deposition and improved the cardiac function. The heart function and revascularization improved significantly, while the infarct size and fibrotic area decreased significantly in the OPF + ESC group compared with that of the PBS + ESC, OPF and PBS groups (P < 0.01). All treatments had significantly reduced MMP2 and MMP9 protein levels compared to the PBS control group, and the OPF + ESC group decreased most by Western blotting. Transplanted mESCs expressed cardiovascular markers. This study suggests the potential of a method for heart regeneration involving OPF hydrogels for stem cell encapsulation and transplantation.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wen Z, Mai Z, Zhang H, Chen Y, Geng D, Zhou S, Wang J. Local activation of cardiac stem cells for post-myocardial infarction cardiac repair. J Cell Mol Med 2012; 16:2549-63. [PMID: 22613044 PMCID: PMC4118225 DOI: 10.1111/j.1582-4934.2012.01589.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022] Open
Abstract
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue-specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time-consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC-based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post-MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC-based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI.
Collapse
Affiliation(s)
- Zhuzhi Wen
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Zun Mai
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Haifeng Zhang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Dengfeng Geng
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Shuxian Zhou
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
91
|
Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction. Resuscitation 2012; 83:1391-6. [DOI: 10.1016/j.resuscitation.2012.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 01/14/2023]
|
92
|
Wen Z, Zheng S, Zhou C, Yuan W, Wang J, Wang T. Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: microRNAs as novel regulators. J Cell Mol Med 2012; 16:657-71. [PMID: 22004043 PMCID: PMC3822837 DOI: 10.1111/j.1582-4934.2011.01471.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is safe and may improve cardiac function and structural remodelling in patients following myocardial infarction (MI). Cardiovascular cell differentiation and paracrine effects to promote endogenous cardiac regeneration, neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility, may contribute to MSC-based cardiac repair following MI. However, current evidence indicates that the efficacy of MSC transplantation was unsatisfactory, due to the poor viability and massive death of the engrafted MSCs in the infarcted myocardium. MicroRNAs are short endogenous, conserved, non-coding RNAs and important regulators involved in numerous facets of cardiac pathophysiologic processes. There is an obvious involvement of microRNAs in almost every facet of putative repair mechanisms of MSC-based therapy in MI, such as stem cell differentiation, neovascularization, apoptosis, cardiac remodelling, cardiac contractility and arrhythmias, and others. It is proposed that therapeutic modulation of individual cardiovascular microRNA of MSCs, either mimicking or antagonizing microRNA actions, will hopefully enhance MSC therapeutic efficacy. In addition, MSCs may be manipulated to enhance functional microRNA expression or to inhibit aberrant microRNA levels in a paracrine manner. We hypothesize that microRNAs may be used as novel regulators in MSC-based therapy in MI and MSC transplantation by microRNA regulation may represent promising therapeutic strategy for MI patients in the future.
Collapse
Affiliation(s)
- Zhuzhi Wen
- The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Liu Y, Lai WH, Liao SY, Siu CW, Yang YZ, Tse HF. Lack of cardiac nerve sprouting after intramyocardial transplantation of bone marrow-derived stem cells in a swine model of chronic ischemic myocardium. J Cardiovasc Transl Res 2012; 5:359-64. [PMID: 22302631 PMCID: PMC3349852 DOI: 10.1007/s12265-012-9350-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/21/2012] [Indexed: 02/02/2023]
Abstract
Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31+EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium.
Collapse
Affiliation(s)
- Yuan Liu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, HKSAR, China
| | | | | | | | | | | |
Collapse
|
95
|
Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, Müller E, Küest SM, Cohrs S, Schibli R, Kronen P, Hilbe M, Reinisch A, Strunk D, Haverich A, Hoerstrup S, Lüscher TF, Kaufmann PA, Landmesser U, Martin U. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 2012; 126:430-9. [PMID: 22767659 DOI: 10.1161/circulationaha.111.087684] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. METHODS AND RESULTS Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NIS(pos)-hiPSCs) were established. Iodide uptake, efflux, and viability of NIS(pos)-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NIS(pos)-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of (123)I to follow donor cell survival and distribution and with the use of (99m)TC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NIS(pos)-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NIS(pos)-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. CONCLUSIONS This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NIS(pos)-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.
Collapse
Affiliation(s)
- Christian Templin
- Department of Cardiology, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Yuan Y, Kallos MS, Hunter C, Sen A. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med 2012; 8:210-25. [PMID: 22689330 DOI: 10.1002/term.1515] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 01/29/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have potential clinical utility in the treatment of a multitude of ailments and diseases, due to their relative ease of isolation from patients and their capacity to form many cell types. However, hBM-MSCs are sparse, and can only be isolated in very small quantities, thereby hindering the development of clinical therapies. The use of microcarrier-based stirred suspension bioreactors to expand stem cell populations offers an approach to overcome this problem. Starting with standard culture protocols commonly reported in the literature, we have successfully developed new protocols that allow for improved expansion of hBM-MSCs in stirred suspension bioreactors using CultiSpher-S microcarriers. Cell attachment was facilitated by using intermittent bioreactor agitation, removing fetal bovine serum, modifying the stirring speed and manipulating the medium pH. By manipulating these parameters, we enhanced the cell attachment efficiency in the first 8 h post-inoculation from 18% (standard protocol) to 72% (improved protocol). Following microcarrier attachment, agitation rate was found to impact cell growth kinetics, whereas feeding had no significant effect. By serially subculturing hBM-MSCs using the new suspension bioreactor protocols, we managed to obtain cell fold increases of 10³ within 30 days, which was superior to the 200-fold increase obtained using the standard protocol. The cells were found to retain their defining characteristics after several passages in suspension. This new bioprocess represents a more efficient approach for generating large numbers of hBM-MSCs in culture, which in turn should facilitate the development of new stem cell-based therapies.
Collapse
Affiliation(s)
- Yifan Yuan
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
97
|
Sun C, Lin H, Yu W, Li X, Chen Y, Qiu X, Wang R, Dai Y. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. ACTA ACUST UNITED AC 2012; 35:601-7. [PMID: 22428616 DOI: 10.1111/j.1365-2605.2012.01250.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been demonstrated that intracavernous injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) had beneficial effects on improving erectile function in type-1 diabetic rats. This study was designed to investigate the neurotrophic effect of BM-MSCs for type-1 diabetic rats. Streptozocin-induced type-1 diabetic rats were randomly divided into three groups: diabetic group, BM-MSCs-treated group and BM-MSCs-conditioned medium-treated group. At the 3d, 1 and 2w time points after BM-MSCs injection, three randomly selected rats in MSCs group were sacrificed and penile samples were harvested to detect BM-MSCs in penile tissue. Four weeks after intracavernous injection of BM-MSCs or BM-MSCs-conditioned medium, intracavernous pressure (ICP) was assessed to evaluate the erectile function. Immunohistochemistry was used to track labelled BM-MSCs in penile tissue and to detect neuronal nitric oxide synthase (nNOS) and neurofilament (NF) positive fibres in penile dorsal nerve. Enzyme lined immunosorbent assay (ELISA) was used to measure the concentrations of vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in BM-MSCs-conditioned medium. BM- MSCs secreted detectable levels of VEGF, BDNF and NGF. Intracavernous injection of BM-MSCs improved erectile function in diabetic rats. The functional improvement was accompanied by promoted nNOS and NF positive nerve fibres within penile dorsal nerve in type-1 diabetic rats. Histological data revealed a time-dependent decrease in the number of BM-MSCs in the corpus cavernosum following injection. Furthermore, the beneficial effect of BM-MSCs was partially repeated by BM-MSCs-conditioned medium. Intracavernous injection of BM-MSCs is effective in improving nerve regeneration in diabetic rats. Paracrine effects of BM-MSCs are probably involved in the improvement.
Collapse
Affiliation(s)
- C Sun
- Department of Urology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Jin P, Wang E, Wang YH, Huang W, Kuang W, Sun C, Hu S, Zhang H. Central zone of myocardial infarction: a neglected target area for heart cell therapy. J Cell Mol Med 2012; 16:637-648. [PMID: 21838808 PMCID: PMC3822938 DOI: 10.1111/j.1582-4934.2011.01408.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the fate of transplanted cells in the central zone of myocardial infarction (MI), and to clarify the relationship between the injection-site impact and the efficacy of cell therapy. MI was created by coronary ligation in female rats. Three weeks later, 3-million labelled male bone marrow mesenchymal stem cells (BMSCs) were directly injected into the border (BZC group) or central zone (CZC group) of MI area. As a control, culture medium was injected into the same sites. Cell survival was evaluated by quantitative real-time polymerase chain reaction, and apoptosis was assayed with TUNEL and caspase-3 staining. Four weeks after transplantation, heart function and cardiac morphometry were evaluated by echocardiography and Masson's Trichrome staining, respectively. Angiogenesis and myogenesis were detected by immunofluorescence staining. After cell transplantation into the border or central zone, there was no cell migration between the different zones of MI. BMSCs in the CZC group exhibited no difference in apoptotic percentage, in the long-term survival, when compared with those in the BZC group. However, they did effectively promote angiogenesis and cellular myogenic differentiation. Although cell delivery in the central zone of MI had no effect on the recovery of heart function compared with the BZC group, the retained BMSCs could still increase the scar thickness, and subsequently exhibit a trend in the reverse remodelling of ventricular dilation. Hence, we concluded that the central zone of MI should not be ignored during cell-based therapy. Multiple site injection (border+central zone) is strongly recommended during the procedure of cell transplantation.
Collapse
Affiliation(s)
- Peifeng Jin
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical CollegeWenzhou, China
| | - Enshi Wang
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Ye-huan Wang
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical CollegeWenzhou, China
- Department of Emergency, 1st People Hospital of YueyangYueyang, China
| | - Weicong Huang
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical CollegeWenzhou, China
| | - Wenan Kuang
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical CollegeWenzhou, China
| | - Chengchao Sun
- Department of Thoracic and Cardiovascular Surgery, 1st Affiliated Hospital of Wenzhou Medical CollegeWenzhou, China
| | - Shengshou Hu
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Hao Zhang
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
99
|
|
100
|
Schwarz TM, Leicht SF, Radic T, Rodriguez-Arabaolaza I, Hermann PC, Berger F, Saif J, Böcker W, Ellwart JW, Aicher A, Heeschen C. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler Thromb Vasc Biol 2011; 32:e13-21. [PMID: 22199368 DOI: 10.1161/atvbaha.111.239822] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Cord blood-derived human endothelial colony-forming cells (ECFCs) bear a high proliferative capacity and potently enhance tissue neovascularization in vivo. Here, we investigated whether the leading mechanism for the functional improvement relates to their physical vascular incorporation or perivascular paracrine effects and whether the effects can be further enhanced by dual-cell-based therapy, including mesenchymal stem cells (MSCs). METHODS AND RESULTS ECFCs or MSCs were lentivirally transduced with thymidine kinase suicide gene driven by the endothelial-specific vascular endothelial growth factor 2 (kinase insert domain receptor) promoter and evaluated in a hindlimb ischemia model. ECFCs and MSCs enhanced neovascularization after ischemic events to a similar extent. Dual therapy using ECFCs and MSCs further enhanced neovascularization. Mechanistically, 3 weeks after induction of ischemia followed by cell therapy, ganciclovir-mediated elimination of kinase insert domain receptor(+) cells completely reversed the therapeutic effect of ECFCs but not that of MSCs. Histological analysis revealed that ganciclovir effectively eliminated ECFCs incorporated into the vasculature. CONCLUSIONS Endothelial-specific suicide gene technology demonstrates distinct mechanisms for ECFCs and MSCs, with complete abolishment of ECFC-mediated effects, whereas MSC-mediated effects remained unaffected. These data strengthen the notion that a dual-cell-based therapy represents a promising approach for vascular regeneration of ischemic tissue.
Collapse
Affiliation(s)
- Theresa M Schwarz
- Stem Cell & Cancer Group, Centro Nacional de Investigaciones Oncológicas, c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|