51
|
Hanin G, Ferguson-Smith AC. The evolution of genomic imprinting: Epigenetic control of mammary gland development and postnatal resource control. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1476. [PMID: 31877240 DOI: 10.1002/wsbm.1476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Genomic imprinting is an epigenetically regulated process leading to gene expression according to its parental origin. Imprinting is essential for prenatal growth and development, regulating nutritional resources to offspring, and contributing to a favored theory about the evolution of imprinting being due to a conflict between maternal and paternal genomes for the control of prenatal resources-the so-called kinship hypothesis. Genomic imprinting has been mainly studied during embryonic and placental development; however, maternal nutrient provisioning is not restricted to the prenatal period. In this context, the mammary gland acts at the maternal-offspring interface providing milk to the newborn. Maternal care including lactation supports the offspring, delivering nutrients and bioactive molecules protecting against infections and contributing to healthy organ development and immune maturation. The normal developmental cycle of the mammary gland-pregnancy, lactation, involution-is vital for this process, raising the question of whether genomic imprinting might also play a role in postnatal nutrient transfer by controlling mammary gland development. Characterizing the function and epigenetic regulation of imprinted genes in the mammary gland cycle may therefore provide novel insights into the evolution of imprinting since the offspring's paternal genome is absent from the mammary gland, in addition to increasing our knowledge of postnatal nutrition and its relation to life-long health. This article is categorized under: Developmental Biology > Developmental Processes in Health and Disease.
Collapse
Affiliation(s)
- Geula Hanin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
52
|
Protective Effect of Quercetin on Morphological and Histometrical Changes of Placenta in Streptozotocin-Induced Diabetic Rat. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/zjrms.88636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Lee JY, Li S, Shin NE, Na Q, Dong J, Jia B, Jones-Beatty K, McLane MW, Ozen M, Lei J, Burd I. Melatonin for prevention of placental malperfusion and fetal compromise associated with intrauterine inflammation-induced oxidative stress in a mouse model. J Pineal Res 2019; 67:e12591. [PMID: 31231832 DOI: 10.1111/jpi.12591] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
Abstract
Melatonin has been shown to reduce oxidative stress and mitigate hypercoagulability. We hypothesized that maternally administered melatonin may reduce placental oxidative stress and hypercoagulability associated with exposure to intrauterine inflammation (IUI) and consequently improve fetoplacental blood flow and fetal sequelae. Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. The systolic/diastolic ratio, resistance index, and pulsatility index in uterine artery (UtA) and umbilical artery (UA) were significantly increased in L compared with other groups when analyzed by Doppler ultrasonography. The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. Vascular endothelial damage and thrombi formation, as evidenced by fibrin deposits, were similarly increased in L compared to other groups. Maternal pretreatment with melatonin appears to modulate maternal placental malperfusion, fetal cardiovascular compromise, and fetal neuroinflammation induced by IUI through its antioxidant properties.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Su Li
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na E Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly Jones-Beatty
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
54
|
Han B, Li S, Lv Y, Yang D, Li J, Yang Q, Wu P, Lv Z, Zhang Z. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct 2019; 10:5555-5565. [PMID: 31429458 DOI: 10.1039/c9fo01152h] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to chromium (Cr) causes a number of respiratory diseases, including lung cancer and pulmonary fibrosis. However, there is currently no safe treatment for Cr-induced lung damage. Here, we used in vivo and in vitro approaches to examine the protective effects of melatonin (MEL) on Cr-induced lung injury and to identify the underlying molecular mechanisms. We found that treatment of rats or a mouse lung epithelial cell MLE-12 with MEL attenuated K2Cr2O7-induced lung injury by reducing the production of oxidative stress and inflammatory mediators and inhibiting cell apoptosis. MEL treatment upregulated the expression of silent information regulator 1 (Sirt1), which deacetylated the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α). In turn, this increased the expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and key anti-oxidant target genes. These results suggest that melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Dietary MEL supplement may be a potential new strategy for the treatment of Cr poisoning.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| |
Collapse
|
55
|
Lee JY, Song H, Dash O, Park M, Shin NE, McLane MW, Lei J, Hwang JY, Burd I. Administration of melatonin for prevention of preterm birth and fetal brain injury associated with premature birth in a mouse model. Am J Reprod Immunol 2019; 82:e13151. [PMID: 31131935 DOI: 10.1111/aji.13151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Maternal inflammation leads to preterm birth and perinatal brain injury. Melatonin, through its anti-inflammatory effects, has been shown to be protective against inflammation-induced perinatal adverse effects. However, the immunomodulatory effects of melatonin on preterm birth and prematurity-related morbidity remain unknown. We wanted to investigate the effects of maternally administered melatonin on preterm birth and perinatal brain injury in a mouse model of maternal inflammation. METHOD OF STUDY A model of maternal inflammation employing lipopolysaccharide (LPS) was used to mimic the most common clinical scenario of preterm birth, that of maternal inflammation. Mice were randomly divided into the following groups: control, LPS, and LPS with melatonin pre-treatment. Doppler ultrasonography was used to obtain fetal and maternal hemodynamic measurements in utero. Placenta and fetal brains were harvested and analyzed for proinflammatory markers and signs of perinatal brain injury, respectively. Surviving offspring were assessed for neuromotor outcomes. RESULTS Melatonin pre-treatment lowered the level of proinflammatory cytokines in the uterus and the placenta, significantly improved LPS-induced acute fetal neuroinflammation and perinatal brain injury, as well as significantly upregulated the SIRT1/Nrf2 signaling pathway to reduce LPS-induced inflammation. Melatonin also prevented adverse neuromotor outcomes in offspring exposed to maternal inflammation. CONCLUSION Maternally administered melatonin modulated immune responses to maternal inflammation and decreased preterm birth and perinatal brain injury. These results suggest that melatonin, a safe treatment during pregnancy, may be used as an experimental therapeutic in clinical trials.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.,Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Oyunbileg Dash
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Na E Shin
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael W McLane
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jong Yun Hwang
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
56
|
Gu XL, Li H, Song ZH, Ding YN, He X, Fan ZY. Effects of isomaltooligosaccharide and Bacillus supplementation on sow performance, serum metabolites, and serum and placental oxidative status. Anim Reprod Sci 2019; 207:52-60. [PMID: 31208846 DOI: 10.1016/j.anireprosci.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/26/2019] [Accepted: 05/28/2019] [Indexed: 01/20/2023]
Abstract
This study investigated the effects of isomaltooligosaccharide (IMO) and Bacillus supplementation on sow performance, serum metabolites, and serum and placental oxidative status. Multiparous gestating sows (n = 130) with similar body conditions were randomly allocated to five groups (n = 26) receiving a basal diet (CON group) or a basal diet supplemented with 0.5% IMO (IMO group); 0.5% IMO and 0.02% Bacillus subtilis (IMO + S group); 0.5% IMO and 0.02% Bacillus licheniformis (IMO + L group); or 0.5% IMO, 0.02% Bacillus subtilis, and 0.02% Bacillus licheniformis (IMO + S+L group). There were no significant differences in the litter sizes among all dietary groups. The average piglet birth weight was improved in all treatment groups, and the placental efficiency was greater in the IMO + S and IMO + S+L groups than in the CON group (P < 0.05). The IMO + S+L group had increased the low-density lipoprotein cholesterol and reduced the total cholesterol in umbilical venous serum (P < 0.05). Additionally, the malondialdehyde concentrations were greater in umbilical venous serum of piglets in all treatment groups relative to that in the CON piglets (P < 0.05). The placental total antioxidant capacity was increased in the IMO+L and IMO+S+L groups (P < 0.05). Furthermore, the growth hormone concentration in umbilical venous serum was greater (P < 0.05) in all treatment groups. Overall, IMO and Bacillus supplementation during late gestation resulted in a changed metabolism of sows, improved the placental antioxidant capacity, and increased the growth hormone concentrations in umbilical venous serum, which ultimately improved the piglet birth weight and placental efficiency.
Collapse
Affiliation(s)
- X L Gu
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China
| | - H Li
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China
| | - Z H Song
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China.
| | - Y N Ding
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China
| | - X He
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China
| | - Z Y Fan
- Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Institute of Animal Nutrition, Hunan Agricultural University, Hunan, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Hunan, 410128, China.
| |
Collapse
|
57
|
Cheng L, Qin Y, Hu X, Ren L, Zhang C, Wang X, Wang W, Zhang Z, Hao J, Guo M, Wu Z, Tian J, An L. Melatonin protects in vitro matured porcine oocytes from toxicity of Aflatoxin B1. J Pineal Res 2019; 66:e12543. [PMID: 30584671 DOI: 10.1111/jpi.12543] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
Aflatoxin B1 (AFB1) is a major food and feed contaminant that threaten public health. Previous studies indicate that AFB1 exposure disrupted oocyte maturation. However, an effective and feasible method is unavailable for protecting oocytes against toxicity of AFB1. In the present study, using in vitro matured porcine oocytes and parthenogenetic embryos as model, we confirmed that AFB1 exposure during in vitro oocyte maturation (IVM) significantly impaired both nuclear and cytoplasmic maturation in a dose- and time-dependent manner. The different concentrations of melatonin were also tested for their protective effects on oocytes against the AFB1-induced toxicity. Our results showed that supplementation of a relative high concentration of melatonin (10-3 mol/L) during IVM efficiently reversed the impaired development rate and blastocyst quality, to the levels comparable to those of the control group. Further analysis indicated that melatonin application efficiently alleviated reactive oxygen species accumulation and initiation of apoptosis induced by AFB1 exposure. In addition, disrupted GSH/GPX system, as well as inhibited mitochondrial DNA (mtDNA) replication and mitochondrial biogenesis in AFB1-treated oocytes, can be notably reversed by melatonin application. Furthermore, cumulus cells may be important in mediating the toxicity of AFB1 to oocytes, and the metabolism of AFB1 in cumulus cells can be depressed by melatonin. To the best of our knowledge, this is the first report to confirm that melatonin application can efficiently protect oocytes from AFB1-induced toxicity. Our study provides a promising and practical strategy for alleviating or reversing AFB1-induced female reproductive toxicity in both clinical treatment and domestic reproductive management.
Collapse
Affiliation(s)
- Linghua Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yusheng Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Assisted Reproductive Centre of the Department of Gynaecology and Obstetrics, PLA Naval General Hospital, Beijing, China
| | - Chao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jin Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
58
|
Berbets A, Koval H, Barbe A, Albota O, Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med 2019; 34:373-378. [PMID: 31023180 DOI: 10.1080/14767058.2019.1608432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: To investigate the levels of melatonin, proinflammatory and anti-inflammatory cytokines in pregnant women with placental insufficiency (PI).Materials and Methods: The PI was manifested as the intrauterine growth restriction syndrome of fetus (IUGR) in the third pregnancy trimester. The control group consisted of 20 women with uncomplicated pregnancy in the same term. The blood concentrations of melatonin, proinflammatory cytokines, such as tumor necrotizing factor-α (TNF-α), interleukin-1-β (IL-1-β), interleukin-6 (IL-6), and anti-inflammatory cytokines, such as interleukin-4 (IL-4), and interleukin-10 (IL-10), were studied.Results: The concentration of melatonin was found to decrease significantly if pregnancy was complicated by intrauterine fetal growth retardation (study group -126.87 ± 14.87 pg/ml, control group -231.25 ± 21.56 pg/ml, p < .001). The levels of proinflammatory cytokines in the study group were significantly higher as compared with the control group (TNF-α: study group -10.05 ± 1.35 pg/ml, control group -5.60 ± 1.50 pg/ml, p < .05; IL-1-β: study group -14.67 ± 2.13 pg/ml, control group -3.96 ± 0.92 pg/ml, p < .001; IL-6: study group -6.91 ± 0.99 pg/ml, control group -2.69 ± 0.99 pg/ml, p < .05). The same is true about anti-inflammatory cytokines (IL-4: study group -5.97 ± 0.50 pg/ml, control group -3.74 ± 0.62 pg/ml, p < .05; IL-10: study group -11.40 ± 1.50 pg/ml, control group -4.70 ± 3.20 pg/ml, p < .001). A moderate negative correlation between melatonin and IL-1-β in the group with PI (r = -0.3776, p = .0097), a closed negative correlation between the same indexes in the control group (r = -0.6785, p = .001), and a moderate negative correlation between melatonin and TNF-α (r = -0.4908, p = .02) were found.Conclusions: The blood level of melatonin significantly decreases in case of placental insufficiency, manifested as intrauterine fetal growth restriction. Strengthening of the proinflammatory immunity shown as the increasing of the levels of TNF-α, IL-1-β, and IL-6 levels is also present in case of IUGR. Increase of the serum concentration of the anti-inflammatory cytokines, such as IL-4 and IL-10, in our opinion, can be explained by activation of compensatory mechanisms, which decrease the risk of premature labor.
Collapse
Affiliation(s)
- Andrii Berbets
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology and Endocrinology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Adrian Barbe
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Olena Albota
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Oleksandr Yuzko
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| |
Collapse
|
59
|
Sales F, Peralta OA, Narbona E, McCoard S, González-Bulnes A, Parraguez VH. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep pregnancies. J Anim Sci 2019; 97:839-845. [PMID: 30452689 DOI: 10.1093/jas/sky443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Fetal hypoxia, resulting in oxidative stress in pregnancies, contributes to reduced fetal growth. Melatonin, a potent antioxidant, has been associated with improved oxidative status. Maternal oral melatonin supplementation in sheep from day 50 of gestation ameliorates the consequences of fetal growth restriction in sheep. In rats, melatonin supplementation increases fetal weight via improved placental efficiency and reduction of oxidative stress. The objective of this study was to evaluate whether melatonin supplementation of single (S)- or twin-bearing (T) ewes using either 0 (0MEL), 1 (18-mg MEL), or 2 (36-mg MEL) slow release 18-mg melatonin implants (Regulin) from 100 to 140 d of pregnancy (n = 8 per group) influenced fetal oxygen supply and fetal weight. Fetal umbilical vein blood samples were collected at P140 and partial pressure of oxygen (PO2) and hemoglobin saturation by oxygen (SatHb) measured. The placenta from each fetus was excised and placentomes individually weighed and typed (A-D). Pregnancy rank, sex of the fetus, number of implants, and their interaction on fetal weight, blood gases, and placentome weight were analyzed using ANOVA. A 22% and 14% increase (P < 0.05) in body weight was obtained in 36- and 18-mg MEL compared with 0 MEL twin male fetuses, respectively, but no treatment effects were observed in singletons or females from twin pregnancies. Fetuses from ewes receiving 36-mg MEL had an 18% to 20% increase in cord PO2 (P < 0.05) compared with 18-mg MEL and 0MEL fetuses, which in turn did not differ. Fetal weight was positively correlated with PO2 (r = 0.37; P = 0.02), SatHb (r = 0.26; P = 0.03), and O2 content (r = 0.236; P = 0.048). No treatment effect on placentome average weight, total placentome weight per fetus or per ewe, nor total number of placentomes per fetus was observed. However, placentae from 36-mg MEL fetuses had a greater proportion of Type C (P < 0.05) than 0MEL and 18-mg MEL ewes, and tended to have a lower proportion of Type A (P = 0.1) and a greater proportion of Type D (P = 0.06) placentomes, compared with 0MEL ewes. These results indicate that maternal melatonin implants, independently of sex, improve oxygen supply to the fetus, which could potentially improve lamb vigor at birth. In addition, melatonin can increase fetal weight of twin males, by improving placental adaptation and fetal blood oxygenation.
Collapse
Affiliation(s)
| | - Oscar A Peralta
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Eileen Narbona
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Sue McCoard
- AgResearch Grasslands, Private Bag, Palmerston North, New Zealand
| | - Antonio González-Bulnes
- INIA-Madrid, Ciudad Universitaria s/n. 28040-Madrid, Spain.,Dpto. de Toxicología y Farmacología. Facultad de Veterinaria. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040-Madrid, Spain
| | - Victor H Parraguez
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.,Faculty of Agrarian Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
60
|
Sales F, Peralta OA, Narbona E, McCoard S, Lira R, De Los Reyes M, González-Bulnes A, Parraguez VH. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants (Basel) 2019; 8:antiox8030059. [PMID: 30857206 PMCID: PMC6466585 DOI: 10.3390/antiox8030059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Twinning and maternal nutritional restriction leads to fetal hypoxia, oxidative stress, and intrauterine growth restriction (IUGR) in near-term sheep pregnancies. Our aim was to determine the effect of oral supplementation of vitamins C and E in pregnant sheep on maternal and umbilical cord blood concentrations of vitamins C and E and the effects on fetal antioxidant status, growth, and placental efficiency. Sixteen single- and sixteen twin-bearing ewes, grazing natural Patagonian prairies, were selected after transrectal ultrasound at day 30 after mating. Half of ewes from each pregnancy rank were supplemented daily with vitamins C and E, administered orally, from 30 to 140 days of gestation, when maternal jugular and fetal venous cord blood samples were obtained during cesarean section. Fetuses were weighed and sexed. Placental weight in each fetus was also obtained. Blood plasma was harvested for measurements of maternal and fetal vitamins concentration and fetal antioxidant capacity. Maternal administration of vitamin C and E was associated with increased fetal cord levels of both vitamins, improved antioxidant status, and enhanced fetal growth in both singleton and twin pregnancies associated with increased placental efficiency. These results highlight the potential of vitamin C and E supplementation to reduce the impact of IUGR in both livestock and humans.
Collapse
Affiliation(s)
| | - Oscar A Peralta
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Eileen Narbona
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Sue McCoard
- AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Raúl Lira
- INIA-Kampenaike, Punta Arenas 6212707, Chile.
| | - Mónica De Los Reyes
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Antonio González-Bulnes
- INIA-Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Víctor H Parraguez
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
- Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile.
| |
Collapse
|
61
|
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Skeffington KL, Botting KJ, Giussani DA. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biol 2019; 17:e2006552. [PMID: 30668572 PMCID: PMC6342530 DOI: 10.1371/journal.pbio.2006552] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.
Collapse
Affiliation(s)
- Kirsty L. Brain
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Beth J. Allison
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
| | - Christine M. Cross
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nozomi Itani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Kane
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emilio A. Herrera
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Skeffington
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J. Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
62
|
Miller CN, Kodavanti UP, Stewart EJ, Schaldweiler M, Richards JH, Ledbetter AD, Jarrell LT, Snow SJ, Henriquez AR, Farraj AK, Dye JA. Aspirin pre-treatment modulates ozone-induced fetal growth restriction and alterations in uterine blood flow in rats. Reprod Toxicol 2019; 83:63-72. [PMID: 30528429 PMCID: PMC6582633 DOI: 10.1016/j.reprotox.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Prenatal exposure to ozone has been linked to low birth weight in people and fetal growth restriction in rats. Clinical recommendations suggest use of low dose aspirin to lower risk of preeclampsia and intrauterine growth restriction in high-risk pregnancies, yet its utility in mitigating the postnatal effects of gestational ozone exposure is unknown. The present study investigated the possibility of low dose aspirin to mitigate the effects of ozone exposure during pregnancy. Exposure to ozone impaired uterine arterial flow and induced growth restriction in fetuses of both sexes. Aspirin treatment induced marginal improvements in ozone-induced uterine blood flow impairment. However, this resulted in a protection of fetal weight in dams given aspirin only in early pregnancy. Aspirin administration for the entirety of gestation increased placental weight and reduced antioxidant status, suggesting that prolonged exposure to low dose aspirin may induce placental inefficiency in our model of growth restriction.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Mette Schaldweiler
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy H Richards
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Samantha J Snow
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andres R Henriquez
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Environmental Public Health Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
63
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
64
|
Nuzzo AM, Camm EJ, Sferruzzi-Perri AN, Ashmore TJ, Yung HW, Cindrova-Davies T, Spiroski AM, Sutherland MR, Logan A, Austin-Williams S, Burton GJ, Rolfo A, Todros T, Murphy MP, Giussani DA. Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2704-2716. [PMID: 30248337 PMCID: PMC6284551 DOI: 10.1016/j.ajpath.2018.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
The placenta responds to adverse environmental conditions by adapting its capacity for substrate transfer to maintain fetal growth and development. Early-onset hypoxia effects on placental morphology and activation of the unfolded protein response (UPR) were determined using an established rat model in which fetal growth restriction is minimized. We further established whether maternal treatment with a mitochondria-targeted antioxidant (MitoQ) confers protection during hypoxic pregnancy. Wistar dams were exposed to normoxia (21% O2) or hypoxia (13% to 14% O2) from days 6 to 20 of pregnancy with and without MitoQ treatment (500 μmol/L in drinking water). On day 20, animals were euthanized and weighed, and the placentas from male fetuses were processed for stereology to assess morphology. UPR activation in additional cohorts of frozen placentas was determined with Western blot analysis. Neither hypoxic pregnancy nor MitoQ treatment affected fetal growth. Hypoxia increased placental volume and the fetal capillary surface area and induced mitochondrial stress as well as the UPR, as evidenced by glucose-regulated protein 78 and activating transcription factor (ATF) 4 protein up-regulation. MitoQ treatment in hypoxic pregnancy increased placental maternal blood space surface area and volume and prevented the activation of mitochondrial stress and the ATF4 pathway. The data suggest that mitochondria-targeted antioxidants may be beneficial in complicated pregnancy via mechanisms protecting against placental stress and enhancing placental perfusion.
Collapse
Affiliation(s)
- Anna M Nuzzo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Hong-Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Megan R Sutherland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Shani Austin-Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom.
| |
Collapse
|
65
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
66
|
Rodrigues Helmo F, Etchebehere RM, Bernardes N, Meirelles MF, Galvão Petrini C, Penna Rocha L, Gonçalves Dos Reis Monteiro ML, Souza de Oliveira Guimarães C, de Paula Antunes Teixeira V, Dos Reis MA, Machado JR, Miranda Corrêa RR. Melatonin treatment in fetal and neonatal diseases. Pathol Res Pract 2018; 214:1940-1951. [PMID: 30377024 DOI: 10.1016/j.prp.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
This literature review aims to address the main scientific findings on oxidative stress activity in different gestational disorders, as well as the function and application of melatonin in the treatment of fetal and neonatal changes. Oxidative stress has been associated with the etiopathogenesis of recurrent miscarriages, preeclampsia, intrauterine growth restriction, and stillbirth. Both, the exacerbated consumption of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, and the increased synthesis of reactive oxygen species, such as superoxide, peroxynitrite, and hydrogen peroxide, induce phospholipid peroxidation and endothelial dysfunction, impaired invasion and death of trophoblast cells, impaired decidualization, and remodeling of maternal spiral arteries. It has been postulated that melatonin induces specific biochemical responses that regulate cell proliferation in fetuses, and that its antioxidant action promotes bioavailability of nitric oxide and, thus, placental perfusion and also fetal nutrition and oxygenation. Therefore, the therapeutic action of melatonin has been the subject of major studies that aim to minimize or prevent different injuries affecting this pediatric age group, such as intrauterine growth restriction, encephalopathy, chronic lung diseases, retinopathy of prematurity Conclusion: the results antioxidant and indicate that melatonin is an important therapy for the clinical treatment of these diseases.
Collapse
Affiliation(s)
- Fernanda Rodrigues Helmo
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Renata Margarida Etchebehere
- Surgical Pathology Service, Clinical Hospital, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Natália Bernardes
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria Flávia Meirelles
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Caetano Galvão Petrini
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laura Penna Rocha
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | - Vicente de Paula Antunes Teixeira
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antônia Dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
67
|
Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, Wallace EM. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res 2018; 65:e12508. [PMID: 29766570 DOI: 10.1111/jpi.12508] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
Abstract
Preeclampsia remains a leading cause of maternal and perinatal morbidity and mortality. There have been no material advances in the treatment of preeclampsia for nearly 50 years. Combining in vitro studies and a clinical trial, we aimed to determine whether melatonin could be a useful adjuvant therapy. In a xanthine/xanthine oxidase (X/XO) placental explant model, melatonin reduced oxidative stress (8-isoprostane) and enhanced antioxidant markers (Nrf2 translocation, HO-1), but did not affect explant production of anti-angiogenic factors (sFlt, sEng, activin A). In cultured HUVECs, melatonin mitigated TNFα-induced vascular cell adhesion molecule expression and rescued the subsequent disruption to endothelial monolayer integrity but did not affect other markers for endothelial activation and dysfunction. In a phase I trial of melatonin in 20 women with preeclampsia, we assessed the safety and efficacy of melatonin on (i) preeclampsia progression, (ii) clinical outcomes, and (iii) oxidative stress, matching outcomes with recent historical controls receiving similar care. Melatonin therapy was safe for mothers and their fetuses. Compared to controls, melatonin administration extended the mean ± SEM diagnosis to delivery interval by 6 ± 2.3 days reduced the need for increasing antihypertensive medication on days 3-4 (13% vs 71%), days 6-7 (8% vs 51%), and at delivery (26% vs 75%). All other clinical and biochemical measures of disease severity were unaffected by melatonin. We have shown that melatonin has the potential to mitigate maternal endothelial pro-oxidant injury and could therefore provide effective adjuvant therapy to extend pregnancy duration to deliver improved clinical outcomes for women with severe preeclampsia.
Collapse
Affiliation(s)
- Sebastian R Hobson
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- Women's Health Program, Monash Health, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Seshi Gurusinghe
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - Nicole O Alers
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Vic., Australia
| |
Collapse
|
68
|
From Implantation to Birth: Insight into Molecular Melatonin Functions. Int J Mol Sci 2018; 19:ijms19092802. [PMID: 30227688 PMCID: PMC6164374 DOI: 10.3390/ijms19092802] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
Melatonin is a lipophilic hormone synthesized and secreted mainly in the pineal gland, acting as a neuroendocrine transducer of photoperiodic information during the night. In addition to this activity, melatonin has shown an antioxidant function and a key role as regulator of physiological processes related to human reproduction. Melatonin is involved in the normal outcome of pregnancy, beginning with the oocyte quality, continuing with embryo implantation, and finishing with fetal development and parturition. Melatonin has been shown to act directly on several reproductive events, including folliculogenesis, oocyte maturation, and corpus luteum (CL) formation. The molecular mechanism of action has been investigated through several studies which provide solid evidence on the connections between maternal melatonin secretion and embryonic and fetal development. Melatonin administration, reducing oxidative stress and directly acting on its membrane receptors, melatonin thyroid hormone receptors (MT1 and MT2), displays effects on the earliest phases of pregnancy and during the whole gestational period. In addition, considering the reported positive effects on the outcomes of compromised pregnancies, melatonin supplementation should be considered as an important tool for supporting fetal development, opening new opportunities for the management of several reproductive and gestational pathologies.
Collapse
|
69
|
Renshall LJ, Morgan HL, Moens H, Cansfield D, Finn-Sell SL, Tropea T, Cottrell EC, Greenwood S, Sibley CP, Wareing M, Dilworth MR. Melatonin Increases Fetal Weight in Wild-Type Mice but Not in Mouse Models of Fetal Growth Restriction. Front Physiol 2018; 9:1141. [PMID: 30158878 PMCID: PMC6104307 DOI: 10.3389/fphys.2018.01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Fetal growth restriction (FGR) presents with an increased risk of stillbirth and childhood and adulthood morbidity. Melatonin, a neurohormone and antioxidant, has been suggested as having therapeutic benefit in FGR. We tested the hypothesis that melatonin would increase fetal growth in two mouse models of FGR which together represent a spectrum of the placental phenotypes in this complication: namely the endothelial nitric oxide synthase knockout mouse (eNOS-/-) which presents with abnormal uteroplacental blood flow, and the placental specific Igf2 knockout mouse (P0+/-) which demonstrates aberrant placental morphology akin to human FGR. Melatonin (5 μg/ml) was administered via drinking water from embryonic day (E)12.5 in C57Bl/6J wild-type (WT), eNOS-/-, and P0+/- mice. Melatonin supplementation significantly increased fetal weight in WT, but not eNOS-/- or P0+/- mice at E18.5. Melatonin did, however, significantly increase abdominal circumference in P0+/- mice. Melatonin had no effect on placental weight in any group. Uterine arteries from eNOS-/- mice demonstrated aberrant function compared with WT but melatonin treatment did not affect uterine artery vascular reactivity in either of these genotypes. Umbilical arteries from melatonin treated P0+/- mice demonstrated increased relaxation in response to the nitric oxide donor SNP compared with control. The increased fetal weight in WT mice and abdominal circumference in P0+/-, together with the lack of any effect in eNOS-/-, suggest that the presence of eNOS is required for the growth promoting effects of melatonin. This study supports further work on the possibility of melatonin as a treatment for FGR.
Collapse
Affiliation(s)
- Lewis J Renshall
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Hannah L Morgan
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Hymke Moens
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - David Cansfield
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Sarah L Finn-Sell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Teresa Tropea
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Susan Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| |
Collapse
|
70
|
Xu K, Liu G, Fu C. The Tryptophan Pathway Targeting Antioxidant Capacity in the Placenta. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1054797. [PMID: 30140360 PMCID: PMC6081554 DOI: 10.1155/2018/1054797] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a vital role in fetal development during pregnancy. Dysfunction of the placenta can be caused by oxidative stress and can lead to abnormal fetal development. Preventing oxidative stress of the placenta is thus an important measure to ensure positive birth outcomes. Research shows that tryptophan and its metabolites can efficiently clean free radicals (including the reactive oxygen species and activated chlorine). Consequently, tryptophan and its metabolites are suggested to act as potent antioxidants in the placenta. However, the mechanism of these antioxidant properties in the placenta is still unknown. In this review, we summarize research on the antioxidant properties of tryptophan, tryptophan metabolites, and metabolic enzymes. Two predicted mechanisms of tryptophan's antioxidant properties are discussed. (1) Tryptophan could activate the phosphorylation of p62 after the activation of mTORC1; phosphorylated p62 then uncouples the interaction between Nrf2 and Keap1, and activated Nrf2 enters the nucleus to induce expressions of antioxidant proteins, thus improving cellular antioxidation. (2) 3-Hydroxyanthranilic acid, a tryptophan kynurenine pathway metabolite, changes conformation of Keap1, inducing the dissociation of Nrf2 and Keap1, activating Nrf2 to enter the nucleus and induce expressions of antioxidant proteins (such as HO-1), thereby enhancing cellular antioxidant capacity. These mechanisms may enrich the theory of how to apply tryptophan as an antioxidant during pregnancy, providing technical support for its use in regulating the pregnancy's redox status and enriching our understanding of amino acids' nutritional value.
Collapse
Affiliation(s)
- Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| |
Collapse
|
71
|
Ali T, Rehman SU, Shah FA, Kim MO. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 2018; 15:119. [PMID: 29679979 PMCID: PMC5911370 DOI: 10.1186/s12974-018-1157-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Melatonin is a well-known potent endogenous antioxidant pharmacological agent with significant neuroprotective actions. Here in the current study, we explored the nuclear factor erythroid 2-related factor 2 (Nrf2) gene-dependent antioxidant mechanism underlying the neuroprotective effects of the acute melatonin against acute ethanol-induced elevated reactive oxygen species (ROS)-mediated neuroinflammation and neurodegeneration in the developing rodent brain. METHODS In vivo rat pups were co-treated with a single dose of acute ethanol (5 g/kg, subcutaneous (S.C.)) and a single dose of acute melatonin (20 mg/kg, intraperitoneal (I.P.)). Four hours after a single S.C. and I.P. injections, all of the rat pups were sacrificed for further biochemical (Western blotting, ROS- assay, LPO-assay, and immunohistochemical) analyses. In order to corroborate the in vivo results, we used the in vitro murine-hippocampal HT22 and microglial BV2 cells, which were subjected to knockdown with small interfering RNA (siRNA) of Nrf2 genes and exposed with melatonin (100 μM) and ethanol (100 mM) and proceed for further biochemical analyses. RESULTS Our biochemical, immunohistochemical, and immunofluorescence results demonstrate that acute melatonin significantly upregulated the master endogenous antioxidant Nrf2 and heme oxygenase-1, consequently reversing the acute ethanol-induced elevated ROS and oxidative stress in the developing rodent brain, and in the murine-hippocampal HT22 and microglial BV2 cells. In addition, acute melatonin subsequently reduced the activated MAPK-p-P38-JNK pathways and attenuated neuroinflammation by decreasing the expression of activated gliosis and downregulated the p-NF-K-B/p-IKKβ pathway and decreased the expression levels of other inflammatory markers in the developing rodent brain and BV2 cells. Of note, melatonin acted through the Nrf2-dependent mechanism to attenuate neuronal apoptosis in the postnatal rodent brain and HT22 cells. Immunohistofluorescence results also showed that melatonin prevented ethanol-induced neurodegeneration in the developing rodent brain. The in vitro results indicated that melatonin induced neuroprotection via Nrf2-dependent manner and reduced ethanol-induced neurotoxicity. CONCLUSIONS The pleiotropic and potent neuroprotective antioxidant characteristics of melatonin, together with our in vivo and in vitro findings, suppose that acute melatonin could be beneficial to prevent and combat the acute ethanol-induced neurotoxic effects, such as elevated ROS, neuroinflammation, and neurodegeneration in the developing rodent brain.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
72
|
Hannan NJ, Binder NK, Beard S, Nguyen TV, Kaitu’u-Lino TJ, Tong S. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (sFLT) from primary trophoblast but does not rescue endothelial dysfunction: An evaluation of its potential to treat preeclampsia. PLoS One 2018; 13:e0187082. [PMID: 29641523 PMCID: PMC5894956 DOI: 10.1371/journal.pone.0187082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is one of the most serious complications of pregnancy. Currently there are no medical treatments. Given placental oxidative stress may be an early trigger in the pathogenesis of preeclampsia, therapies that enhance antioxidant pathways have been proposed as treatments. Melatonin is a direct free-radical scavenger and indirect antioxidant. We performed in vitro assays to assess whether melatonin 1) enhances the antioxidant response element genes (heme-oxygenase 1, (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), thioredoxin (TXN)) or 2) alters secretion of the anti-angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT) or soluble endoglin (sENG) from human primary trophoblasts, placental explants and human umbilical vein endothelial cells (HUVECs) and 3) can rescue TNF-α induced endothelial dysfunction. In primary trophoblast melatonin treatment increased expression of the antioxidant enzyme TXN. Expression of TXN, GCLC and NQO1 was upregulated in placental tissue with melatonin treatment. HUVECs treated with melatonin showed an increase in both TXN and GCLC. Melatonin did not increase HO-1 expression in any of the tissues examined. Melatonin reduced sFLT secretion from primary trophoblasts, but had no effect on sFLT or sENG secretion from placental explants or HUVECs. Melatonin did not rescue TNF-α induced VCAM-1 and ET-1 expression in endothelial cells. Our findings suggest that melatonin induces antioxidant pathways in placenta and endothelial cells. Furthermore, it may have effects in reducing sFLT secretion from trophoblast, but does not reduce endothelial dysfunction. Given it is likely to be safe in pregnancy, it may have potential as a therapeutic agent to treat or prevent preeclampsia.
Collapse
Affiliation(s)
- Natalie J. Hannan
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| | - Natalie K. Binder
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Sally Beard
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, Mercy Perinatal, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
73
|
Nawathe A, David AL. Prophylaxis and treatment of foetal growth restriction. Best Pract Res Clin Obstet Gynaecol 2018; 49:66-78. [PMID: 29656983 DOI: 10.1016/j.bpobgyn.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
Foetal growth restriction (FGR) and associated placental pathologies such as pre-eclampsia and stillbirth arise in early pregnancy when inadequate remodelling of maternal spiral arteries leads to persistent high-resistance low-flow uteroplacental circulation. Current interventions concentrate on targeting the placental ischaemia-reperfusion injury and oxidative stress associated with an imbalance in angiogenic/anti-angiogenic factors. Recent meta-analyses confirm that aspirin modestly reduces the risk for small-for-gestational-age pregnancy in high-risk women. A dose of ≥100 mg starting by 16 weeks of gestation is recommended. In vitro and in vivo studies suggest that low-molecular-weight heparin may prevent FGR; further research is needed to confirm efficacy. Once FGR is diagnosed, no treatment will improve foetal growth. Potential FGR therapies such as phosphodiesterase type-5 inhibitors or maternal VEGF gene therapy aim to improve poor placentation and/or uterine blood flow. Melatonin, creatine and N-acetyl cysteine have potential as novel neuroprotective and cardioprotective agents in FGR.
Collapse
Affiliation(s)
- Aamod Nawathe
- Fetal Medicine Unit, University College London NHS Foundation Trust, 235 Euston Road, NW1 2BU, UK.
| | - Anna L David
- Research Department of Maternal Fetal Medicine, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK; NIHR University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st Floor, 149 Tottenham Court Road, London, W1T 7DN, UK.
| |
Collapse
|
74
|
Uzun M, Gencer M, Turkon H, Oztopuz RO, Demir U, Ovali MA. Effects of Melatonin on Blood Pressure, Oxidative Stress and Placental Expressions of TNFα, IL-6, VEGF and sFlt-1 in RUPP Rat Model of Preeclampsia. Arch Med Res 2018; 48:592-598. [PMID: 29397206 DOI: 10.1016/j.arcmed.2017.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Metehan Uzun
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey.
| | - Meryem Gencer
- Department of Obstetrics and Gynecology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Hakan Turkon
- Department of Biochemistry, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Rahime Ozlem Oztopuz
- Department of Biophysics, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Ufuk Demir
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| |
Collapse
|
75
|
Hobson SR, Lim R, Wallace EM. Phase I Pilot Clinical Trial of Antenatal Maternally Administered Melatonin to Decrease the Level of Oxidative Stress in Human Pregnancies Affected by Preeclampsia. Methods Mol Biol 2018; 1710:335-345. [PMID: 29197016 DOI: 10.1007/978-1-4939-7498-6_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes the methodologies which may be used in the development of a phase I clinical trial investigating a therapy of choice in treating preeclampsia.
Collapse
Affiliation(s)
- Sebastian R Hobson
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Rebecca Lim
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Euan M Wallace
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
76
|
Lemley CO, Vonnahme KA. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J Anim Sci 2017; 95:2211-2221. [PMID: 28726984 DOI: 10.2527/jas.2016.1151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Compromised placental function can result in fetal growth restriction which is associated with greater risk of neonatal morbidity and mortality. Large increases in transplacental nutrient and waste exchange, which support the exponential increase in fetal growth during the last half of gestation, are dependent primarily on the rapid growth and vascularization of the uteroplacenta. The amplitude of melatonin secretion has been associated with improved oxidative status and altered cardiovascular function in several mammalian species; however, melatonin mediated alterations of uteroplacental capacity in sheep and cattle are lacking. Therefore, our laboratories are examining uteroplacental blood flow and fetal development during maternal melatonin supplementation. Using a mid- to late-gestation ovine model of intrauterine growth restriction, we examined uteroplacental blood flow and fetal growth during supplementation with 5 mg/d of dietary melatonin. Maternal nutrient restriction decreased uterine arterial blood flow, while melatonin supplementation increased umbilical arterial blood flow compared with non-supplemented controls. Although melatonin treatment did not rescue fetal weight in nutrient restricted ewes; we observed disproportionate fetal size and fetal organ development. Elevated fetal concentrations of melatonin may result in altered blood flow distribution during important time points of development. These melatonin specific responses on umbilical arterial hemodynamics and fetal development may be partially mediated through vascular melatonin receptors. Recently, we examined the effects of supplementing Holstein heifers with 20 mg/d of dietary melatonin during the last third of gestation. Uterine arterial blood flow was increased by 25% and total serum antioxidant capacity was increased by 43% in melatonin supplemented heifers vs. non-supplemented controls. In addition, peripheral concentrations of progesterone were decreased in melatonin supplemented heifers vs. non-supplemented controls. Using an in vitro model, melatonin treatment increased the activity of cytochrome P450 2C, a progesterone inactivating enzyme, which was blocked by treatment with the melatonin receptor antagonist, luzindole. Elucidating the consequences of specific hormonal supplements on the continual plasticity of placental function will allow us to determine important endogenous mediators of offspring growth and development.
Collapse
|
77
|
Zhang L, Zhang Z, Wang F, Tian X, Ji P, Liu G. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure. Reprod Biol Endocrinol 2017; 15:78. [PMID: 28969693 PMCID: PMC5625829 DOI: 10.1186/s12958-017-0297-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. METHODS The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10-2, 10-3, 10-4, 10-5 M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. RESULTS Melatonin treatment (10-4,10-5 M) significantly increased litter sizes compared to untreated controls (12.9 ± 0.40 and 12.2 ± 1.01 vs. 11.5 ± 0.43; P < 0.05). The most effective concentration of melatonin (10-4 M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17β-estradiol (E2) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. CONCLUSION Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the microenvironment of the uterus and, thus, the outcomes of pregnancy.
Collapse
Affiliation(s)
- Lu Zhang
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- 0000 0004 1937 2197grid.169077.ePresent Address: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Zhenzhen Zhang
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Feng Wang
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiuzhi Tian
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Pengyun Ji
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guoshi Liu
- 0000 0004 0530 8290grid.22935.3fState Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
78
|
Choi SI, Lee E, Akuzum B, Jeong JB, Maeng YS, Kim TI, Kim EK. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation. J Pineal Res 2017; 63. [PMID: 28580641 DOI: 10.1111/jpi.12426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is emerging as a factor for the pathogenesis of granular corneal dystrophy type 2 (GCD2). This study was designed to investigate the molecular mechanisms underlying the protective effects of melatonin on ER stress in GCD2. Our results showed that GCD2 corneal fibroblasts were more susceptible to ER stress-induced death than were wild-type cells. Melatonin significantly inhibited GCD2 corneal cell death, caspase-3 activation, and poly (ADP-ribose) polymerase 1 cleavage caused by the ER stress inducer, tunicamycin. Under ER stress, melatonin significantly suppressed the induction of immunoglobulin heavy-chain-binding protein (BiP) and activation of inositol-requiring enzyme 1α (IRE1α), and their downstream target, alternative splicing of X-box binding protein 1(XBP1). Notably, the reduction in BiP and IRE1α by melatonin was suppressed by the ubiquitin-proteasome inhibitor, MG132, but not by the autophagy inhibitor, bafilomycin A1, indicating involvement of the ER-associated protein degradation (ERAD) system. Melatonin treatment reduced the levels of transforming growth factor-β-induced protein (TGFBIp) significantly, and this reduction was suppressed by MG132. We also found reduced mRNA expression of the ERAD system components HRD1 and SEL1L, and a reduced level of SEL1L protein in GCD2 cells. Interestingly, melatonin treatments enhanced SEL1L levels and suppressed the inhibition of SEL1L N-glycosylation caused by tunicamycin. In conclusion, this study provides new insights into the mechanisms by which melatonin confers its protective actions during ER stress. The results also indicate that melatonin might have potential as a therapeutic agent for ER stress-related diseases including GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhee Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Begum Akuzum
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jang Bin Jeong
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
79
|
Polglase GR, Barbuto J, Allison BJ, Yawno T, Sutherland AE, Malhotra A, Schulze KE, Wallace EM, Jenkin G, Ricardo SD, Miller SL. Effects of antenatal melatonin therapy on lung structure in growth-restricted newborn lambs. J Appl Physiol (1985) 2017; 123:1195-1203. [PMID: 28819007 DOI: 10.1152/japplphysiol.00783.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress arising from suboptimal placental function contributes to a multitude of pathologies in infants compromised by fetal growth restriction (FGR). FGR infants are at high risk for respiratory dysfunction after birth and poor long-term lung function. Our objective was to investigate the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. Placental insufficiency and FGR was surgically induced in 13 fetal sheep at ∼105 days of gestation by ligation of a single umbilical artery. Maternal intravenous melatonin infusion was commenced in seven of the ewes 4 h after surgery and continued until birth. Lambs delivered normally at term and lungs were collected 24 h after birth for histological assessment of lung structure and injury and compared with appropriately grown control lambs (n = 8). FGR fetuses were hypoxic and had lower glucose during gestation compared with controls. Melatonin administration prevented chronic hypoxia. Within the lung, FGR caused reduced secondary septal crest density and altered elastin deposition compared with controls. Melatonin administration had no effect on the changes to lung structure induced by FGR. We conclude that chronic FGR disrupts septation of the developing alveoli, which is not altered by melatonin administration. These findings suggest that oxidative stress is not the mechanism driving altered lung structure in FGR neonates. Melatonin administration did not prevent disrupted airway development but also had no apparent adverse effects on fetal lung development.NEW & NOTEWORTHY Fetal growth restriction (FGR) results in poor respiratory outcomes, which may be caused by oxidation in utero. We investigated the contribution of oxidative stress to adverse lung development and the effects of melatonin administration, a powerful antioxidant, on lung structure in FGR lambs. FGR disrupted septation of the developing alveoli, which is not altered by melatonin administration. Oxidative stress may not be the mechanism driving altered lung structure in FGR neonates.
Collapse
Affiliation(s)
- Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jade Barbuto
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University Clayton, Victoria, Australia; and
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy, Biochemistry, and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; .,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
80
|
Abstract
Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta - effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta.
Collapse
Affiliation(s)
- Colin P Sibley
- Maternal and Fetal Health Research CentreDivision of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
81
|
Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy. Acta Trop 2017; 169:14-25. [PMID: 28089603 DOI: 10.1016/j.actatropica.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 12/25/2022]
Abstract
Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy.
Collapse
|
82
|
Ireland KE, Maloyan A, Myatt L. Melatonin Improves Mitochondrial Respiration in Syncytiotrophoblasts From Placentas of Obese Women. Reprod Sci 2017; 25:120-130. [PMID: 28443479 DOI: 10.1177/1933719117704908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Maternal obesity is associated with increased oxidative stress but decreased placental mitochondrial respiration and expression of mitochondrial electron transport chain (ETC) complexes I to V. Melatonin acts as an antioxidant and prevents oxidative stress-induced changes in cytotrophoblasts. Placentas were collected at term by cesarean delivery from obese (first trimester body mass index [BMI] ≥30, n = 10) or lean (BMI < 25, n = 6) women. Cytotrophoblasts were isolated and allowed to syncytialize for 72 hours with or without melatonin (0.1-100 µM) for the last 24 hours. Mitochondrial respiratory parameters were measured in a Seahorse XF24. Expression of ETC complexes I to V and antioxidant enzymes was measured by Western blot. Maternal clinical characteristics of patients were similar except for BMI. No significant improvement in mitochondrial respiration occurred with addition of melatonin to trophoblasts of lean women. However, in trophoblasts from obese women, melatonin (10 and 100 µmol/L) significantly increased maximal respiration ( P = .01 and P = .009, respectively) and spare capacity ( P = .02 and P = .003, respectively) compared to the untreated control. No differences were detected in the expression of ETC complexes and superoxide dismutase 1 or 2 in trophoblasts treated with melatonin. The expression of glutathione peroxidase, which was significantly greater in trophoblast of obese compared to lean women ( P < .05), was decreased back to the level seen in trophoblast of lean women with addition of melatonin ( P = .02). Improved spare respiratory capacity, the cellular reserve, could impart a protective effect to the placenta and fetus in an adverse intrauterine environment or in response to additional stressors.
Collapse
Affiliation(s)
- Kayla E Ireland
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alina Maloyan
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,3 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- 2 Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,4 Department of Obstetrics and Gynecology, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
83
|
Cain AJ, Lemley CO, Walters FK, Christiansen DL, King EH, Hopper RM. Pre-breeding beef heifer management and season affect mid to late gestation uterine artery hemodynamics. Theriogenology 2016; 87:9-15. [PMID: 27577985 DOI: 10.1016/j.theriogenology.2016.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to evaluate the effects of beef heifer development practices and the influence of season on uterine artery hemodynamics during mid to late gestation. Metrics of uterine artery blood flow (BF) of fall calving and spring calving crossbred beef heifers (n = 27) developed on either a low-input (LOW|FALL n = 6; LOW|SPRING n = 6) or a conventional (CON|FALL n = 9; CON|SPRING n = 6) heifer development scheme were evaluated. Heifer body weight (BW) was measured every 30 days, and uterine BF, arterial diameter (AD), pulsatility index (PI), and resistance index were measured for uterine arteries ipsilateral and contralateral to the conceptus on days 180, 210, and 240 of gestation. Calf birth weight was assessed at parturition. Repeated-measures ANOVA was performed. There were significant treatment × season (P = 0.0001) and season × day (P = 0.003) interactions on heifer BW. Main effects of season (P = 0.04) and gestational day (P = 0.0001) were observed on contralateral BF, and there was a season × day interaction (P = 0.03) on ipsilateral BF. As such, there was a season × day interaction on total blood flow (TBF; P = 0.05), whereby TBF increased as gestation progressed and spring calving heifers displayed increased TBF. However, when adjusted for BW, an additional main effect of treatment was observed (P = 0.0007) in which LOW heifers had increased TBF compared with CON heifers. Correspondingly, LOW heifers displayed increased AD compared with CON heifers, and spring calving heifers had greater AD than fall calving females. There was also a main effect of season on calf birth weight (P = 0.02). It was concluded that developing replacement heifers with low-input management schemes does not yield compromised uteroplacental hemodynamics compared with traditionally developed females when nutrition during gestation is adequate. Furthermore, spring calving 2-year-old heifers have increased uteroplacental BF compared with their fall calving counterparts. Our results imply that producers who seek to decrease development costs by feeding replacements to lighter target breeding weights may do so without compromising mid to late gestation uterine BF when heifers are not nutrient restricted during pregnancy.
Collapse
Affiliation(s)
- Amanda J Cain
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State University, Mississippi State, Mississippi, USA
| | - F Kevin Walters
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - David L Christiansen
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - E Heath King
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Richard M Hopper
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi, USA.
| |
Collapse
|
84
|
Marseglia L, D'Angelo G, Manti S, Reiter RJ, Gitto E. Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia. Reprod Sci 2016; 23:970-977. [PMID: 26566856 DOI: 10.1177/1933719115612132] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM Reactive oxygen species play an important role in the pathogenesis of several diseases during gestation and the perinatal period. During pregnancy, increased oxygen demand augments the rate of production of free radicals. Oxidative stress is involved in pregnancy disorders including preeclampsia and intrauterine fetal growth retardation (IUGR). Moreover, increased levels of oxidative stress and reduced antioxidative capacities may contribute to the pathogenesis of perinatal asphyxia. Melatonin, an efficient antioxidant agent, diffuses through biological membranes easily and exerts pleiotropic actions on every cell and appears to be essential for successful gestation. This narrative review summarizes current knowledge concerning the role of melatonin in reducing complications during human pregnancy and in the perinatal period. RESULTS Melatonin levels are altered in women with abnormally functioning placentae during preeclampsia and IUGR. Short-term melatonin therapy is highly effective and safe in reducing complications during pregnancy and in the perinatal period. Because melatonin has been shown to be safe for both mother and fetus, it could be an attractive therapy in pregnancy and is considered a promising neuroprotective agent in perinatal asphyxia. CONCLUSION We believe that the use of melatonin treatment during the late fetal and early neonatal period might result in a wide range of health benefits, improved quality of life, and may help limit complications during the critical periods prior to, and shortly after, delivery.
Collapse
Affiliation(s)
- Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Gabriella D'Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Sara Manti
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
| |
Collapse
|
85
|
González-Candia A, Veliz M, Araya C, Quezada S, Ebensperger G, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep. Am J Obstet Gynecol 2016; 215:245.e1-7. [PMID: 26902986 DOI: 10.1016/j.ajog.2016.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.
Collapse
|
86
|
Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2016; 23:33-44. [PMID: 27421686 DOI: 10.1111/cns.12588] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain. METHODS The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro. We also used EX527 to inhibit silent information regulator transcript-1 (SIRT1). RESULTS A single intraperitoneal (i.p) injection of LPS to PND7 rats significantly induced glial cell activation, acute neuroinflammation, reactive oxygen species (ROS) production and apoptotic neurodegeneration in hippocampal DG region after 4 h. However, the coadministration of melatonin significantly inhibited both LPS-induced acute neuroinflammation and apoptotic neurodegeneration and improved synaptic dysfunction in the hippocampal DG region of PND7 rats. Most importantly, melatonin stimulated the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway to reduce LPS-induced ROS generation. The beneficial effects of melatonin were further confirmed in LPS-stimulated BV2 microglia cell lines in vitro using EX527 as an inhibitor of SIRT1. LPS-induced oxidative stress, Nrf2 inhibition, and neuroinflammation are SIRT1-dependent in BV2 microglia cell lines. CONCLUSION These results demonstrated that melatonin treatment rescued the hippocampal DG region of PND7 rat brains against LPS-induced oxidative stress damage, acute neuroinflammation, and apoptotic neurodegeneration via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeung-Hoon Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
87
|
Brockus KE, Hart CG, Gilfeather CL, Fleming BO, Lemley CO. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers. Domest Anim Endocrinol 2016; 55:1-10. [PMID: 26641925 DOI: 10.1016/j.domaniend.2015.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/24/2015] [Indexed: 02/03/2023]
Abstract
The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally.
Collapse
Affiliation(s)
- K E Brockus
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - C G Hart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - C L Gilfeather
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - B O Fleming
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - C O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, MS, 39762, USA.
| |
Collapse
|
88
|
Sferruzzi-Perri AN, Camm EJ. The Programming Power of the Placenta. Front Physiol 2016; 7:33. [PMID: 27014074 PMCID: PMC4789467 DOI: 10.3389/fphys.2016.00033] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
Size at birth is a critical determinant of life expectancy, and is dependent primarily on the placental supply of nutrients. However, the placenta is not just a passive organ for the materno-fetal transfer of nutrients and oxygen. Studies show that the placenta can adapt morphologically and functionally to optimize substrate supply, and thus fetal growth, under adverse intrauterine conditions. These adaptations help meet the fetal drive for growth, and their effectiveness will determine the amount and relative proportions of specific metabolic substrates supplied to the fetus at different stages of development. This flow of nutrients will ultimately program physiological systems at the gene, cell, tissue, organ, and system levels, and inadequacies can cause permanent structural and functional changes that lead to overt disease, particularly with increasing age. This review examines the environmental regulation of the placental phenotype with particular emphasis on the impact of maternal nutritional challenges and oxygen scarcity in mice, rats and guinea pigs. It also focuses on the effects of such conditions on fetal growth and the developmental programming of disease postnatally. A challenge for future research is to link placental structure and function with clinical phenotypes in the offspring.
Collapse
Affiliation(s)
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
89
|
Hobson SR, Mockler JC, Lim R, Alers NO, Miller SL, Wallace EM. Melatonin for treating pre-eclampsia. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian R Hobson
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Joanne C Mockler
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Rebecca Lim
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Nicole O Alers
- Monash University; The Ritchie Centre; Melbourne Australia
| | | | - Euan M Wallace
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| |
Collapse
|
90
|
Allison BJ, Kaandorp JJ, Kane AD, Camm EJ, Lusby C, Cross CM, Nevin-Dolan R, Thakor AS, Derks JB, Tarry-Adkins JL, Ozanne SE, Giussani DA. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J 2016; 30:1968-75. [PMID: 26932929 PMCID: PMC5036970 DOI: 10.1096/fj.201500057] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2–1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.—Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease.
Collapse
Affiliation(s)
- Beth J Allison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joepe J Kaandorp
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Andrew D Kane
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ciara Lusby
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christine M Cross
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rhianon Nevin-Dolan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Avnesh S Thakor
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan B Derks
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Jane L Tarry-Adkins
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
91
|
Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res 2016; 60:16-26. [PMID: 26444711 PMCID: PMC4832387 DOI: 10.1111/jpi.12283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
92
|
Rodríguez-Rodríguez P, de Pablo ALL, Condezo-Hoyos L, Martín-Cabrejas MA, Aguilera Y, Ruiz-Hurtado G, Gutierrez-Arzapalo PY, Ramiro-Cortijo D, Fernández-Alfonso MS, González MDC, Arribas SM. Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. J Nutr Biochem 2015; 26:1650-9. [DOI: 10.1016/j.jnutbio.2015.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
93
|
Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2015; 158:1-23. [PMID: 26617218 DOI: 10.1016/j.pharmthera.2015.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies.
Collapse
Affiliation(s)
- Jorge G Farías
- Facultad de Ingeniería y Ciencias, Departamento de Ingeniería Química, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | | | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Paola Morales
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
94
|
Oyston CJ, Stanley JL, Baker PN. Potential targets for the treatment of preeclampsia. Expert Opin Ther Targets 2015; 19:1517-30. [DOI: 10.1517/14728222.2015.1088004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Goudochnikov VI. Role of hormones in perinatal and early postnatal development: Possible contribution to programming/imprinting phenomena. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415050045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
96
|
Sharma RD, Katkar GD, Sundaram MS, Paul M, NaveenKumar SK, Swethakumar B, Hemshekhar M, Girish KS, Kemparaju K. Oxidative stress-induced methemoglobinemia is the silent killer during snakebite: a novel and strategic neutralization by melatonin. J Pineal Res 2015; 59:240-54. [PMID: 26103459 DOI: 10.1111/jpi.12256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced methemoglobinemia remained an untouched area in venom pharmacology till date. This study for the first time explored the potential of animal venoms to oxidize hemoglobin to methemoglobin. In in vitro whole-blood assay, methemoglobin forming ability of venoms varied as Naja naja > Ophiophagus hannah > Echis carinatus > Daboia russellii > Apis mellifera > Mesobuthus tamulus > Hippasa partita. Being highly potential, N. naja venom was further studied to observe methemoglobin formation in RBCs and in combinations with PMNs and PBMCs, where maximum effect was observed in RBCs + PMNs combination. Naja naja venom/externally added methemoglobin-induced methemoglobin formation was in parallel with ROS generation in whole blood/RBCs/RBCs + PMNs/RBCs + PBMCs. In in vivo studies, the lethal dose (1 mg/kg body weight, i.p.) of N. naja venom readily induced methemoglobin formation, ROS generation, expression of inflammatory markers, and hypoxia-inducible factor-3α. Although the mice administered with three effective doses of antivenom recorded zero mortality; the methemoglobin and ROS levels remained high. However, one effective dose of antivenom when administered along with melatonin (1:50; venom/melatonin, w/w), not only offered 100% survival of experimental mice, but also significantly reduced methemoglobin level, and oxidative stress markers including hypoxia-inducible factor-3α. This study provides strong drive that, complementing melatonin would not only reduce the antivenom load, but for sure greatly increase the success rate of antivenom therapy and drastically minimize the global incidence of snakebite deaths. However, further detailed investigations are needed before translating the combined therapy towards the bed side.
Collapse
Affiliation(s)
- Rachana D Sharma
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | - Gajanan D Katkar
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | | | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| |
Collapse
|
97
|
Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón-Ferré M, Herrera EA, Giussani DA. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J Pineal Res 2015; 59:80-90. [PMID: 25908097 PMCID: PMC4528231 DOI: 10.1111/jpi.12242] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Beth J Allison
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Kimberley J Botting
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Maria Serón-Ferré
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
98
|
From Pre-Clinical Studies to Clinical Trials: Generation of Novel Therapies for Pregnancy Complications. Int J Mol Sci 2015; 16:12907-24. [PMID: 26062129 PMCID: PMC4490478 DOI: 10.3390/ijms160612907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Complications of pregnancy represent a significant disease burden, with both immediate and lasting consequences for mother and baby. Two key pregnancy complications, fetal growth restriction (FGR) and preeclampsia (PE), together affect around 10%–15% of all pregnancies worldwide. Despite this high incidence, there are currently no therapies available to treat these pregnancy disorders. Early delivery remains the only intervention to reduce the risk of severe maternal complications and/or stillbirth of the baby; however early delivery itself is associated with increased risk of neonatal mortality and morbidity. As such, there is a pressing need to develop new and effective treatments that can prevent or treat FGR and PE. Animal models have been essential in identifying and screening potential new therapies in this field. In this review, we address recent progress that has been made in developing therapeutic strategies for pregnancy disorders, some of which are now entering clinical trials.
Collapse
|
99
|
Yiallourou SR, Wallace EM, Miller SL, Horne RSC. Effects of intrauterine growth restriction on sleep and the cardiovascular system: The use of melatonin as a potential therapy? Sleep Med Rev 2015; 26:64-73. [PMID: 26140865 DOI: 10.1016/j.smrv.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/28/2022]
Abstract
Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies.
Collapse
Affiliation(s)
- Stephanie R Yiallourou
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia.
| | - Euan M Wallace
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Monash Institute of Medical Research and Prince Henry's Institute and Monash University, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
100
|
Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy. Obstet Gynecol Int 2015; 2015:825802. [PMID: 25821470 PMCID: PMC4363680 DOI: 10.1155/2015/825802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/08/2015] [Indexed: 11/17/2022] Open
Abstract
Pregnancy is a complex and well-regulated temporal event in which several steps are finely orchestrated including implantation, decidualization, placentation, and partum and any temporary alteration has serious effects on fetal and maternal health. Interestingly, alterations of circadian rhythms (i.e., shiftwork) have been correlated with increased risk of preterm delivery, intrauterine growth restriction, and preeclampsia. In the last few years evidence is accumulating that the placenta may have a functional circadian system and express the clock genes Bmal1, Per1-2, and Clock. On the other hand, there is evidence that the human placenta synthesizes melatonin, hormone involved in the regulation of the circadian system in other tissues. Moreover, is unknown the role of this local production of melatonin and whether this production have a circadian pattern. Available information indicates that melatonin induces in placenta the expression of antioxidant enzymes catalase and superoxide dismutase, prevents the injury produced by oxidative stress, and inhibits the expression of vascular endothelial growth factor (VEGF) a gene that in other tissues is controlled by clock genes. In this review we aim to analyze available information regarding clock genes and clock genes controlled genes such as VEGF and the possible role of melatonin synthesis in the placenta.
Collapse
|