51
|
Barão VAR, Costa RC, Shibli JA, Bertolini M, Souza JGS. Emerging titanium surface modifications: The war against polymicrobial infections on dental implants. Braz Dent J 2022; 33:1-12. [DOI: 10.1590/0103-6440202204860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Dental implants made of titanium (Ti) material is recognized as the leading treatment option for edentulous patients’ rehabilitation, showing a high success rate and clinical longevity. However, dental implant surface acts as a platform for microbial adhesion and accumulation once exposed to the oral cavity. Biofilm formation on implant surfaces has been considered the main etiologic factor to induce inflammatory diseases, known as peri-implant mucositis and peri-implantitis; the latter being recognized as the key reason for late dental implant failure. Different factors, such as biofilm matrix production, source of carbohydrate exposure, and cross-kingdom interactions, have encouraged increased microbial accumulation on dental implants, leading to a microbiological community shift from a healthy to a pathogenic state, increasing inflammation and favoring tissue damage. These factors combined with the spatial organization of biofilms, reduced antimicrobial susceptibility, complex microbiological composition, and the irregular topography of implants hamper biofilm control and microbial killing. In spite of the well-known etiology, there is still no consensus regarding the best clinical protocol to control microbial accumulation on dental implant surfaces and treat peri-implant disease. In this sense, different coatings and Ti surface treatments have been proposed in order to reduce microbial loads and control polymicrobial infections on implantable devices. Therefore, this critical review aims to discuss the current evidence on biofilm accumulation on dental implants and central factors related to the pathogenesis process of implant-related infections. Moreover, the potential surface modifications with anti-biofilm properties for dental implant devices is discussed to shed light on further promising strategies to control peri-implantitis.
Collapse
|
52
|
Ramstedt M, Burmølle M. Can multi-species biofilms defeat antimicrobial surfaces on medical devices? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Electric and Manual Oral Hygiene Routines Affect Plaque Index Score Differently. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413123. [PMID: 34948732 PMCID: PMC8701503 DOI: 10.3390/ijerph182413123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
This cross-sectional study aimed to examine the oral hygiene behaviors in the general population and identify factors affecting oral hygiene behaviors and plaque removal efficacy. A survey was distributed to patients through 11 dental practices in Japan, and each patient’s plaque index score (PIS) was recorded. In total, 1184 patients participated (521 women and 660 men), with 84.04% using manual toothbrushes (MTBs) and 15.96% using electric toothbrushes (ETBs). ETB users had a significantly lower PIS compared to MTB users (p = 0.0017). In addition, a statistically significant difference in the PIS was detected in relation to the frequency of brushing per day (≥2 times) and time spent on brushing (≥1 min). Some MTB users spent less than 1 min brushing, while all ETB users spent at least 1 min brushing, and extended brushing periods significantly improved the PIS for the MTB users. MTB users tend to replace brush heads more frequently than ETB users, and the frequency of replacement affected the PIS significantly (p < 0.01) for the MTB users. The status of dental treatment (first visit, in treatment versus recall) also significantly affected the PIS (p < 0.01). The ETB was more effective than the MTB in terms of better plaque removal and reduced frequency of brush head replacement.
Collapse
|
54
|
Sotozono M, Kuriki N, Asahi Y, Noiri Y, Hayashi M, Motooka D, Nakamura S, Yamaguchi M, Iida T, Ebisu S. Impact of sleep on the microbiome of oral biofilms. PLoS One 2021; 16:e0259850. [PMID: 34882696 PMCID: PMC8659294 DOI: 10.1371/journal.pone.0259850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Dysbiosis of the oral microbiome is associated with diseases such as periodontitis and dental caries. Because the bacterial counts in saliva increase markedly during sleep, it is broadly accepted that the mouth should be cleaned before sleep to help prevent these diseases. However, this practice does not consider oral biofilms, including the dental biofilm. This study aimed to investigate sleep-related changes in the microbiome of oral biofilms by using 16S rRNA gene sequence analysis. Two experimental schedules—post-sleep and pre-sleep biofilm collection—were applied to 10 healthy subjects. Subjects had their teeth and oral mucosa professionally cleaned 7 days and 24 h before sample collection. Samples were collected from several locations in the oral cavity: the buccal mucosa, hard palate, tongue dorsum, gingival mucosa, tooth surface, and saliva. Prevotella and Corynebacterium had higher relative abundance on awakening than before sleep in all locations of the oral cavity, whereas fluctuations in Rothia levels differed depending on location. The microbiome in different locations in the oral cavity is affected by sleep, and changes in the microbiome composition depend on characteristics of the surfaces on which oral biofilms form.
Collapse
Affiliation(s)
- Maki Sotozono
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail:
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mikiyo Yamaguchi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
55
|
Kling KE, Maddox CW, Manfra Marretta S, Nowicki C, Schaeffer DJ. Effect of TrisEDTA and Chlorhexidine 0.12% on an In Vitro-Defined Biofilm Representing the Subgingival Plaque Biofilm of the Dog. J Vet Dent 2021; 39:9-20. [PMID: 34866484 DOI: 10.1177/08987564211058496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to investigate the effects of chlorhexidine 0.12%, TrisEDTA (tromethamine ethylenediamintetraacetic acid), and a combination of chlorhexidine 0.12% and TrisEDTA on an in vitro plaque biofilm model comprised of three bacterial species commonly found in canine subgingival plaque. Porphyromonas gulae, Actinomyces canis, and Neisseria canis were grown in a biofilm on polished hydroxyapatite coated titanium alloy pucks for 72 h prior to exposure to one of four test solutions: TrisEDTA, chlorhexidine 0.12%, a combination of TrisEDTA and chlorhexidine 0.12%, or sterile deionized water as a control. Following exposure to the test solution, a sample was collected of the biofilm either immediately or following 24 h of additional incubation in a broth medium. Lower numbers of CFU/mL of Porphyromonas gulae resulted when the biofilm was treated with a solution of chlorhexidine 0.12% and TrisEDTA compared to with chlorhexidine 0.12% alone, TrisEDTA alone, or the control and so this solution can be said to be synergistic against Porphyromonas gulae in this controlled in vitro model. Greater reductions in the numbers of CFU/mL of Actinomyces canis and Neisseria canis resulted from treatment with chlorhexidine 0.12% alone than if treated with the combination of TrisEDTA and chlorhexidine 0.12%. When treated biofilm samples were allowed 24 h of additional growth in fresh media, greater variance resulted and this variance highlights the complex dynamics involved in bacterial growth within a biofilm.
Collapse
|
56
|
Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021; 298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Polymicrobial infection is the main cause of dental implant failure. Although numerous studies have reported the ability of titanium (Ti) surface modifications to inhibit microbial adhesion and biofilm accumulation, the majority of solutions for the utilization of Ti antibacterial surfaces have been testedin in vitro and animal models, with only a few developed surfaces progressing into clinical research. Motivated by this huge gap, we critically reviewed the scientific literature on the existing antibacterial Ti surfaces to help understand these surfaces' impact on the "puzzle" of undesirable dental implant-related infections. This manuscript comprises three main sections: (i) a narrative review on topics related to oral biofilm formation, bacterial-implant surface interactions, and on how implant-surface modifications can influence microbial accumulation; (ii) a critical evidence-based review to summarize pre-clinical and clinical studies in an attempt to "fit pieces into the puzzle" to unveil the best way to reduce microbial loads and control polymicrobial infection around dental implants showed by the current in vivo evidence; and (iii) discussion and recommendations for future research testing emerging antibacterial implant surfaces, connecting basic science and the requirements for future clinical translation. The findings of the present review suggest no consensus regarding the best available Ti surface to reduce bacterial colonization on dental implants. Smart release or on-demand activation surface coatings are a "new piece of the puzzle", which may be the most effective alternative for reducing microbial colonization on Ti surfaces, and future studies should focus on these technologies.
Collapse
|
57
|
Welk A, Patjek S, Gärtner M, Baguhl R, Schwahn C, Below H. Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiol 2021; 21:302. [PMID: 34732139 PMCID: PMC8564979 DOI: 10.1186/s12866-021-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background Antimicrobial agents are considered valuable adjuncts to mechanical methods of plaque control. However, their long-term use can be limited because of side effects. Therefore, using physiological substances is promising due to no risk of development, for example, of microbial resistances, allergies or DNA damaging. The lactoperoxidase-thiocyanate-hydrogen peroxide system (LPO-system) is a highly effective antimicrobial system. This study aimed to evaluate in a randomized study with a four-replicate cross-over design the effectiveness of two oral hygiene lozenges containing LPO-system in oral hygiene. Results After using the mouth rinse as positive control (A) and allocated test lozenges (B) (0.083% H2O2) & (C) (0.04% H2O2) for 4 days instead of the normal oral hygiene procedures (tooth brushing etc.), Listerine rinse (A) was statistically significantly more effective than the LPO-system-lozenge with 0.083% H2O2, the LPO-system-lozenge with 0.04% H2O2, and the placebo lozenge (D) in inhibiting plaque. Lozenges B and C were statistically significantly more effective than the placebo lozenge, but no statistically significant differences could be observed between them. The LPO-system-lozenge (B) reduced statistically significantly more S. mutans than the LPO-system-lozenge with (C) and the placebo lozenge (D). The LPO-system-lozenge (C) reduced statistically significantly more Lactobacilli than Listerine (A), the LPO-system-lozenge (B) and the placebo lozenge (D). There were no statistically significant differences in the total CFUs between Listerine rinse, the LPO-system-lozenge with 0.083% H2O2 (B), the LPO-system-lozenge with 0.04% H2O2 (C), and the placebo lozenge (D). On day 5 there were no differences of the OSCN−-values between all A, B, C, and D. However, the SCN−-values increased over the days in both LPO-system-lozenges (B/C). The statistically significant differences between B/C and A/D on day 5 were as followed: A to B p = 0.0268; A to C p = 0.0035; B to D p = 0.0051; C to D p = 0.0007. Only in the group of Listerine (A) increased the NO3−/NO2−-quotient over the test time, which indicates a reduction of nitrate-reducing bacteria. On Day 5 the statistically significant difference between A and B was p = 0.0123. Conclusions The results indicate that lozenges containing a complete LPO-system, inhibiting plaque regrowth and reducing cariogenic bacteria, may be used in the daily oral hygiene.
Collapse
Affiliation(s)
- A Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany.
| | - S Patjek
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - M Gärtner
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - R Baguhl
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| | - Ch Schwahn
- Dental School, Department of Prosthodontics, University of Greifswald, Greifswald, Germany
| | - H Below
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
58
|
Rüdiger SG, Carlén A. Approximal plaque pH lowering after sugar intake in a periodontally infected dentition. Acta Odontol Scand 2021; 79:606-612. [PMID: 33956555 DOI: 10.1080/00016357.2021.1921258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of periodontal inflammation on the approximal plaque pH after a sucrose rinse. MATERIALS AND METHODS Thirty-two periodontitis patients (aged 38-72 years; 9M/23F) were included. All patients were in need of periodontal surgery. Two non-adjacent interdental spaces, one healthy (no bleeding on probing [BoP] and probing pocket depth [PPD] < 4 mm) and one periodontally diseased (BoP and PPD ≥5 mm) were selected. Before and after surgery, the approximal plaque pH was measured before and after 2, 5 and 10 min after a 1-min rinse with sucrose solution. RESULTS In periodontally diseased interdental spaces, a significant pH drop was seen 5 min after rinsing. In healthy spaces and after surgery, a significant pH drop was seen after 2 min. A multilevel regression analysis showed that greater probing pocket depths were significantly associated with pH change measured 5 min after rinsing (p < .05). Further on, the approximal pH drop after a sucrose rinse tended to be delayed in dentitions with ≥10% of PPD ≥5 mm (p = .052). CONCLUSIONS The results suggest that an ongoing periodontal inflammation could temporarily neutralize acidic metabolic products after a sugar challenge. This may further suggest that plaque pH measured after a sugar rinse might be used to identify an ongoing periodontal disease.
Collapse
Affiliation(s)
- S. G. Rüdiger
- Department of Periodontology, Specialist Dental Care Centre, Public Dental Service, Lund, Sweden
| | - A. Carlén
- Department of Oral Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
59
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
60
|
Chen I, Chung J, Vella R, Weinstock GM, Zhou Y, Jheon AH. Alterations in subgingival microbiota during full-fixed appliance orthodontic treatment-A prospective study. Orthod Craniofac Res 2021; 25:260-268. [PMID: 34538018 DOI: 10.1111/ocr.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Full-fixed appliance orthodontic treatment (commonly called braces) increases plaque accumulation and the risk of gingivitis and periodontitis. However, little consensus exists on changes to subgingival microbiota and specific periodontopathogens during treatment with braces. Prior studies have been hampered by selection biases due to dependence on culture conditions, candidate-based PCR and shallow sequencing methods. OBJECTIVE The objective was to provide the first longitudinal, culture-free and deep-sequence profiling of subgingival bacteria in subjects during early stages of full-fixed orthodontic treatment. METHODS We performed 16S rRNA next-generation sequencing (NGS) on 168 subgingival samples collected at 4 distinct mandibular tooth sites per subject before (0 weeks) and during (6 and 12 weeks) orthodontic intervention in 9 experimental and 5 control subjects not undergoing treatment. RESULTS Overall, we noted that orthodontic intervention led to increased microbial richness, accompanied by an increased incidence of localized gingivitis/mild periodontitis in subjects requiring orthodontic treatment compared to controls, as well as significant baseline variations in subgingival microbiomes in all subjects. Moreover, we confirmed individual- and site-dependent microbiome variability (in particular, the lingual site harboured higher microbiome diversity than buccal sites) that orthodontic bands may lead to more prolonged shifts in microbial changes compared to brackets, and evidence of adaptive enrichment of consensus bacteria with orthodontic intervention (12 novel, consensus bacterial species were identified). CONCLUSION Our study, along with evolving global profiling methods and data analyses, builds a strong foundation for further analyses of subgingival microbiomes during full-fixed orthodontic treatment.
Collapse
Affiliation(s)
- Isaac Chen
- Division of Orthodontics, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jennifer Chung
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,University of Connecticut School of Medicine, Farmington, CT, USA
| | - Raven Vella
- University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Yanjiao Zhou
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Andrew H Jheon
- Divisions of Craniofacial Anomalies and Orthodontics, UCSF, San Francisco, CA, USA
| |
Collapse
|
61
|
The Current Strategies in Controlling Oral Diseases by Herbal and Chemical Materials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3423001. [PMID: 34471415 PMCID: PMC8405301 DOI: 10.1155/2021/3423001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Dental plaque is a biofilm composed of complex microbial communities. It is the main cause of major dental diseases such as caries and periodontal diseases. In a healthy state, there is a delicate balance between the dental biofilm and host tissues. Nevertheless, due to the oral cavity changes, this biofilm can become pathogenic. The pathogenic biofilm shifts the balance from demineralization-remineralization to demineralization and results in dental caries. Dentists should consider caries as a result of biological processes of dental plaque and seek treatments for the etiologic factors, not merely look for the treatment of the outcome caused by biofilm, i.e., dental caries. Caries prevention strategies can be classified into three groups based on the role and responsibility of the individuals doing them: (1) community-based strategy, (2) dental professionals-based strategy, and (3) individual-based strategy. The community-based methods include fluoridation of water, salt, and milk. The dental professionals-based methods include professional tooth cleaning and use of varnish, fluoride gel and foam, fissure sealant, and antimicrobial agents. The individual-based (self-care) methods include the use of fluoride toothpaste, fluoride supplements, fluoride mouthwashes, fluoride gels, chlorhexidine gels and mouthwashes, slow-release fluoride devices, oral hygiene, diet control, and noncariogenic sweeteners such as xylitol. This study aimed to study the research in the recent five years (2015–2020) to identify the characteristics of dental biofilm and its role in dental caries and explore the employed approaches to prevent the related infections.
Collapse
|
62
|
Bhaumik D, Manikandan D, Foxman B. Cariogenic and oral health taxa in the oral cavity among children and adults: A scoping review. Arch Oral Biol 2021; 129:105204. [PMID: 34246103 PMCID: PMC8364507 DOI: 10.1016/j.archoralbio.2021.105204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review published oral microbiome studies and create a comprehensive list of bacterial species found in saliva and dental plaque among healthy children and adults associated with presence of carious lesions and caries-free state (oral health). DESIGN This review followed PRISMA-ScR guidelines. We searched published studies querying PUBMED and EMBASE using the following keywords: (plaque OR saliva) AND caries AND (next generation sequencing OR checkerboard OR 16s rRNA or qPCR). Studies were limited to human studies published in English between January 1, 2010 and June 24, 2020 that included > 10 caries-active and > 10 caries-free participants, and assessed the entire bacterial community. RESULTS Our search strategy identified 298 articles. After exclusion criteria, 22 articles remained; we considered 2 studies that examined saliva and plaque as separate studies, for a total of 24 studies. Species associated with caries or oral health varied widely among studies reviewed, with notable differences by age and biologic sample type. No bacterial species was associated with caries in all studies. Streptococcus mutans was found more frequently among those with caries (14/24 (58.3 %)) and Fusobacterium periodonticum was found more frequently among those that were caries-free (5/24 (20.8 %)). CONCLUSION No bacterial species was associated with caries or oral health across all studies supporting multiple pathways to cariogenesis. However, the variation may be due to sampling at different time points during caries development, varying methods of specimen sampling, storage, sequencing or analysis or differences in host factors such as age.
Collapse
Affiliation(s)
- Deesha Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| | - Divya Manikandan
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, MI, United States.
| | - Betsy Foxman
- Center of Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
63
|
Basic A, Serino G, Leonhardt Å, Dahlén G, Bylund J. The secretion of cytokines by peripheral blood mononuclear cells of patients with periodontitis and healthy controls when exposed to H 2S. J Oral Microbiol 2021; 13:1957368. [PMID: 34408814 PMCID: PMC8366616 DOI: 10.1080/20002297.2021.1957368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Hydrogen sulfide(H2S) is a bacterial metabolite produced as a result of bacterial growth in subgingival pockets, suggested to partake in the pathogenesis of periodontitis. H2S has previously been shown to induce the secretion of the pro-inflammatory cytokines IL-1β and IL-18 via the NLRP3 inflammasome in monocytes. Objective: To investigate the non-NLRP3 inflammasome-dependent immunological response of human peripheral blood mononuclear cells (PBMCs) of periodontitis patients and healthy controls exposed to H2S in vitro. Methods: PBMCs of periodontitis patients(N = 31) and healthy controls(N = 32) were exposed to 1 mM sodium hydrosulfide (NaHS) at 37°C for 24 h and the secretion of cytokines was compared to resting cells. TNF-α, IFN-γ, IL-6, IL-8, IL-12p40, IL-12p70, IL-17, MCP-1, and IL-1Ra secretions were measured with Bio-Plex Pro™ Human Cytokine Assay. Results: H2S triggered the secretion of the pro-inflammatory IFN-γ, IL-6, IL-17, TNF-α, IL-12p40, and IL-12p70, while the reverse was seen for IL-1Ra. In addition, a higher basal secretion of IFN-γ, IL-6, IL-12p70, IL-17 and MCP-1 was seen from PBMCs of periodontitis patients compared to healthy controls. Conclusion: The bacterial metabolite H2S triggers the secretion of pro-inflammatory cytokines from PBMCs and may thus have a prominent role in the host-bacteria interplay in periodontitis.
Collapse
Affiliation(s)
- Amina Basic
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Serino
- Department of Periodontology, Södra Älvsborgs Hospital, Borås, Sweden
| | - Åsa Leonhardt
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Dahlén
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Oral Microbiology and Immunology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
64
|
Jiang Q, Yu Y, Xu R, Zhang Z, Liang C, Sun H, Deng F, Yu X. The temporal shift of peri-implant microbiota during the biofilm formation and maturation in a canine model. Microb Pathog 2021; 158:105100. [PMID: 34302932 DOI: 10.1016/j.micpath.2021.105100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Although the mature peri-implant biofilm composition is well studied, there is very little information on the succession of in vivo dental implant colonization. The aim of this study was to characterize the temporal changes and diversity of peri-implant supra-mucosal and sub-mucosal microbiota during the process of the plaque maturation. MATERIALS AND METHODS Dental implants (n = 25) were placed in the mandible of 3 beagle dogs. Illumina MiSeq sequencing of the hypervariable V3-V4 region of the 16S rRNA gene amplicons was used to characterize the supra/sub-mucosal microbiota in the peri-implant niches at 1day (T1), 7days (T2), 14days (T3), 21days (T4) and 28days (T5) after Phase Ⅱ surgery of the healing abutment placement. QIIME, Mothur, LEfSe and R-package were used for downstream analysis. RESULTS A total of 1184 operational taxonomic units (OTUs), assigned into 22 phyla, 264 genera and 339 species were identified. In supra-mucosal niches, the alpha parameters of shannon, sobs and chao1 displayed significant differences between T1 and other time-points. However, in sub-mucosal niches, only sobs, chao1, and ace indexes displayed significant differences between T1 and T3, and T1 and T5. Beta-diversity showed statistically significant difference between T1 and T2, T3, T4, T5 within both sub-mucosal and supra-mucosal plaque. The phyla Bacteroidetes, Proteobacteria and Firmicutes were the most dominant phyla of both sub-mucosal and supra-mucosal niches at all time-points and Firmicutes increased during the maturation of peri-implant plaque. At the genus level, Neisseria decreased significantly after T1 suggesting the establishment of an anaerobic microenvironment. A decrease of Porphyromonas during the formation of sub-mucosal microbial community was also detected. Co-occurrence network analysis exhibited a more complicated co-occurrence relationship of bacterial species in the sub-mucosal niches. Fusobacterium nucleatum, Filifactor villosus, and some other species may play a crucial role in biofilm maturation. CONCLUSIONS The present results suggested that the development of peri-implant biofilm followed a similar pattern to dental plaque formation. Sub-mucosal biofilm may go through a more complicated procedure of maturation than supra-mucosal biofilm.
Collapse
Affiliation(s)
- Qiming Jiang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Hanyu Sun
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
65
|
da Rocha LGDO, Ribeiro VST, de Andrade AP, Gonçalves GA, Kraft L, Cieslinski J, Suss PH, Tuon FF. Evaluation of Staphylococcus aureus and Candida albicans biofilms adherence to PEEK and titanium-alloy prosthetic spine devices. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2021; 32:981-989. [PMID: 34236512 DOI: 10.1007/s00590-021-03069-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Titanium and polyether-ether-ketone (PEEK) interbody cages are commonly used for spine fusion. Few data are known about bacterial and yeast biofilms formation in these implants. The aim of this study was to compare Staphylococcus aureus and Candida albicans biofilm formation in the surface of two different interbody devices used routinely in spine surgery. METHODS Six bodies of proof specimens of PEEK and titanium alloy were used for microbiological tests, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental biofilm was produced with Staphylococcus aureus and Candida albicans, followed by quantitative analysis of planktonic cells and sessile cells. The comparison between the medians of biofilm quantification between the two models was performed using the Mann-Whitney test and considered the statistical difference for a p < 0.05. RESULTS In the S. aureus model, in both planktonic and sessile cell counts, titanium-alloy samples showed lower values for colony forming units per milliliter (UFC/mL) (p < 0.05). The evaluation through the optic density of planktonic and sessile cells showed lower values in the titanium-alloy samples, however, only statistically significant in planktonic cell count (p < 0.05). The count of planktonic yeast cells in PEEK was similar to titanium-alloy samples, while the count of sessile yeast cells in titanium alloy was lower when compared to PEEK (p < 0.05). CONCLUSION Titanium-alloy models were associated with less staphylococcal and Candida biofilm formation when compared with PEEK.
Collapse
Affiliation(s)
- Luiz Gustavo Dal Oglio da Rocha
- Hospital Universitário Cajuru - HUC, Spine Department. Pontifícia, Universidade Católica do Paraná (PUCPR), Avenida São José, 300, Curitiba, Paraná, 80050-350, Brazil.,School of Medicine, Health Sciences Department, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil.,School of Medicine, Health Sciences Department, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Ana Paula de Andrade
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil.,School of Medicine, Health Sciences Department, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Geiziane Aparecida Gonçalves
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Letícia Kraft
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Juliette Cieslinski
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil.,School of Medicine, Health Sciences Department, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil. .,School of Medicine, Health Sciences Department, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil.
| |
Collapse
|
66
|
Adam FA, Mohd N, Rani H, Baharin B, Mohd Yusof MYP. Salvadora persica L. chewing stick and standard toothbrush as anti-plaque and anti-gingivitis tool: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113882. [PMID: 33513418 DOI: 10.1016/j.jep.2021.113882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvadora persica L. chewing stick, commonly known as miswak is still being used as an oral hygiene tool for plaque control and prevention against gingivitis. Various studies have reported on the therapeutics and prophylactic effects particularly on periodontal disease. This review aimed to evaluate the effectiveness of S. persica chewing stick compared to the standard toothbrush for anti-plaque and anti-gingivitis. MATERIAL AND METHODS A PRISMA-compliant systematic search of literature was done from the MEDLINE, CENTRAL, Science Direct, PubMed and Google Scholar. Literature that fulfilled eligibility criteria was identified. Data measuring plaque score and bleeding score were extracted. Qualitative and random-effects meta-analyses were conducted. RESULTS From 1736 titles and abstracts screened, eight articles were utilized for qualitative analysis, while five were selected for meta-analysis. The pooled effect estimates of SMD and 95% CI were -0.07 [-0.60 to 0.45] with an χ2 statistic of 0.32 (p = 0.0001), I2 = 80% as anti-plaque function and 95% CI were -2.07 [-4.05 to -0.10] with an χ2 statistic of 1.67 (p = 0.02), I2 = 82%. CONCLUSION S. persica chewing stick is a tool that could control plaque, comparable to a standard toothbrush. Further, it has a better anti-gingivitis effect and can be used as an alternative.
Collapse
Affiliation(s)
- Fara Azwin Adam
- Unit of Periodontology, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia; Center for Periodontology Studies, Faculty of Dentistry Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurulhuda Mohd
- Unit of Periodontology, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Haslina Rani
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Badiah Baharin
- Unit of Periodontology, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Centre for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia; Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
67
|
Toyama N, Ekuni D, Matsui D, Koyama T, Nakatochi M, Momozawa Y, Kubo M, Morita M. Comprehensive Analysis of Risk Factors for Periodontitis Focusing on the Saliva Microbiome and Polymorphism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6430. [PMID: 34198553 PMCID: PMC8296229 DOI: 10.3390/ijerph18126430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Few studies have exhaustively assessed relationships among polymorphisms, the microbiome, and periodontitis. The objective of the present study was to assess associations simultaneously among polymorphisms, the microbiome, and periodontitis. We used propensity score matching with a 1:1 ratio to select subjects, and then 22 individuals (mean age ± standard deviation, 60.7 ± 9.9 years) were analyzed. After saliva collection, V3-4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, Chao1, and abundance-based coverage estimator) and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A total of 51 single-nucleotide polymorphisms (SNPs) related to periodontitis were identified. The frequencies of SNPs were collected from Genome-Wide Association Study data. The PCoA of unweighted UniFrac distance showed a significant difference between periodontitis and control groups (p < 0.05). There were no significant differences in alpha diversity and PCoA of weighted UniFrac distance (p > 0.05). Two families (Lactobacillaceae and Desulfobulbaceae) and one species (Porphyromonas gingivalis) were observed only in the periodontitis group. No SNPs showed significant expression. These results suggest that periodontitis was related to the presence of P. gingivalis and the families Lactobacillaceae and Desulfobulbaceae but not SNPs.
Collapse
Affiliation(s)
- Naoki Toyama
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (D.M.); (T.K.)
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (D.M.); (T.K.)
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan;
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City 230-0045, Japan; (Y.M.); (M.K.)
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City 230-0045, Japan; (Y.M.); (M.K.)
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| |
Collapse
|
68
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
69
|
Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2021; 24:102008. [PMID: 33490916 PMCID: PMC7811145 DOI: 10.1016/j.isci.2020.102008] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Implant devices have = proven a successful treatment modality in reconstructive surgeries. However, increasing rates of peri-implant diseases demand further examination of their pathogenesis. Polymicrobial biofilm formation on titanium surfaces has been considered the main risk factor for inflammatory processes on tissues surrounding implant devices, which often lead to implant failure. To overcome microbial accumulation on titanium surfaces biofilm targeting strategies have been developed to modify the surface and incorporate antimicrobial coatings. Because antibiotics are widely used to treat polymicrobial infections, these agents have recently started to be incorporated on titanium surface. This review discusses the biofilm formation on titanium dental implants and key factors to be considered in therapeutic and preventative strategies. Moreover, a systematic review was conducted on coatings developed for titanium surfaces using different antibiotics. This review will also shed light on potential alternative strategies aiming to reduce microbial loads and control polymicrobial infection on implanted devices.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP 07023-070, Brazil
- Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, 39401-303, Brazil
| | - Martinna Mendonça Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
70
|
Sotozono M, Kuriki N, Asahi Y, Noiri Y, Hayashi M, Motooka D, Nakamura S, Machi H, Iida T, Ebisu S. Impacts of sleep on the characteristics of dental biofilm. Sci Rep 2021; 11:138. [PMID: 33420225 PMCID: PMC7794455 DOI: 10.1038/s41598-020-80541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Dental biofilm present on the tooth surface is associated with oral diseases, such as dental caries and periodontal disease. Because bacterial numbers rapidly increase in saliva during sleep, oral care before sleeping is recommended for the prevention of chronic oral diseases. However, temporal circadian changes in the quantity and quality of dental biofilms are poorly understood. This study aimed to investigate the impacts of sleeping on dental biofilm amounts and compositions by using an in situ model. The use of this in situ model enabled us to investigate dental biofilm formed in the oral cavity and to perform a quantitative analysis. Subjects began wearing oral splints in the morning or before sleeping, and biofilm samples were collected at 8, 16, and 24 h after the subjects began wearing oral splints; these samples were then used in various experiments. No significant changes in the numbers of biofilm-forming bacteria were caused by sleep. However, the relative abundances of genera related to periodontitis (i.e., Fusobacterium and Prevotella) increased after awakening. In conclusion, the numbers of biofilm-forming bacteria were not affected by sleep, and the abundances of obligate anaerobes increased after sleep. This research may aid in defining efficacious preventive oral care.
Collapse
Affiliation(s)
- Maki Sotozono
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Machi
- Osaka University Dental Technology Institute, Osaka, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
71
|
Szkaradkiewicz-Karpińska AK, Szkaradkiewicz A. Effect of exopolysaccharides from cariogenic bacteria on human gingival fibroblasts. Int J Med Sci 2021; 18:2666-2672. [PMID: 34104099 PMCID: PMC8176186 DOI: 10.7150/ijms.57221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
Bacterial biofilm (dental plaque) plays a key role in caries etiopathogenesis and chronic periodontitis in humans. Dental plaque formation is determined by exopolysaccharides (EPSs) produced by cariogenic and periopathogenic bacteria. The most frequent cariogenic bacteria include oral streptococci (in particular S. mutans) and lactobacilli (most frequently L. acidophilus). In turn, the dominant periopathogen in periodontitis is Porphyromonas gingivalis. Development of dental caries is often accompanied with gingivitis constituting the mildest form of periodontal disease. Basic cellular components of the gingiva tissue are fibroblasts the damage of which determines the progression of chronic periodontitis. Due to insufficient knowledge of the direct effect of dental plaque on metabolic activity of the fibroblasts, this work analyses the effect of EPSs produced by S. mutans and L. acidophilus strains (H2O2-producing and H2O2-not producing) on ATP levels in human gingival fibroblasts (HGF-1) and their viability. EPSs produced in 48-hours bacterial cultures were isolated by precipitation method and quantitatively determined by phenol - sulphuric acid assay. ATP levels in HGF-1 were evaluated using a luminescence test, and cell viability was estimated using fluorescence test. The tests have proven that EPS from S. mutans did not affect the levels of ATP in HGF-1. Whereas EPS derived from L. acidophilus strains, irrespective of the tested strain, significantly increased ATP levels in HGF-1. The analysed EPSs did not affect the viability of cells. The tests presented in this work show that EPSs from cariogenic bacteria have no cytotoxic effect on HGF-1. At the same time, the results provide new data indicating that EPSs from selected oral lactobacilli may have stimulating effect on the synthesis of ATP in gingival fibroblasts which increases their energetic potential and takes a protective effect.
Collapse
Affiliation(s)
- Anna K Szkaradkiewicz-Karpińska
- Department of Preclinical Conservative Dentistry and Preclinical Endodontics, University of Medical Sciences, 60-812 Poznań, Poland
| | - Andrzej Szkaradkiewicz
- Institute of Health and Physical Culture, State Higher Vocational School, 64-100 Leszno, Poland
| |
Collapse
|
72
|
Huang Y, Liu Y, Shah S, Kim D, Simon-Soro A, Ito T, Hajfathalian M, Li Y, Hsu JC, Nieves LM, Alawi F, Naha PC, Cormode DP, Koo H. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials 2020; 268:120581. [PMID: 33302119 DOI: 10.1016/j.biomaterials.2020.120581] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Human dental caries is an intractable biofilm-associated disease caused by microbial interactions and dietary sugars on the host's teeth. Commensal bacteria help control opportunistic pathogens via bioactive products such as hydrogen peroxide (H2O2). However, high-sugar consumption disrupts homeostasis and promotes pathogen accumulation in acidic biofilms that cause tooth-decay. Here, we exploit the pathological (sugar-rich/acidic) conditions using a nanohybrid system to increase intrinsic H2O2 production and trigger pH-dependent reactive oxygen species (ROS) generation for efficient biofilm virulence targeting. The nanohybrid contains glucose-oxidase that catalyzes glucose present in biofilms to increase intrinsic H2O2, which is converted by iron oxide nanoparticles with peroxidase-like activity into ROS in acidic pH. Notably, it selectively kills Streptococcus mutans (pathogen) without affecting Streptococcus oralis (commensal) via preferential pathogen-binding and in situ ROS generation. Furthermore, nanohybrid treatments potently reduced dental caries in a rodent model. Compared to chlorhexidine (positive-control), which disrupted oral microbiota diversity, the nanohybrid had significant higher efficacy without affecting soft-tissues and the oral-gastrointestinal microbiomes, while modulating dental health-associated microbial activity in vivo. The data reveal therapeutic precision of a bi-functional hybrid nanozyme against a biofilm-related disease in a controlled-manner activated by pathological conditions.
Collapse
Affiliation(s)
- Yue Huang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Shrey Shah
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Preventive Dentistry, School of Dentistry, Jeonbuk National Universitys, Deokjin-gu, Jeonju, 54896, South Korea
| | - Aurea Simon-Soro
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tatsuro Ito
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Pediatric Dentistry, School of Dentistry at Matsudo, Nihon University, Matsudo, Chiba, 271-8587, Japan
| | - Maryam Hajfathalian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jessica C Hsu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Lenitza M Nieves
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19014, United States
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Cardiology, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
73
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
74
|
Khattri S, Kumbargere Nagraj S, Arora A, Eachempati P, Kusum CK, Bhat KG, Johnson TM, Lodi G. Adjunctive systemic antimicrobials for the non-surgical treatment of periodontitis. Cochrane Database Syst Rev 2020; 11:CD012568. [PMID: 33197289 PMCID: PMC9166531 DOI: 10.1002/14651858.cd012568.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Systemic antimicrobials can be used as an adjunct to mechanical debridement (scaling and root planing (SRP)) as a non-surgical treatment approach to manage periodontitis. A range of antibiotics with different dosage and combinations are documented in the literature. The review follows the previous classification of periodontitis as all included studies used this classification. OBJECTIVES To assess the effects of systemic antimicrobials as an adjunct to SRP for the non-surgical treatment of patients with periodontitis. SEARCH METHODS Cochrane Oral Health's Information Specialist searched the following databases to 9 March 2020: Cochrane Oral Health's Trials Register, CENTRAL, MEDLINE, and Embase. The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. SELECTION CRITERIA We included randomized controlled trials (RCTs) which involved individuals with clinically diagnosed untreated periodontitis. Trials compared SRP with systemic antibiotics versus SRP alone/placebo, or with other systemic antibiotics. DATA COLLECTION AND ANALYSIS We selected trials, extracted data, and assessed risk of bias in duplicate. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 45 trials conducted worldwide involving 2664 adult participants. 14 studies were at low, 8 at high, and the remaining 23 at unclear overall risk of bias. Seven trials did not contribute data to the analysis. We assessed the certainty of the evidence for the 10 comparisons which reported long-term follow-up (≥ 1 year). None of the studies reported data on antimicrobial resistance and patient-reported quality of life changes. Amoxicillin + metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -16.20%, 95% CI -25.87 to -6.53; 1 study, 44 participants); clinical attachment level (CAL) (MD -0.47 mm, 95% CI -0.90 to -0.05; 2 studies, 389 participants); probing pocket depth (PD) (MD -0.30 mm, 95% CI -0.42 to -0.18; 2 studies, 389 participants); and percentage of bleeding on probing (BOP) (MD -8.06%, 95% CI -14.26 to -1.85; 2 studies, 389 participants) was of very low certainty. Only the results for closed pockets and BOP showed a minimally important clinical difference (MICD) favouring amoxicillin + metronidazole + SRP. Metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -12.20%, 95% CI -29.23 to 4.83; 1 study, 22 participants); CAL (MD -1.12 mm, 95% CI -2.24 to 0; 3 studies, 71 participants); PD (MD -1.11 mm, 95% CI -2.84 to 0.61; 2 studies, 47 participants); and percentage of BOP (MD -6.90%, 95% CI -22.10 to 8.30; 1 study, 22 participants) was of very low certainty. Only the results for CAL and PD showed an MICD favouring the MTZ + SRP group. Azithromycin + SRP versus SRP for chronic/aggressive periodontitis: we found no evidence of a difference in percentage of closed pockets (MD 2.50%, 95% CI -10.19 to 15.19; 1 study, 40 participants); CAL (MD -0.59 mm, 95% CI -1.27 to 0.08; 2 studies, 110 participants); PD (MD -0.77 mm, 95% CI -2.33 to 0.79; 2 studies, 110 participants); and percentage of BOP (MD -1.28%, 95% CI -4.32 to 1.76; 2 studies, 110 participants) (very low-certainty evidence for all outcomes). Amoxicillin + clavulanate + SRP versus SRP for chronic periodontitis: the evidence from 1 study, 21 participants for CAL (MD 0.10 mm, 95% CI -0.51 to 0.71); PD (MD 0.10 mm, 95% CI -0.17 to 0.37); and BOP (MD 0%, 95% CI -0.09 to 0.09) was of very low certainty and did not show a difference between the groups. Doxycycline + SRP versus SRP in aggressive periodontitis: the evidence from 1 study, 22 participants for CAL (MD -0.80 mm, 95% CI -1.49 to -0.11); and PD (MD -1.00 mm, 95% CI -1.78 to -0.22) was of very low certainty, with the doxycycline + SRP group showing an MICD in PD only. Tetracycline + SRP versus SRP for aggressive periodontitis: we found very low-certainty evidence of a difference in long-term improvement in CAL for the tetracycline group (MD -2.30 mm, 95% CI -2.50 to -2.10; 1 study, 26 participants). Clindamycin + SRP versus SRP in aggressive periodontitis: we found very low-certainty evidence from 1 study, 21 participants of a difference in long-term improvement in CAL (MD -1.70 mm, 95% CI -2.40 to -1.00); and PD (MD -1.80 mm, 95% CI -2.47 to -1.13) favouring clindamycin + SRP. Doxycycline + SRP versus metronidazole + SRP for aggressive periodontitis: there was very low-certainty evidence from 1 study, 27 participants of a difference in long-term CAL (MD 1.10 mm, 95% CI 0.36 to 1.84); and PD (MD 1.00 mm, 95% CI 0.30 to 1.70) favouring metronidazole + SRP. Clindamycin + SRP versus metronidazole + SRP for aggressive periodontitis: the evidence from 1 study, 26 participants for CAL (MD 0.20 mm, 95% CI -0.55 to 0.95); and PD (MD 0.20 mm, 95% CI -0.38 to 0.78) was of very low certainty and did not show a difference between the groups. Clindamycin + SRP versus doxycycline + SRP for aggressive periodontitis: the evidence from 1 study, 23 participants for CAL (MD -0.90 mm, 95% CI -1.62 to -0.18); and PD (MD -0.80 mm, 95% CI -1.58 to -0.02) was of very low certainty and did not show a difference between the groups. Most trials testing amoxicillin, metronidazole, and azithromycin reported adverse events such as nausea, vomiting, diarrhoea, mild gastrointestinal disturbances, and metallic taste. No serious adverse events were reported. AUTHORS' CONCLUSIONS There is very low-certainty evidence (for long-term follow-up) to inform clinicians and patients if adjunctive systemic antimicrobials are of any help for the non-surgical treatment of periodontitis. There is insufficient evidence to decide whether some antibiotics are better than others when used alongside SRP. None of the trials reported serious adverse events but patients should be made aware of the common adverse events related to these drugs. Well-planned RCTs need to be conducted clearly defining the minimally important clinical difference for the outcomes closed pockets, CAL, PD, and BOP.
Collapse
Affiliation(s)
- Shivi Khattri
- Department of Periodontics, Subharti Dental College and Hospital, Meerut, India
| | - Sumanth Kumbargere Nagraj
- Department of Oral Medicine and Oral Radiology, Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Melaka, Malaysia
| | - Ankita Arora
- Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Melaka-Manipal Medical College, Melaka, Malaysia
| | - Prashanti Eachempati
- Department of Prosthodontics, Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Melaka, Malaysia
| | - Chandan Kumar Kusum
- Department of Prosthodontics, Subharti Dental College and Hospital, Meerut, India
| | - Kishore G Bhat
- Department of Molecular Biology and Immunology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, India
| | - Trevor M Johnson
- Faculty of General Dental Practice (UK), RCS England, London, UK
| | - Giovanni Lodi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
75
|
Costa RC, Souza JGS, Bertolini M, Retamal-Valdes B, Feres M, Barão VAR. Extracellular biofilm matrix leads to microbial dysbiosis and reduces biofilm susceptibility to antimicrobials on titanium biomaterial: An in vitro and in situ study. Clin Oral Implants Res 2020; 31:1173-1186. [PMID: 32894779 DOI: 10.1111/clr.13663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To test the role of exopolysaccharide (EPS) polymers matrix to modulate the composition/virulence of biofilms growing on titanium (Ti) surfaces, the effect on antibiotic susceptibility, and whether a dual-targeting therapy approach for disrupted EPS matrix could improve the antimicrobial effect. MATERIALS AND METHODS A microcosm biofilm model using human saliva as inoculum was used, and the microbial composition was assessed by checkerboard DNA-DNA hybridization. EPS-enriched biofilms virulence was tested using fibroblast monolayer. Povidone-iodine (PI) was used as EPS-targeting agent followed by amoxicillin + metronidazole antibiotic to reduce bacterial biomass using an in situ model. RESULTS An EPS-enriched environment, obtained by sucrose exposure, promoted bacterial accumulation and led to a dysbiosis on biofilms, favoring the growth of Streptococcus, Fusobacterium, and Campylobacter species and even strict anaerobic species related to peri-implant infections, such as Porphyromonas gingivalis and Tannerella forsythia (~3-fold increase). EPS-enriched biofilm transitioned from a commensal aerobic to a pathogenic anaerobic profile. EPS increased biofilm virulence promoting higher host cell damage and reduced antimicrobial susceptibility, but the use of a dual-targeting approach with PI pre-treatment disrupted EPS matrix scaffold, increasing antibiotic effect on in situ biofilms. CONCLUSION Altogether, our data provide new insights of how EPS matrix creates an environment that favors putative pathogens growth and shed light to a promising approach that uses matrix disruption as initial step to potentially improve implant-related infections treatment.
Collapse
Affiliation(s)
- Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Martinna Bertolini
- School of Dental Medicine, University of Connecticut (UCONN), Farmington, CT, USA
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, SP, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, SP, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
76
|
Ribeiro-Vidal H, Sánchez MC, Alonso-Español A, Figuero E, Ciudad MJ, Collado L, Herrera D, Sanz M. Antimicrobial Activity of EPA and DHA against Oral Pathogenic Bacteria Using an In Vitro Multi-Species Subgingival Biofilm Model. Nutrients 2020; 12:nu12092812. [PMID: 32937742 PMCID: PMC7551721 DOI: 10.3390/nu12092812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
In search for natural products with antimicrobial properties for use in the prevention and treatment of periodontitis, the purpose of this investigation was to evaluate the antimicrobial activity of two omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), using an in vitro multi-species subgingival biofilm model including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of EPA and DHA extracts (100 µM) and the respective controls were assessed on 72 h biofilms by their submersion onto discs for 60 s. Antimicrobial activity was evaluated by quantitative polymerase chain reaction (qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). ANOVA with Bonferroni correction was used to evaluate the antimicrobial activity of each of the fatty acids. Both DHA and EPA significantly reduced (p < 0.001 in all cases) the bacterial strains used in this biofilm model. The results with CLSM were consistent with those reported with qPCR. Structural damage was evidenced by SEM in some of the observed bacteria. It was concluded that both DHA and EPA have significant antimicrobial activity against the six bacterial species included in this biofilm model.
Collapse
Affiliation(s)
- Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Maria José Ciudad
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Luís Collado
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Correspondence: ; Tel.: +34-913-942-021
| |
Collapse
|
77
|
de Melo F, Milanesi FC, Angst PDM, Oppermann RV. A systematic review of the microbiota composition in various peri-implant conditions: data from 16S rRNA gene sequencing. Arch Oral Biol 2020; 117:104776. [PMID: 32512257 DOI: 10.1016/j.archoralbio.2020.104776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To systematically review the literature regarding the microbiota composition in various peri-implant conditions as analyzed by 16S rRNA gene sequencing methods. METHODS Electronic searches were conducted at MEDLINE/PubMed, Scopus, Embase, ScienceDirect and Web of Science databases looking for articles published up to April 2020. Observational prospective investigations were considered with systemically healthy patients and that had presented the description of the microbiota composition of peri-implantitis (PI), peri-implant mucositis (PM) and/or health implants (HI) by using 16S rRNA gene sequencing analysis were considered eligible. RESULTS From 1,380 titles found, 8 studies were considered for qualitative analysis. One article was excluded due to high risk of bias, remaining 7 studies for descriptive analysis. In 6 out of 7 studies the PI microbiota was reported as being in relative abundance and variety though with a different composition from those with HI. There was no consensus regarding which condition had more diversity. The main observed phyla among PI were Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Spirochaetes, while the genera were mainly Actinomyces, Eubacterium, Fusobacterium, Mogibacterium, Moraxella, Treponema and Porphyromonas. Comparisons between PI and PM microbiota showed conflicting results: one study suggested that PI has greater bacterial diversity; another study reported the opposite result, while another investigation found similar variety for both conditions. CONCLUSIONS The microbiota of peri-implant conditions have been reported as distinct, although the available literature presents discrepancies. Nonetheless, considering the findings in most studies, it can be suggested that the relative abundance of microbiota and bacterial diversity increased with the progress of peri-implant disease.
Collapse
Affiliation(s)
- Fabiana de Melo
- Graduate Program in Dentistry, Periodontics Unit, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Fernanda Carpes Milanesi
- Graduate Program in Dentistry, Periodontics Unit, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Daniela Melchiors Angst
- Department of Conservative Dentistry, Periodontics Unit, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rui Vicente Oppermann
- Department of Conservative Dentistry, Periodontics Unit, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
78
|
You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health 2020; 20:141. [PMID: 32404094 PMCID: PMC7222297 DOI: 10.1186/s12903-020-01114-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dental plaque causes many common oral diseases (e.g., caries, gingivitis, and periodontitis). Therefore, plaque detection and control are extremely important for children's oral health. The objectives of this study were to design a deep learning-based artificial intelligence (AI) model to detect plaque on primary teeth and to evaluate the diagnostic accuracy of the model. METHODS A conventional neural network (CNN) framework was adopted, and 886 intraoral photos of primary teeth were used for training. To validate clinical feasibility, 98 intraoral photos of primary teeth were assessed by the AI model. Additionally, tooth photos were acquired using a digital camera. One experienced pediatric dentist examined the photos and marked the regions containing plaque. Then, a plaque-disclosing agent was applied, and the areas with plaque were identified. After 1 week, the dentist drew the plaque area on the 98 photos taken by the digital camera again to evaluate the consistency of manual diagnosis. Additionally, 102 intraoral photos of primary teeth were marked to denote the plaque areas obtained by the AI model and the dentist to evaluate the diagnostic capacity of each approach based on lower-resolution photos. The mean intersection-over-union (MIoU) metric was employed to indicate detection accuracy. RESULTS The MIoU for detecting plaque on the tested tooth photos was 0.726 ± 0.165. The dentist's MIoU was 0.695 ± 0.269 when first diagnosing the 98 photos taken by the digital camera and 0.689 ± 0.253 after 1 week. Compared to the dentist, the AI model demonstrated a higher MIoU (0.736 ± 0.174), and the results did not change after 1 week. When the dentist and the AI model assessed the 102 intraoral photos, the MIoU was 0.652 ± 0.195 for the dentist and 0.724 ± 0.159 for the model. The results of a paired t-test found no significant difference between the AI model and human specialist (P > .05) in diagnosing dental plaque on primary teeth. CONCLUSIONS The AI model showed clinically acceptable performance in detecting dental plaque on primary teeth compared with an experienced pediatric dentist. This finding illustrates the potential of such AI technology to help improve pediatric oral health.
Collapse
Affiliation(s)
- Wenzhe You
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, China
| | - Aimin Hao
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, China
| | - Shuai Li
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, China
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, China.
| |
Collapse
|
79
|
Biofilm Interactions of Candida albicans and Mitis Group Streptococci in a Titanium-Mucosal Interface Model. Appl Environ Microbiol 2020; 86:AEM.02950-19. [PMID: 32111586 DOI: 10.1128/aem.02950-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci from the mitis group (represented mainly by Streptococcus mitis, Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii) form robust biofilms with Candida albicans in different experimental models. These microorganisms have been found in polymicrobial biofilms forming on titanium biomaterial surfaces in humans with peri-implant disease. The purpose of this work was to study mutualistic interactions in biofilms forming on titanium and their effect on the adjacent mucosa, using a relevant infection model. Single and mixed biofilms of C. albicans and each Streptococcus species were grown on titanium disks. Bacterial and fungal biovolume and biomass were quantified in these biofilms. Organotypic mucosal constructs were exposed to preformed titanium surface biofilms to test their effect on secretion of proinflammatory cytokines and cell damage. C. albicans promoted bacterial biofilms of all mitis Streptococcus species on titanium surfaces. This relationship was mutualistic since all bacterial species upregulated the efg1 hypha-associated gene in C. albicans Mixed biofilms caused increased tissue damage but did not increase proinflammatory cytokine responses compared to biofilms comprising Candida alone. Interestingly, spent culture medium from tissues exposed to titanium biofilms suppressed Candida growth on titanium surfaces.IMPORTANCE Our findings provide new insights into the cross-kingdom interaction between C. albicans and Streptococcus species representative of the mitis group. These microorganisms colonize titanium-based dental implant materials, but little is known about their ability to cause inflammation and damage of the adjacent mucosal tissues. Using an in vitro biomaterial-mucosal interface infection model, we showed that mixed biofilms of each species with C. albicans enhance tissue damage. One possible mechanism for this effect is the increased fungal hypha-associated virulence gene expression we observed in mixed biofilms with these species. Interestingly, we also found that the interaction of multispecies biofilms with organotypic mucosal surfaces led to the release of growth-suppressing mediators of Candida, which may represent a homeostatic defense mechanism of the oral mucosa against fungal overgrowth. Thus, our findings provide novel insights into biofilms on biomaterials that may play an important role in the pathogenesis of mucosal infections around titanium implants.
Collapse
|
80
|
Souza JGS, Bertolini M, Costa RC, Lima CV, Barão VAR. Proteomic profile of the saliva and plasma protein layer adsorbed on Ti-Zr alloy: the effect of sandblasted and acid-etched surface treatment. BIOFOULING 2020; 36:428-441. [PMID: 32456471 DOI: 10.1080/08927014.2020.1769613] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Titanium-zirconium (Ti-Zr) alloy has been widely used as a biomaterial for implant devices, and it is commonly treated by sandblasting followed by acid etching (SLA) to improve biological responses. Although protein adsorption is the first biological response, the effect of this SLA treatment on the proteomic profile of proteins adsorbed from saliva and blood plasma has not been tested. In this study, the proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Streptococcus sanguinis was used to test whether the protein layer affects bacterial adhesion. SLA treatment affected the proteomic profile, showing exclusive proteins adsorbed from saliva (14) and plasma (3). However, both groups exhibited close patterns of intensity for common proteins, molecular functions and biological processes mediated by proteins. Interestingly, Ti-ZrSLA showed higher bacterial adhesion (∼1.9 fold over) for the surface coated with plasma proteins. Therefore, SLA treatment of Ti-Zr alloy changed the proteomic profile, which may affect bacterial adhesion.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- School of Dental Medicine, University of Connecticut (UCONN), Farmington, CT, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
81
|
Nizami M, Nishina Y, Yamamoto T, Shinoda-Ito Y, Takashiba S. Functionalized Graphene Oxide Shields Tooth Dentin from Decalcification. J Dent Res 2019; 99:182-188. [DOI: 10.1177/0022034519894583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This in vitro study assessed the efficacy of functionalized graphene oxide (f-GO) nanocomposites on the decalcification of dentin, because dental caries of the root surface is becoming one of the new problems in aged society. Hydroxyapatite plates (HAP) and dentin slices were coated with f-GO nanocomposites by comparing them to silver diamine fluoride as a positive control, then treated with decalcification solutions such as ethylenediaminetetraacetic acid and citrate at 37°C for 24 h. Scanning electron microscopy (SEM) revealed significant protection of the surface morphology of HAP and dentin. On the other hand, a cariogenic Streptococcus mutans growth was inhibited by f-GO nanocomposites. In addition, cytotoxicity of them to epithelial cells was much less than that of povidone-iodine, which is commonly used for oral disinfectant. We synthesized 5 different f-GO nanocomposites such as GO–silver (Ag), GO-Ag–calcium fluoride (CaF2), GO-CaF2, GO-zinc, and GO–tricalcium phosphate (Ca3(PO4)2). They were standardized by evaluating under SEM, transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry analysis (TGA), and Raman spectra after being synthesized in an aseptic technique. The abilities of GO-Ag, GO-Ag-CaF2, and GO-CaF2 nanocomposites were most preventive for decalcification. In addition, GO-Ag and GO-Ag-CaF2 almost completely inhibited S. mutans growth. However, they did not exhibit cytotoxicity to epithelial cells except at the highest concentration (0.1 w/v%) of GO-Ag and GO-Ag-CaF2. Furthermore, these f-GO nanocomposites exhibited less or no discoloration of dentin, although commonly used silver diamine fluoride causes discoloration of dentin to black. Thus, these f-GO nanocomposites are useful to protect dental caries on the tooth root that becomes a social problem in aged society.
Collapse
Affiliation(s)
- M.Z.I. Nizami
- Department of Pathophysiology—Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Y. Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Japan
| | - T. Yamamoto
- Department of Pathophysiology—Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Y. Shinoda-Ito
- Department of Periodontics and endodontic, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - S. Takashiba
- Department of Pathophysiology—Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
82
|
Abstract
Sleep disordered breathing (SDB) may be associated with sleep bruxism and periodontal diseases. Through a review of the current literature, this article aims to describe the characteristics of sleep bruxism and its relationship with SDB as well as the current evidence supporting an association between periodontal diseases and SDB. Sleep bruxism is characterized by muscle clenching and tooth grinding during sleep, typically during N2 sleep stage and in association with micro-arousals. The probability of observing sleep bruxism is almost 4 times higher in the presence of SDB, with a close temporal relationship between the episode of upper airway obstruction or oxygen desaturation and the episode of bruxism, which most often occurs in the 0-10 seconds following the obstruction. These findings support the hypothesis that sleep bruxism is triggered by SDB and may have a "protective" role being a muscular activity that helps restore the permeability of the upper airways. On the other hand, SDB have been linked to periodontal diseases. Periodontal diseases are inflammatory and dysbiotic disorders that can have a negative impact on oral health (leading to the destruction of the periodontium and tooth loss) and on general health. Recently, it has been observed that SDB patients have a 1.6 to 4-fold higher risk of having or developing severe periodontitis, suggesting that SDB may be a new risk factor for periodontal diseases. Dentists, who are part of the team of sleep medicine specialists, have a key role in the detection, prevention and treatment of SDB and their relationship with sleep bruxism and periodontal diseases.
Collapse
Affiliation(s)
- Maria Clotilde Carra
- Département de Parodontologie, Hôpital Rothschild, AP-HP, 5 rue Santerre, 75012 Paris, France UFR d'Odontologie, Université de Paris, 5 rue Garancière, 75005 Paris, France
| |
Collapse
|
83
|
Prabakar J, John J, Arumugham IM, Kumar RP, Sakthi DS. Comparing the Effectiveness of Probiotic, Green Tea, and Chlorhexidine- and Fluoride-containing Dentifrices on Oral Microbial Flora: A Double-blind, Randomized Clinical Trial. Contemp Clin Dent 2019; 9:560-569. [PMID: 31772463 PMCID: PMC6868625 DOI: 10.4103/ccd.ccd_659_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Oral cavity harbors wide variety of microorganisms; these are considered crucial for the dental caries initiation and progression. Plaque-induced caries is a local disease; therefore, dentifrices are the most ideal vehicle for the daily delivery of antibacterial agents. In recent years, alternatives to fluorides such as green tea, probiotic, and chlorhexidine (CHX) toothpastes have been proposed to possess antiplaque and anticariogenic properties. Aim: To compare the effectiveness of probiotic, green tea, and CHX- and fluoride-containing dentifrices on oral microbial flora. Materials and Methods: A double-blinded, parallel group, randomized controlled clinical trial was conducted among healthy adults. Fifty-two individuals were randomly allocated to four groups (n = 13): Group I – green tea dentifrice, Group II – fluoridated dentifrice, Group III – CHX dentifrice, and Group IV – probiotic dentifrice. Plaque and saliva samples were evaluated for Streptococcus mutans and Lactobacillus at baseline and 15th and 30th days of follow-up. Paired t-test and one-way ANOVA were used to compare the mean differences of plaque and salivary S. mutans counts at two and three time periods. Wilcoxon signed-rank and Kruskal–Wallis tests were used to compare the mean Lactobacillus count in plaque and saliva samples at two and three time periods, respectively. Results: The mean S. mutans and Lactobacillus counts in plaque and saliva samples were significantly reduced by all the treatment groups at the 30th day of follow-up. However, Group III showed the highest reduction and was found to be statistically significant (P < 0.05). Conclusion: All the four groups exhibited antimicrobial activity by bringing about a significant reduction in the mean S. mutans and Lactobacillus colony counts at the 30th day of follow-up. Among all the preventive modalities, Group III (CHX dentifrice) showed better results compared to other groups.
Collapse
Affiliation(s)
- Jayashri Prabakar
- Department of Public Health Dentistry, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Joseph John
- Department of Public Health Dentistry, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - I Meignana Arumugham
- Department of Public Health Dentistry, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - R Pradeep Kumar
- Department of Public Health Dentistry, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - D Sri Sakthi
- Department of Public Health Dentistry, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
84
|
Costa FO, Vieira TR, Cortelli SC, Cota LOM, Costa JE, Aguiar MCF, Cortelli JR. Effect of compliance during periodontal maintenance therapy on levels of bacteria associated with periodontitis: A 6-year prospective study. J Periodontol 2019. [PMID: 29537663 DOI: 10.1002/jper.17-0173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is well established that regular compliance during periodontal maintenance therapy (PMT) maintains the stability of periodontal clinical parameters obtained after active periodontal therapy (APT). However, compliance during PMT has not yet been related to subgingival bacterial levels. Thus, this study followed individuals in PMT over 6 years and longitudinally evaluated the effects of compliance on periodontitis-associated bacterial levels and its relation to periodontal status. METHODS From a 6-year prospective cohort study with 212 individuals in PMT, 91 were determined to be eligible. From this total, 28 regular compliers (RC) were randomly selected and matched for age and sex with 28 irregular compliers (IC). Complete periodontal examination and microbiological samples were obtained 5 times: T1 (prior to APT), T2 (after APT), T3 (2 years), T4 (4 years), and T5 (6 years). Total bacteria counts and levels of Actinomyces naeslundii, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were evaluated through quantitative polymerase chain reaction. RESULTS RC had less tooth loss and better clinical and microbiological conditions over time when compared with IC. IC had higher total bacterial counts and higher levels of T. denticola. Moreover, among IC, total bacterial counts were positively associated with plaque index and bleeding on probing, while levels of A. naeslundii, T. forsythia, and T. denticola were negatively associated with clinical attachment loss (4 to 5 mm) among RC. CONCLUSIONS Compliance positively influenced subgingival microbiota and contributed to stability of periodontal clinical status. Regular visits during PMT sustained microbiological benefits provided by APT over a 6-year period.
Collapse
Affiliation(s)
- Fernando Oliveira Costa
- Department of Dental Clinics, Oral Pathology and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Riberal Vieira
- Department of Dental Clinics, Oral Pathology and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sheila Cavalca Cortelli
- Department of Dentistry, Periodontics Research Division, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Luís Otávio Miranda Cota
- Department of Dental Clinics, Oral Pathology and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Eustáquio Costa
- Department of Dental Clinics, Oral Pathology and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Cássia Ferreira Aguiar
- Department of Dental Clinics, Oral Pathology and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Cortelli
- Department of Dentistry, Periodontics Research Division, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
85
|
Takenaka S, Ohsumi T, Noiri Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:33-40. [PMID: 30733843 PMCID: PMC6354555 DOI: 10.1016/j.jdsr.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/01/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022] Open
Abstract
Therapeutic mouthwash (MW) is an adjunctive tool along with a regular oral hygiene routine of daily tooth brushing and daily flossing. Previous systematic reviews have demonstrated that it is effective against dental biofilm and gingival inflammation, for prevention of dental caries, and for managing one's bad breath condition according to the active ingredients. MWs prevent the microorganisms from bacterial adhesion that corresponds to the initial step in biofilm formation. This review summarized the current state of evidence such as anti-biofilm, anti-gingivitis and cariostatic properties of MWs by evaluating systematic reviews from the past six years. The anti-biofilm property has been proven to be effective, with strong evidence of three main clinical efficacies. The most commonly studied active agent was chlorhexidine gluconate (CHX), followed by essential oil (EO) and cetylpyridinium chloride. All the systematic reviews are in complete agreement that CHX and EO provide statistically significant improvements in terms of plaque and gingival indices. These effects have held up over the years as the number of studies has increased. While the use of fluoride MW is proven to be effective in improving the oral health of both children and adults, the quality of evidence is still regarded as low.
Collapse
Affiliation(s)
| | | | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
86
|
The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019; 5:e02544. [PMID: 31687479 PMCID: PMC6820096 DOI: 10.1016/j.heliyon.2019.e02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Collapse
|
87
|
Ricomini Filho AP, Khan R, Åmdal HA, Petersen FC. Conserved Pheromone Production, Response and Degradation by Streptococcus mutans. Front Microbiol 2019; 10:2140. [PMID: 31572344 PMCID: PMC6753979 DOI: 10.3389/fmicb.2019.02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.
Collapse
Affiliation(s)
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Fernanda C. Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
88
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
89
|
Zhao Z, Ding C, Wang Y, Tan H, Li J. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater Sci 2019; 7:1643-1651. [PMID: 30723851 DOI: 10.1039/c8bm01640b] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional antibacterial treatments, such as chlorhexidine (CHX), destroy cariogenic biofilms. However, they exert negative effects in clinical applications, for example, teeth staining, taste disturbance and harm to oral tissue after a long-term exposure. Therefore, biocompatible strategies for efficient antibacterial drug delivery are in high demand. In this study, aimed at dental caries therapy enhancement, we designed a pH-responsive nanocarrier system, capable of releasing CHX in an acidic environment within cariogenic biofilms. Cationic poly(ethylene glycol)-block-poly(2-(((2-aminoethyl)carbamoyl)oxy)ethyl methacrylate) (PEG-b-PAECOEMA) was synthesized first. Modification of PAECOEMA by citraconic anhydride (CA) forms negatively charged PEG-b-PAECOEMA/CA, which could assemble into core-shell polyionic complex micelles (PICMs) when mixed with cationic CHX via electrostatic interactions. PICMs are stable in healthy neutral oral microenvironments with CHX encapsulated in the core and PEG shell exposed. Once in acidic milieu within caries-producing biofilms, they rapidly disassemble and release CHX cargo owing to degradation of citraconic amide groups. Molecular structures of the above copolymers were confirmed using 1H NMR and gel permeation chromatography (GPC) analysis. The pH-dependent degradation rates of citraconic amide in PEG-b-PAECOEMA/CA copolymer were measured by fluorescamine method. Atomic force microscopy (AFM) studies confirmed successful assembly of well-defined spherical PICMs in aqueous solution. The disassembly of PICMs in acidic microenvironment was observed using dynamic light scattering (DLS). PICMs showed an obvious pH-dependent drug release profile when the pH changed from 7.4 to 5.5. More importantly, the micellar system could reduce drug toxicity of CHX and exhibited outstanding antibacterial capability in the biofilm of Streptococcus mutans. Micelles constructed from pH-sensitive PEG-b-PAECOEMA/CA are highly promising for dental caries therapy and provide guidelines for drug-delivery system design in other acidic pathologic systems.
Collapse
Affiliation(s)
- Zhouxiang Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | |
Collapse
|
90
|
Abstract
Microbial adhesion to intraoral biomaterials is associated with surface roughness. For the prevention of oral pathologies, smooth surfaces with little biofilm formation are required. Ideally, appropriate roughness parameters make microbial adhesion predictable. Although a multitude of parameters are available, surface roughness is commonly described by the arithmetical mean roughness value (Ra). The present study investigates whether Ra is the most appropriate roughness parameter in terms of prediction for microbial adhesion to dental biomaterials. After four surface roughness modifications using standardized polishing protocols, zirconia, polymethylmethacrylate, polyetheretherketone, and titanium alloy specimens were characterized by Ra as well as 17 other parameters using confocal microscopy. Specimens of the tested materials were colonized by C. albicans or S. sanguinis for 2 h; the adhesion was measured via luminescence assays and correlated with the roughness parameters. The adhesion of C. albicans showed a tendency to increase with increasing the surface roughness—the adhesion of S. sanguinis showed no such tendency. Although Sa, that is, the arithmetical mean deviation of surface roughness, and Rdc, that is, the profile section height between two material ratios, showed higher correlations with the microbial adhesion than Ra, these differences were not significant. Within the limitations of this in-vitro study, we conclude that Ra is a sufficient roughness parameter in terms of prediction for initial microbial adhesion to dental biomaterials with polished surfaces.
Collapse
|
91
|
Sánchez MC, Ribeiro-Vidal H, Esteban-Fernández A, Bartolomé B, Figuero E, Moreno-Arribas MV, Sanz M, Herrera D. Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:145. [PMID: 31226983 PMCID: PMC6588849 DOI: 10.1186/s12906-019-2533-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous research findings support an antimicrobial effect of polyphenols against a variety of pathogens, but there is no evidence of this effect against periodontal pathogens in complex biofilms. The purpose of this study was to evaluate the antimicrobial activity of red wine and oenological extracts, rich in polyphenols, against the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum and total bacteria growing in an in vitro oral biofilm static model. METHODS A previously validated biofilm model, including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was developed on sterile hydroxyapatite discs. Red wine (and dealcoholized wine), and two polyphenols-rich extracts (from wine and grape seeds) were applied to 72 h biofilms by dipping the discs during 1 and 5 min in the wine solutions and during 30 s and 1 min in the oenological extracts. Resulting biofilms were analyzed by confocal laser scanning microscopy and viable bacteria (colony forming units/mL) were measured by quantitative polymerase chain reaction combined with propidium monoazide. A generalized linear model was constructed to determine the effect of the tested products on the viable bacterial counts of A. actinomycetemcomitans, P. gingivalis and F. nucleatum, as well on the total number of viable bacteria. RESULTS The results showed that red wine and dealcoholized red wine caused reduction in viability of total bacteria within the biofilm, with statistically significant reductions in the number of viable P. gingivalis after 1 min (p = 0.008) and in A. actinomycetemcomitans after 5 min of exposure (p = 0.011) with red wine. No evidence of relevant antibacterial effect was observed with the oenological extracts, with statistically significant reductions of F. nucleatum after 30 s of exposure to both oenological extracts (p = 0.001). CONCLUSIONS Although moderate, the antimicrobial impact observed in the total bacterial counts and counts of A. actinomycetemcomitans, P. gingivalis and F. nucleatum, encourage further investigations on the potential use of these natural products in the prevention and treatment of periodontal diseases.
Collapse
Affiliation(s)
- María C. Sánchez
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | | | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | | | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- Department of Dental Clinical Specialities (DDCS), Faculty of Odontology, Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
92
|
Campello PL, Borsanelli AC, Agostinho SD, Schweitzer CM, Gaetti-Jardim Jr. E, Döbereiner J, Dutra IS. Occurrence of periodontitis and dental wear in dairy goats. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
93
|
Heersema LA, Smyth HDC. A Multispecies Biofilm In Vitro Screening Model of Dental Caries for High-Throughput Susceptibility Testing. High Throughput 2019; 8:E14. [PMID: 31151195 PMCID: PMC6631723 DOI: 10.3390/ht8020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/27/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
There is a current need to develop and optimize new therapeutics for the treatment of dental caries, but these efforts are limited by the relatively low throughput of relevant in vitro models. The aim of this work was to bridge the 96-well microtiter plate system with a relevant multispecies dental caries model that could be reproducibly grown to allow for the high-throughput screening of anti-biofilm therapies. Various media and inoculum concentrations were assessed using metabolic activity, biomass, viability, and acidity assays to determine the optimal laboratory-controlled conditions for a multispecies biofilm composed of Streptococcus gordonii, Streptococcus mutans, and Candida albicans. The selected model encompasses several of the known fundamental characteristics of dental caries-associated biofilms. The 1:1 RPMI:TSBYE 0.6% media supported the viability and biomass production of mono- and multispecies biofilms best. Kinetic studies over 48 h in 1:1 RPMI:TSBYE 0.6% demonstrated a stable biofilm phase between 10 and 48 h for all mono- and multispecies biofilms. The 1:1:0.1 S. gordonii: S. mutans: C. albicans multispecies biofilm in 1:1 RPMI:TSBYE 0.6% is an excellent choice for a high-throughput multispecies model of dental caries. This high-throughput multispecies model can be used for screening novel therapies and for better understanding the treatment effects on biofilm interactions and stability.
Collapse
Affiliation(s)
- Lara A Heersema
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 787812, USA.
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
- The LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
94
|
Pires JG, Braga AS, de Andrade FB, Saldanha LL, Dokkedal AL, de Oliveira RC, Magalhães AC. Effect of hydroalcoholic extract of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves on the viability and activity of microcosm biofilm and on enamel demineralization. J Appl Oral Sci 2019; 27:e20180514. [PMID: 31166551 PMCID: PMC6534373 DOI: 10.1590/1678-7757-2018-0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess the effect of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves hydroalcoholic extracts on viability and metabolism of a microcosm biofilm and on enamel demineralization prevention. METHODOLOGY Microcosm biofilm was produced on bovine enamel using inoculum from pooled human saliva mixed with McBain saliva, under 0.2% sucrose exposure, for 14 days. The biofilm was daily-treated with the extracts for 1 min. At the end, it was analyzed with respect to viability by fluorescence, CFU counting and extracellular polysaccharides (phenol-sulphuric acid colorimetric assay) and lactic acid (enzymatic assay) production. The demineralization was measured by TMR. The data were compared using ANOVA or Kruskal-Wallis (p<0.05). RESULTS M. urundeuva All. at 100, 10 and 0.1 μg/mL and Q. grandiflora Mart. at 100 and 0.1 μg/mL reduced biofilm viability similarly to positive control (chlorhexidine) and significantly more than the negative-vehicle control (35% ethanol). M. urundeuva at 1000, 100 and 0.1 μg/mL were able to reduce both lactobacilli and mutans streptococci CFU counting, while Q. grandiflora (1000 and 1.0 μg/mL) significantly reduced mutans streptococci CFU counting. On the other hand, the natural extracts were unable to significantly reduce extracellular polysaccharides and lactic acid productions neither the development of enamel carious lesions. CONCLUSIONS The extracts showed antimicrobial properties on microcosm biofilm, however, they had no effect on biofilm metabolism and caries protection.
Collapse
Affiliation(s)
- Juliana Gonçalves Pires
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Aline Silva Braga
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Flaviana Bombarda de Andrade
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, São Paulo, Brasil
| | - Luiz Leonardo Saldanha
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Anne Lígia Dokkedal
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| |
Collapse
|
95
|
Abstract
Pathogenic oral biofilms are universal, chronic, and costly. Despite advances in understanding the mechanisms of biofilm formation and persistence, novel and effective treatment options remain scarce. Nanoparticle-mediated eradication of the biofilm matrix and resident bacteria holds great potential. In particular, nanoparticles that target specific microbial and biofilm features utilizing nontoxic materials are well-suited for clinical translation. However, much work remains to characterize the local and systemic effects of therapeutic agents that are topically applied to chronic biofilms, such as those that cause dental caries. In this Perspective, we summarize the pathogenesis of oral biofilms, describe current and future nanoparticle-mediated treatment approaches, and highlight outstanding questions that are paramount to answer for effectively targeting and treating oral biofilms.
Collapse
|
96
|
Luo TL, Hayashi M, Zsiska M, Circello B, Eisenberg M, Gonzalez-Cabezas C, Foxman B, Marrs CF, Rickard AH. Introducing BAIT (Biofilm Architecture Inference Tool): a software program to evaluate the architecture of oral multi-species biofilms. MICROBIOLOGY (READING, ENGLAND) 2019; 165:527-537. [PMID: 30882296 DOI: 10.1099/mic.0.000761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Biofilm model systems are used to study biofilm growth and predict the effects of anti-biofilm interventions within the human oral cavity. Many in vitro biofilm model systems use a confocal laser scanning microscope (CLSM) in conjunction with image analysis tools to study biofilms. The aim of this study was to evaluate an in-house developed image analysis software program that we call BAIT (Biofilm Architecture Inference Tool) to quantify the architecture of oral multi-species biofilms following anti-biofilm interventions using a microfluidic biofilm system. Differences in architecture were compared between untreated biofilms and those treated with water (negative control), sodium gluconate ('placebo') or stannous fluoride (SnF2). The microfluidic system was inoculated with pooled human saliva and biofilms were developed over 22 h in filter-sterilized 25 % pooled human saliva. During this period, biofilms were treated with water, sodium gluconate, or SnF2 (1000, 3439 or 10 000 p.p.m. Sn2+) 8 and 18 h post-inoculation. After 22 h of growth, biofilms were stained with LIVE/DEAD stain, and imaged by CLSM. BAIT was used to calculate biofilm biovolume, total number of objects, surface area, fluffiness, connectivity, convex hull porosity and viability. Image analysis showed oral biofilm architecture was significantly altered by 3439 and 10 000 p.p.m. Sn2+ treatment regimens, resulting in decreased biovolume, surface area, number of objects and connectivity, while fluffiness increased (P<0.01). In conclusion, BAIT was shown to be able to measure the changes in biofilm architecture and detects possible antimicrobial and anti-biofilm effects of candidate agents.
Collapse
Affiliation(s)
- Ting L Luo
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michael Hayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | | - Marisa Eisenberg
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carlos Gonzalez-Cabezas
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carl F Marrs
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
97
|
Guo X, Liu S, Zhou X, Hu H, Zhang K, Du X, Peng X, Ren B, Cheng L, Li M. Effect of D-cysteine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis. Sci Rep 2019; 9:6689. [PMID: 31040318 PMCID: PMC6491432 DOI: 10.1038/s41598-019-43081-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/12/2019] [Indexed: 02/05/2023] Open
Abstract
Dental caries is a highly prevalent disease worldwide. It is caused by the cariogenic biofilms composed of multiple dynamic bacteria on dental surface. Streptococcus mutans and Streptococcus sanguinis are resident members within the biofilms and an antagonistic relationship has been shown between these two species. S. mutans, as the major causative microorganism of dental caries, has been reported to be inhibited by free D-cysteine (D-Cys). However, whether D-Cys could affect S. sanguinis and the interspecies relationship between S. mutans and S. sanguinis remains unknown. The aim of the current study was to investigate the effect of D-Cys on the growth and cariogenicity of dual-species biofilms formed by S. mutans and S. sanguinis. We measured dual-species biofilms biomass, metabolic activity, lactate production. We also detected the biofilms structure, the ratio of live/dead bacteria, extracellular polysaccharide (EPS) synthesis and bacterial composition in the dual-species biofilms. We found that D-Cys could reduce the metabolic activity and lactic acid production of dual-species biofilms (p < 0.05). In addition, biofilms formation, the proportion of S. mutans in dual-species biofilms, and EPS synthesis were decreased with D-Cys treatment. The results suggested that D-Cys could inhibit the growth and cariogenic virulence of dual-species biofilms formed by S. mutans and S. sanguinis, indicating the potential of D-Cys in clinical application for caries prevention and treatment.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongying Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keke Zhang
- Institute of Stem Cell and Tissue Engineering, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinmei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
98
|
Baldomero AK, Siddiqui M, Lo CY, Petersen A, Pragman AA, Connett JE, Kunisaki KM, Wendt CH. The relationship between oral health and COPD exacerbations. Int J Chron Obstruct Pulmon Dis 2019; 14:881-892. [PMID: 31114185 PMCID: PMC6497835 DOI: 10.2147/copd.s194991] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction: Poor oral health has been implicated as an independent risk factor for the development of COPD, but few studies have evaluated the association between oral health and COPD exacerbations. We aimed to determine if poor oral health is associated with COPD exacerbations and/or worse respiratory health. Methods: We performed a case-control study of oral health among COPD exacerbators and non-exacerbators. Cases (exacerbators) had experienced ≥1 exacerbation in the previous 12 months, while controls (non-exacerbators) had no exacerbations in the previous 24 months. We excluded those with <4 teeth. We evaluated the global oral health assessment, Oral Health Impact Profile (OHIP-5), dental symptoms/habits, and St. George's Respiratory Questionnaire (SGRQ). In a subset, we performed blinded dental exams to measure bleeding on probing, probing depth, clinical attachment loss, periodontitis severity, plaque index, gingival index, and carries risk. We evaluated associations between oral health and COPD exacerbations using logistic regression. Linear regression was used to assess relationships between oral health and SGRQ scores. Results: Screened non-exacerbators (n=118) were significantly more likely to have <4 teeth, compared to screened exacerbators (n=100) (44% vs 30%, respectively; p=0.046). After excluding those with <4 teeth, there were 70 cases and 66 controls. Self-reported oral health and objective dental exam measures did not vary significantly between cases vs controls. However, the odds of severe COPD exacerbations requiring hospitalizations and/or emergency department visits trended higher in those with worse dental exam compared to those with better dental exam. Worse OHIP-5 was strongly associated with worse SGRQ scores. Conclusions: Oral health status was not related to COPD exacerbations, but was associated with self-reported respiratory health. Non-exacerbators were more likely to be edentate or have ≤4 teeth compared to exacerbators. Larger studies are needed to address oral health as a potential method to improve respiratory health in patients with COPD.
Collapse
Affiliation(s)
- Arianne K Baldomero
- Pulmonary Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mariam Siddiqui
- TMD, Orofacial Pain, and Dental Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Chia-Yin Lo
- TMD, Orofacial Pain, and Dental Sleep Medicine, University of Minnesota, Minneapolis, MN, USA.,Dental Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Alexa A Pragman
- Infectious Disease Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Infectious Disease, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - John E Connett
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Ken M Kunisaki
- Pulmonary Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Chris H Wendt
- Pulmonary Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
99
|
Zaura E, Twetman S. Critical Appraisal of Oral Pre- and Probiotics for Caries Prevention and Care. Caries Res 2019; 53:514-526. [PMID: 30947169 DOI: 10.1159/000499037] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, the concept of preventing caries-related microbial dysbiosis by enhancing the growth and survival of health-associated oral microbiota has emerged. In this article, the current evidence for the role of oral pre- and probiotics in caries prevention and caries management is discussed. Prebiotics are defined as "substrates that are selectively utilized by host microorganisms conferring a health benefit." With regard to caries, this would include alkali-generating substances such as urea and arginine, which are metabolized by some oral bacteria, resulting in ammonia production and increase in pH. While there is no evidence that urea added to chewing gums or mouth rinses significantly contributes to caries inhibition, multiple studies have shown that arginine in consumer products can exert an inhibitory effect on the caries process. Probiotics are "live microorganisms which when administrated in adequate amounts confer a health benefit on the host." Clinical trials have suggested that school-based programs with milk supplemented with probiotics and probiotic lozenges can reduce caries development in preschool children and in schoolchildren with high caries risk. Due to issues with research ethics (prebiotics) and risk of bias (prebiotics, probiotics), the confidence in the effect estimate is however limited. Further long-term clinical studies are needed with orally derived probiotic candidates, including the health-economic perspectives. In particular, the development and evaluation of oral synbiotic products, containing both prebiotics and a probiotic, would be of interest in the future management of dental caries.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
100
|
Palmer RJ, Cotton SL, Kokaras AS, Gardner P, Grisius M, Pelayo E, Warner B, Paster BJ, Alevizos I. Analysis of oral bacterial communities: comparison of HOMI NGS with a tree-based approach implemented in QIIME. J Oral Microbiol 2019; 11:1586413. [PMID: 30988892 PMCID: PMC6450576 DOI: 10.1080/20002297.2019.1586413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Molecular taxonomic assignments in oral microbial communities have been made using probe-matching approaches, but never compared to those obtained by more readily accepted tree-based approaches. Objective: To compare community composition profiles obtained from a probe-matching approach (HOMINGS) to those from a closed-ended tree-based approach (QIIME using the eHOMD database). Design: HOMINGS and QIIME were used for parallel analysis of ten mock community samples, and of 119 supragingival plaque samples from ecologically unique sites (sound tooth surfaces in healthy subjects, sound tooth surfaces in patients with primary Sjögren’s Syndrome, and carious lesions in Sjögren’s Syndrome patients). Linear discriminant analysis Effective Size (LEfSe) was used to identify discriminating taxa among the natural plaque samples. Results: Community composition profiles of all samples were congruent between the two analysis aproaches. Alpha and beta diversity of the natural plaque communities were likewise similar. Communities from pSS patients and those from individuals with normal salivary flow differed in alpha and beta diversity. Both classification approaches yielded differences in composition predicted for samples from these subject cohorts, and discriminating taxa were similar between approaches. Conclusions: A direct comparison demonstrates that HOMINGS is largely equivalent to the tree-based approach as implemented here.
Collapse
Affiliation(s)
- Robert J Palmer
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sean L Cotton
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Alexis S Kokaras
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Pamela Gardner
- Sjögren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Grisius
- Sjögren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Eileen Pelayo
- Sjögren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake Warner
- Sjögren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,AAV Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Bruce J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Ilias Alevizos
- Sjögren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|