51
|
Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, Shen K. Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2013; 2:e00133. [PMID: 23482306 PMCID: PMC3591006 DOI: 10.7554/elife.00133] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
In neurons, microtubules (MTs) span the length of both axons and dendrites, and the molecular motors use these intracellular ‘highways' to transport diverse cargo to the appropriate subcellular locations. Whereas axonal MTs are organized such that the plus-end is oriented out from the cell body, dendrites exhibit a mixed MTs polarity containing both minus-end-out and plus-end-out MTs. The molecular mechanisms underlying this differential organization, as well as its functional significance, are unknown. Here, we show that kinesin-1 is critical in establishing the characteristic minus-end-out MT organization of the dendrite in vivo. In unc-116 (kinesin-1/kinesin heavy chain) mutants, the dendritic MTs adopt an axonal-like plus-end-out organization. Kinesin-1 protein is able to cross-link anti-paralleled MTs in vitro. We propose that kinesin-1 regulates the dendrite MT polarity through directly gliding the plus-end-out MTs out of the dendrite using both the motor domain and the C-terminal MT-binding domain. DOI:http://dx.doi.org/10.7554/eLife.00133.001 Neurons, or nerve cells, are excitable cells that transmit information using electrical and chemical signals. Nerve cells are generally composed of a cell body, multiple dendrites, and a single axon. The dendrites are responsible for receiving inputs and for transferring these signals to the cell body, whereas the axon carries signals away from the cell body and relays them to other cells. Like all cells, nerve cells have a cytoskeleton made up of microtubules, which help to determine cellular shape and which act as ‘highways' for intracellular transport. Microtubules are long hollow fibers composed of alternating α- and β-tubulin proteins: each microtubule has a ‘plus'-end, where the β subunits are exposed, and a ‘minus'-end, where the α subunits are exposed. Nerve cells are highly polarized: within the axon, the microtubules are uniformly oriented with their plus-ends pointing outward, whereas in dendrites, there are many microtubules with their minus-ends pointing outward. This arrangement is conserved across the animal kingdom, but the mechanisms that establish it are largely unknown. Yan et al. use the model organism Caenorhabditis elegans (the nematode worm) to conduct a detailed in vivo analysis of dendritic microtubule organization. They find that a motor protein called kinesin-1 is critical for generating the characteristic minus-end-out pattern in dendrites: when the gene that codes for this protein is knocked out, the dendrites in microtubules undergo a dramatic polarity shift and adopt the plus-end-out organization that is typical of axons. The mutant dendrites also show other axon-like features: for example, they lack many of the proteins that are usually found in dendrites. Based on these and other data, Yan et al. propose that kinesin-1 determines microtubule polarity in dendrites by moving plus-end-out microtubules out of dendrites. These first attempts to explain, at the molecular level, how dendritic microtubule polarity is achieved in vivo could lead to new insights into the structure and function of the neuronal cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.00133.002
Collapse
Affiliation(s)
- Jing Yan
- Department of Biology , Howard Hughes Medical Institute, Stanford University , Stanford , United States
| | | | | | | | | | | | | |
Collapse
|
52
|
Shea TB, Lee S. The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array. Cytoskeleton (Hoboken) 2012; 70:67-73. [PMID: 23124969 DOI: 10.1002/cm.21087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/19/2022]
Abstract
Neurofilaments (NFs) provide structural support to axons. Timely and regional deposition of NFs is essential during axonogenesis, since progressive stabilization of proximal axons is essential to support continued pathfinding of distal axonal regions. NFs undergo short bursts of microtubule-mediated axonal transport interspersed by prolonged pauses. We demonstrate herein that it is this unique "on-off" method of axonal transport, coupled with the ability of NFs to form cation-dependent, phosphomediated lateral associations that allow neurons to mediate the orderly transition from exploratory process to stabilized axon following synaptogenesis. We further demonstrate how this transport method provides for NF maintenance following maturation and encompasses the potential for regeneration.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
53
|
Zhang C, Li D, Ma Y, Yan J, Yang B, Li P, Yu A, Lu C, Ma X. Role of spastin and protrudin in neurite outgrowth. J Cell Biochem 2012; 113:2296-307. [PMID: 22573551 DOI: 10.1002/jcb.24100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder characterized by retrograde axonal degeneration that primarily affects long spinal neurons. The gene encoding spastin has a well-established association with HSP, and protrudin is a known binding partner of spastin. Here, we demonstrate that the N-terminal domain of protrudin mediates the interaction with spastin, which is responsible for neurite outgrowth. We show that spastin promotes protrudin-dependent neurite outgrowth in PC12 cells. To further confirm these physiological functions in vivo, we microinjected zebrafish embryos with various protrudin/spastin mRNA and morpholinos. The results suggest that the spinal cord motor neuron axon outgrowth of zebrafish is regulated by the interaction between spastin and protrudin. In addition, the putative HSP-associated protrudinG191V mutation was shown to alter the subcellular distribution and impair the yolk sac extension of zebrafish, but without significant defects in neurite outgrowth both in PC12 cells and zebrafish. Taken together, our findings indicate that protrudin interacts with spastin and induces axon formation through its N-terminal domain. Moreover, protrudin and spastin may work together to play an indispensable role in motor axon outgrowth.
Collapse
Affiliation(s)
- Chuanling Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T. Tau protein diffuses along the microtubule lattice. J Biol Chem 2012; 287:38559-68. [PMID: 23019339 DOI: 10.1074/jbc.m112.369785] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current models for the intracellular transport of Tau protein suggest motor protein-dependent co-transport with microtubule fragments and diffusion of Tau in the cytoplasm, whereas Tau is believed to be stationary while bound to microtubules and in equilibrium with free diffusion in the cytosol. Observations that members of the microtubule-dependent kinesin family show Brownian motion along microtubules led us to hypothesize that diffusion along microtubules could also be relevant in the case of Tau. We used single-molecule total internal reflection fluorescence microscopy to probe for diffusion of individual fluorescently labeled Tau molecules along microtubules. This allowed us to avoid the problem that microtubule-dependent diffusion could be masked by excess of labeled Tau in solution that might occur in in vivo overexpression experiments. We found that approximately half of the individually detected Tau molecules moved bidirectionally along microtubules over distances up to several micrometers. Diffusion parameters such as diffusion coefficient, interaction time, and scanned microtubule length did not change with Tau concentration. Tau binding and diffusion along the microtubule lattice, however, were sensitive to ionic strength and pH and drastically reduced upon enzymatic removal of the negatively charged C termini of tubulin. We propose one-dimensional Tau diffusion guided by the microtubule lattice as one possible additional mechanism for Tau distribution. By such one-dimensional microtubule lattice diffusion, Tau could be guided to both microtubule ends, i.e. the sites where Tau is needed during microtubule polymerization, independently of directed motor-dependent transport. This could be important in conditions where active transport along microtubules might be compromised.
Collapse
Affiliation(s)
- Maike H Hinrichs
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Tang Y, Das U, Scott DA, Roy S. The slow axonal transport of alpha-synuclein--mechanistic commonalities amongst diverse cytosolic cargoes. Cytoskeleton (Hoboken) 2012; 69:506-13. [PMID: 22344896 DOI: 10.1002/cm.21019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/06/2023]
Abstract
Slow axonal transport conveys perikaryally-synthesized cytosolic proteins in a rate-class called Slow Component-b (SCb). One such protein--α-synuclein--is largely conveyed in SCb, and is also a key player in a group of neurodegenerative diseases called synucleinopathies. Axonal transport defects of α-synuclein have been hypothesized to play a role in synucleinopathies, but mechanisms moving α-synuclein in slow axonal transport are unclear. Here we use a recently developed model-system in our laboratory to visualize the slow transport of α-synuclein, comparing it to another SCb protein synapsin. Despite differences inbiological properties and overall-solubility in axons, the anterograde transport of both SCb proteins was strikingly similar, suggesting commonalities in slow axonal transport mechanisms of seemingly diverse cytosolic cargoes. The data support a model where SCb proteins dynamically organize into 'transport-competent' complexes that are conveyed via transient associations with other persistently-moving cargoes ("mobile-units"). The identity of the latter is yet unknown. Visualizing normal α-synuclein transport may also open the door to studies of α-synuclein transport in pathologic states.
Collapse
Affiliation(s)
- Yong Tang
- Department of Pathology, University of California, San Diego, California 92093, USA
| | | | | | | |
Collapse
|
56
|
Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol Aging 2012; 33:621.e1-621.e15. [DOI: 10.1016/j.neurobiolaging.2011.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/03/2011] [Accepted: 02/20/2011] [Indexed: 12/19/2022]
|
57
|
Peter SJ, Mofrad MRK. Computational modeling of axonal microtubule bundles under tension. Biophys J 2012; 102:749-57. [PMID: 22385845 DOI: 10.1016/j.bpj.2011.11.4024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 11/04/2011] [Accepted: 11/22/2011] [Indexed: 01/29/2023] Open
Abstract
Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechanical response of axonal microtubule bundles under uniaxial tension using a discrete bead-spring representation. Mechanisms of failure due to traumatic stretch loading and their impact on the mechanical response and stability are also characterized. This study indicates that cross-linked axonal microtubule bundles in tension display stiffening behavior similar to a power-law relationship from nonaffine network deformations. Stretching of cross-links and microtubule bending were the primary deformation modes at low stresses. Microtubule stretch was negligible up to tensile stresses of ∼1 MPa. Bundle failure occurred by failure of cross-links leading to pull-out of microtubules and loss of bundle integrity. This may explain the elongation, undulation, and delayed elasticity of axons following traumatic stretch loading. More extensively cross-linked bundles withstood higher tensile stresses before failing. The bundle mechanical behavior uncovered by these computational techniques should guide future experiments on stretch-injured axons.
Collapse
Affiliation(s)
- Stephen J Peter
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA
| | | |
Collapse
|
58
|
Baas PW, Mozgova OI. A novel role for retrograde transport of microtubules in the axon. Cytoskeleton (Hoboken) 2012; 69:416-25. [PMID: 22328357 DOI: 10.1002/cm.21013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/14/2023]
Abstract
Short microtubules move within the axon in both directions. In the past, it had been assumed that all of the short moving microtubules are oriented with their plus-ends distal to the cell body, regardless of their direction of movement. The anterogradely moving microtubules were posited to play critical roles in the establishment, expansion, and maintenance of the axonal microtubule array. There was no known function for the retrogradely moving microtubules. In considering the mechanism of their transport, we had assumed that all of the short microtubules have a plus-end-distal polarity orientation, as is characteristic of the long microtubules that dominate the axon. Here we discuss an alternative hypothesis, namely that the short microtubules moving retrogradely have the opposite polarity orientation of those moving anterogradely. Those that move anterogradely have their plus-ends distal to the cell body while those that move retrogradely have their minus ends distal to the cell body. In this view, retrograde transport is a means for clearing the axon of incorrectly oriented microtubules. This new model, if correct, has profound implications for the manner by which healthy axons preserve their characteristic pattern of microtubule polarity orientation. We speculate that pathological flaws in this mechanism may be a critical factor in the degeneration of axons during disease and injury, as well as in neuropathy caused by microtubule-active drugs.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| | | |
Collapse
|
59
|
Hamon L, Savarin P, Curmi PA, Pastré D. Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines. Biophys J 2011; 101:205-16. [PMID: 21723831 DOI: 10.1016/j.bpj.2011.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022] Open
Abstract
Microtubules (MTs) are cylindrical cytoskeleton polymers composed of α-β tubulin heterodimers whose dynamic properties are essential to fulfill their numerous cellular functions. In response to spatial confinement, dynamic MTs, even in the absence of protein partners, were shown to self-organize into higher order structures (spindle or striped structures) which lead to interesting dynamical properties (MT oscillations). In this study, we considered the assembly and sensitivity of dynamic MTs when in bundles. To perform this study, spermine, a natural tetravalent polyamine present at high concentrations in all eukaryote cells, was used to trigger MT bundling while preserving MT dynamics. Interestingly, we first show that, near physiological ionic strengths, spermine promotes the bundling of MTs whereas it does not lead to aggregation of free tubulin, which would have been detrimental to MT polymerization. Experimental and theoretical results also indicate that, to obtain a high rate of bundle assembly, bundling should take place at the beginning of assembly when rapid rotational movements of short and newly nucleated MTs are still possible. On the other hand, the bundling process is significantly slowed down for long MTs. Finally, we found that short MT bundles exhibit a higher sensitivity to cold exposure than do isolated MTs. To account for this phenomenon, we suggest that a collective behavior takes place within MT bundles because an MT entering into a phase of shortening could increase the probability of the other MTs in the same bundle to enter into shortening phase due to their close proximity. We then elaborate on some putative applications of our findings to in vivo conditions including neurons.
Collapse
Affiliation(s)
- Loïc Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale, U829, and Université Evry-Val d'Essonne, EA3637, Evry, France.
| | | | | | | |
Collapse
|
60
|
Craig EM, Dey S, Mogilner A. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:374102. [PMID: 21862843 PMCID: PMC3168571 DOI: 10.1088/0953-8984/23/37/374102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.
Collapse
|
61
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
62
|
O'Toole M, Miller KE. The role of stretching in slow axonal transport. Biophys J 2011; 100:351-60. [PMID: 21244831 PMCID: PMC3021655 DOI: 10.1016/j.bpj.2010.12.3695] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/08/2010] [Accepted: 12/06/2010] [Indexed: 12/24/2022] Open
Abstract
Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching. We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day⁻¹), stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accelerate elongation and transport simultaneously by increasing either the axon's susceptibility to stretching or the forces that induce stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma, and hence to the development of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Matthew O'Toole
- Department of Mathematics, Kettering University, Flint, Michigan
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
63
|
Lin S, Liu M, Son YJ, Timothy Himes B, Snow DM, Yu W, Baas PW. Inhibition of Kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic 2011; 12:269-86. [PMID: 21166743 DOI: 10.1111/j.1600-0854.2010.01152.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing neurons express a motor protein called kinesin-5 (also called kif11 or Eg5) which acts as a 'brake' on the advance of the microtubule array during axonal growth. Pharmacological inhibition of kinesin-5 causes the developing axon to grow at a faster rate, retract less and grow past cues that would otherwise cause it to turn. Here we demonstrate that kinesin-5 is also expressed in adult neurons, albeit at lower levels than during development. We hypothesized that inhibiting kinesin-5 might enable adult axons to regenerate better and to overcome repulsive molecules associated with injury. Using adult mouse dorsal root ganglion neurons, we found that anti-kinesin-5 drugs cause axons to grow faster and to cross with higher frequency onto inhibitory chondroitin sulfate proteoglycans. These effects may be due in part to changes in the efficiency of microtubule transport along the axonal shaft as well as enhanced microtubule entry into the distal tip of the axon. Effects observed with the drugs are further enhanced in some cases when they are used in combination with other treatments known to enhance axonal regeneration. Collectively, these results indicate that anti-kinesin-5 drugs may be a useful addition to the arsenal of tools used to treat nerve injury.
Collapse
Affiliation(s)
- Shen Lin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Kinesin-12, a mitotic microtubule-associated motor protein, impacts axonal growth, navigation, and branching. J Neurosci 2010; 30:14896-906. [PMID: 21048148 DOI: 10.1523/jneurosci.3739-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Kinesin-12 (also called Kif15) is a mitotic motor protein that continues to be expressed in developing neurons. Depletion of kinesin-12 causes axons to grow faster, more than doubles the frequency of microtubule transport in both directions in the axon, prevents growth cones from turning properly, and enhances the invasion of microtubules into filopodia. These results are remarkably similar to those obtained in previous studies in which neurons were depleted of kinesin-5 (also called Eg5 or Kif11), another mitotic motor protein that continues to be expressed in developing neurons. However, there are also notable differences in the phenotypes obtained with depleting each of these motors. Depleting kinesin-12 decreases axonal branching and growth cone size, whereas inhibiting kinesin-5 increases these parameters. In addition, depleting kinesin-12 diminishes the appearance of growth-cone-like waves along the length of the axon, an effect not observed with depletion of kinesin-5. Finally, depletion of kinesin-12 abolishes the "waggling" behavior of microtubules that occurs as they assemble along actin bundles within filopodia, whereas inhibition of kinesin-5 does not. Interestingly, and perhaps relevant to these differences in phenotype, in biochemical studies, kinesin-12 coimmunoprecipitates with actin but kinesin-5 does not. Collectively, these findings support a scenario whereby kinesin-12 shares functions with kinesin-5 related to microtubule-microtubule interactions, but kinesin-12 has other functions not shared by kinesin-5 that are related to the ability of kinesin-12 to interact with actin.
Collapse
|
66
|
Sudo H, Baas PW. Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet 2010; 20:763-78. [PMID: 21118899 DOI: 10.1093/hmg/ddq521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is commonly stated that microtubules gradually disintegrate as tau becomes dissociated from them in tauopathies such as Alzheimer's disease. However, there has been no compelling evidence to date that such disintegration is due to depolymerization of microtubules from their ends. In recent studies, we have shown that neurons contain sufficient levels of the microtubule-severing protein termed katanin to completely break down the axonal microtubule array if not somehow attenuated. The presence of tau on axonal microtubules renders them notably less sensitive to katanin, prompting us to posit that microtubule disintegration in tauopathies may result from elevated severing of the microtubules as they lose tau. In support of this hypothesis, we demonstrate here that pathogenic tau mutants that bind less strongly to microtubules than wild-type tau provide correspondingly less protection against katanin-based severing. Using cultured rat hippocampal neurons, we pursued two potential therapies for fortifying axonal microtubules against excess severing by katanin, under conditions of tau depletion. We found that either deacetylating the microtubules via overexpression of HDAC6 or treating the neurons with NAP, a microtubule-interacting neuroprotective peptide, resulted in notable protection of the microtubules against katanin-based loss. In both cases, we found that these treatments also diminished the characteristic increase in axonal branching that normally accompanies tau depletion, an effect that is also known to be directly related to the severing of microtubules. These observations may be useful in developing therapeutic regimes for preserving microtubules against loss in the axons of patients suffering from tauopathies.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
67
|
Chetta J, Kye C, Shah SB. Cytoskeletal dynamics in response to tensile loading of mammalian axons. Cytoskeleton (Hoboken) 2010; 67:650-65. [DOI: 10.1002/cm.20478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc Natl Acad Sci U S A 2010; 107:12151-6. [PMID: 20566873 DOI: 10.1073/pnas.1004736107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubules are typically observed to buckle and loop during interphase in cultured cells by an unknown mechanism. We show that lateral microtubule movement and looping is a result of microtubules sliding against one another in interphase Drosophila S2 cells. RNAi of the kinesin-1 heavy chain (KHC), but not dynein or the kinesin-1 light chain, eliminates these movements. KHC-dependent microtubule sliding powers the formation of cellular processes filled with parallel microtubule bundles. The growth of these cellular processes is independent of the actin cytoskeleton. We further observe cytoplasmic microtubule sliding in Xenopus and Ptk2 cells, and show that antibody inhibition of KHC in mammalian cells prevents sliding. We therefore propose that, in addition to its well established role in organelle transport, an important universal function of kinesin-1 is to mediate cytoplasmic microtubule-microtubule sliding. This provides the cell with a dedicated mechanism to transport long and short microtubule filaments and drive changes in cell shape.
Collapse
|
69
|
Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci 2010; 30:7215-26. [PMID: 20505088 DOI: 10.1523/jneurosci.0048-10.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here we investigated whether the sensitivity of microtubules to severing by katanin is regulated by acetylation of the microtubules. During interphase, fibroblasts display long microtubules with discrete regions rich in acetylated tubulin. Overexpression of katanin for short periods of time produced breaks preferentially in these regions. In fibroblasts with experimentally enhanced or diminished microtubule acetylation, the sensitivity of the microtubules to severing by katanin was increased or decreased, respectively. In neurons, microtubules are notably more acetylated in axons than in dendrites. Experimental manipulation of microtubule acetylation in neurons yielded similar results on dendrites as observed on fibroblasts. However, under these experimental conditions, axonal microtubules were not appreciably altered with regard to their sensitivity to katanin. We hypothesized that this may be attributable to the effects of tau on the axonal microtubules, and this was validated by studies in which overexpression of tau caused microtubules in dendrites and fibroblasts to be more resistant to severing by katanin in a manner that was not dependent on the acetylation state of the microtubules. Interestingly, none of these various findings apply to spastin, because the severing of microtubules by spastin does not appear to be strongly influenced by either the acetylation state of the microtubules or tau. We conclude that sensitivity to microtubule severing by katanin is regulated by a balance of factors, including the acetylation state of the microtubules and the binding of tau to the microtubules. In the neuron, this contributes to regional differences in the microtubule arrays of axons and dendrites.
Collapse
|
70
|
Stepanova T, Smal I, van Haren J, Akinci U, Liu Z, Miedema M, Limpens R, van Ham M, van der Reijden M, Poot R, Grosveld F, Mommaas M, Meijering E, Galjart N. History-Dependent Catastrophes Regulate Axonal Microtubule Behavior. Curr Biol 2010; 20:1023-8. [DOI: 10.1016/j.cub.2010.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
|
71
|
Lamoureux P, Heidemann SR, Martzke NR, Miller KE. Growth and elongation within and along the axon. Dev Neurobiol 2010; 70:135-49. [PMID: 19950193 DOI: 10.1002/dneu.20764] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical tension is a particularly effective stimulus for axonal elongation, but little is known about how it leads to the formation of new axon. To better understand this process, we examined the movement of axonal branch points, beads bound to the axon, and docked mitochondria while monitoring axonal width. We found these markers moved in a pattern that suggests elongation occurs by viscoelastic stretching and volume addition along the axon. To test the coupling between "lengthening" and "growth," we measured axonal width while forcing axons to grow and then pause by controlling the tension applied to the growth cone or to the cell body. We found axons thinned during high rates of elongation and thickened when the growth cones were stationary. These findings suggest that forces cause lengthening because they stretch the axon and that growth occurs, in a loosely coupled step, by volume addition along the axon.
Collapse
Affiliation(s)
- Phillip Lamoureux
- Department of Zoology, Michigan State University, East Lansing, Michigan 48824-1115
| | | | | | | |
Collapse
|
72
|
Bitan A, Guild GM, Bar-Dubin D, Abdu U. Asymmetric microtubule function is an essential requirement for polarized organization of the Drosophila bristle. Mol Cell Biol 2010; 30:496-507. [PMID: 19917727 PMCID: PMC2798467 DOI: 10.1128/mcb.00861-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/14/2009] [Accepted: 11/06/2009] [Indexed: 01/21/2023] Open
Abstract
While previous studies have shown that microtubules (MTs) are essential for maintaining the highly biased axial growth of the Drosophila bristle, the mechanism for this process has remained vague. We report that the MT minus-end marker, Nod-KHC, accumulates at the bristle tip, suggesting that the MT network in the bristle is organized minus end out. Potential markers for studying the importance of properly polarized MTs to bristle axial growth are Ik2 and Spindle-F (Spn-F), since mutations in spn-F and ik2 affect bristle development. We demonstrate that Spn-F and Ik2 are localized to the bristle tip and that mutations in ik2 and spn-F affect bristle MT and actin organization. Specifically, mutation in ik2 affects polarized bristle MT function. It was previously found that the hook mutant exhibited defects in bristle polarity and that hook is involved in endocytic trafficking. We found that Hook is localized at the bristle tip and that this localization is affected in ik2 mutants, suggesting that the contribution of MTs within the bristle shaft is important for correct endocytic trafficking. Thus, our results show that MTs are organized in a polarized manner within the highly elongated bristle and that this organization is essential for biased bristle axial growth.
Collapse
Affiliation(s)
- Amir Bitan
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory M. Guild
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dikla Bar-Dubin
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Uri Abdu
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
73
|
Qiang L, Yu W, Liu M, Solowska JM, Baas PW. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell 2009; 21:334-44. [PMID: 19940015 PMCID: PMC2808232 DOI: 10.1091/mbc.e09-09-0834] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This article demonstrates that the augmentation of axonal branching induced by bFGF is explicable on the basis of an enhancement of microtubule-severing, and that three different proteins related to microtubule-severing are affected by treatment of neurons with bFGF. The formation of interstitial axonal branches involves the severing of microtubules at sites where new branches form. Here we wished to ascertain whether basic fibroblast growth factor (bFGF) enhances axonal branching through alterations in proteins involved in the severing of microtubules. We found that treatment of cultured hippocampal neurons with bFGF heightens expression of both katanin and spastin, which are proteins that sever microtubules in the axon. In addition, treatment with bFGF enhances phosphorylation of tau at sites expected to cause it to dissociate from microtubules. This is important because tau regulates the access of katanin to the microtubule. In live-cell imaging experiments, axons of neurons treated with bFGF displayed greater numbers of dynamic free ends of microtubules, as well as greater numbers of short mobile microtubules. Entirely similar enhancement of axonal branching, short microtubule transport, and frequency of microtubule ends was observed when spastin was overexpressed in the neurons. Depletion of either katanin or spastin with siRNA diminished but did not eliminate the enhancement in branching elicited by bFGF. Collectively, these results indicate that bFGF enhances axonal branch formation by augmenting the severing of microtubules through both a spastin-based mode and a katanin-based mode.
Collapse
Affiliation(s)
- Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
74
|
The fission yeast TACC protein Mia1p stabilizes microtubule arrays by length-independent crosslinking. Curr Biol 2009; 19:1861-8. [PMID: 19879140 DOI: 10.1016/j.cub.2009.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 01/14/2023]
Abstract
Microtubule (MT) arrays are mechanistic effectors of polarity specification and cell division. Linear bundles in which MTs are bridged laterally are dynamically assembled in systems ranging from differentiated metazoan cells to fungi in a process that remains poorly understood. Often, bundled MTs slide with respect to each other via molecular motors. In interphase cells of the fission yeast Schizosaccharomyces pombe, MT nucleation frequently occurs at preexisting arrays. As the nascent MT lengthens, stable antiparallel MT overlaps are thought to form through competition between motion of the minus-end-directed kinesin Klp2p and braking force exerted by the accumulating lateral crosslinker Ase1p. Here we show that Mia1p/Alp7p, a transforming acidic coiled-coil (TACC) protein, functions as a length-independent MT crosslinker. In cells lacking Mia1p MT-bundling activity, linear arrays frequently disassemble, accompanied by a marked increase in Ase1p off rate and erratic motion of sliding MTs. We propose that the combined action of lateral length-dependent (Ase1p) and terminal length-independent (Mia1p) crosslinkers is crucial for robust assembly and stability of linear MT arrays. Such use of qualitatively distinct crosslinking mechanisms in tandem may point to a general design principle in the engineering of stable cytoskeletal assemblies.
Collapse
|
75
|
Abstract
Neurofilaments assemble from three intermediate-filament proteins, contribute to the radial growth of axons, and are exceptionally stable. Microtubules are dynamic structures that assemble from tubulin dimers to support intracellular transport of molecules and organelles. We show here that neurofilaments, and other intermediate-filament proteins, contain motifs in their N-terminal domains that bind unassembled tubulin. Peptides containing such motifs inhibit the in vitro polymerization of microtubules and can be taken up by cultured cells in which they disrupt microtubules leading to altered cell shapes and an arrest of division. In transgenic mice in which neurofilaments are withheld from the axonal compartment, axonal tubulin accumulation is normal but microtubules assemble in excessive numbers. These observations suggest a model in which axonal neurofilaments modulate local microtubule assembly. This capacity also suggests novel mechanisms through which inherited or acquired disruptions in intermediate filaments might contribute to pathogenesis in multiple conditions.
Collapse
|
76
|
Weissmann C, Reyher HJ, Gauthier A, Steinhoff HJ, Junge W, Brandt R. Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 2009; 10:1655-68. [PMID: 19744140 DOI: 10.1111/j.1600-0854.2009.00977.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of neurons, the microtubule-associated tau proteins show a graded proximo-distal distribution in axons. In tauopathies such as Alzheimer's disease, tau accumulates in the somatodendritic compartment. To scrutinize the determinants of tau's distribution and motion, we constructed photoactivatable green fluorescent protein (GFP)-tagged tau fusion proteins and recorded their distribution after focal activation in living cells. Simulation showed that the motion of tau was compatible with diffusion/reaction as opposed to active transport/reaction. Effective diffusion constants of 0.7-0.8 microm(2)/second were calculated in neurites of PC12 cells and primary cortical neurons. Furthermore, tau's amino terminal projection domain mediated binding and enrichment of tau at distal neurites indicating that the tip of a neurite acts as an adsorber trapping tau protein. Treatment with taxol, incorporation of disease-related tau modifications, experimentally induced hyperphosphorylation and addition of preaggregated amyloid beta peptides (Abeta) increased the effective diffusion constant compatible with a decreased binding to microtubules. Distal enrichment was present after taxol treatment but was suppressed at disease-relevant conditions. The data suggest that (i) dynamic binding of tau to microtubules and diffusion along microtubules and (ii) trapping at the tip of a neurite both contribute to its distribution during development and disease.
Collapse
Affiliation(s)
- Carina Weissmann
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
77
|
Vinogradova T, Miller PM, Kaverina I. Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 2009; 8:2168-74. [PMID: 19556895 DOI: 10.4161/cc.8.14.9074] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell migration requires polarization of the cell into the leading edge and the trailing edge. Microtubules (MTs) are indispensable for polarized cell migration in the majority of cell types. To support cell polarity, MT network has to be functionally and structurally asymmetric. How is this asymmetry achieved? In interphase cells, MTs form a dynamic system radiating from a centrosome-based MT-organizing center (MTOC) to the cell edges. Symmetry of this radial array can be broken according to four general principles. Asymmetry occurs due to differential modulation of MT dynamics, relocation of existing MTs within a cell, adding an asymmetric nucleation site, and/or repositioning of a symmetric nucleation site to one side of a cell. Combinations of these asymmetry regulation principles result in a variety of asymmetric MT networks typical for diverse motile cell types. Importantly, an asymmetric MT array is formed at a non-conventional MT nucleation site, the Golgi. Here, we emphasize the contribution of this array to the asymmetry of MT network.
Collapse
Affiliation(s)
- Tatiana Vinogradova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | |
Collapse
|
78
|
Gov NS. Physical model for the width distribution of axons. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 29:337-344. [PMID: 19579039 DOI: 10.1140/epje/i2009-10476-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The distribution of widths of axons was recently investigated, and was found to have a distinct peak at an optimized value. The optimized axon width at the peak may arise from the conflicting demands of minimizing energy consumption and assuring signal transmission reliability. The distribution around this optimized value is found to have a distinct non-Gaussian shape, with an exponential "tail". We propose here a mechanical model whereby this distribution arises from the interplay between the elastic energy of the membrane surrounding the axon core, the osmotic pressure induced by the neurofilaments inside the axon bulk, and active processes that remodel the microtubules and neurofilaments inside the axon. The axon's radius of curvature can be determined by the cell's control of the osmotic pressure difference across the membrane, the membrane tension or by changing the composition of the different components of the membrane. We find that the osmotic pressure, determined by the neurofilaments, seems to be the dominant control parameter.
Collapse
Affiliation(s)
- N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
79
|
Bicek AD, Tüzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol Biol Cell 2009; 20:2943-53. [PMID: 19403700 PMCID: PMC2695801 DOI: 10.1091/mbc.e08-09-0909] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/23/2009] [Accepted: 04/16/2009] [Indexed: 01/01/2023] Open
Abstract
Microtubules (MTs) have been proposed to act mechanically as compressive struts that resist both actomyosin contractile forces and their own polymerization forces to mechanically stabilize cell shape. To identify the origin of MT bending, we directly observed MT bending and F-actin transport dynamics in the periphery of LLC-PK1 epithelial cells. We found that F-actin is nearly stationary in these cells even as MTs are deformed, demonstrating that MT bending is not driven by actomyosin contractility. Furthermore, the inhibition of myosin II activity through the use of blebbistatin results in microtubules that are still dynamically bending. In addition, as determined by fluorescent speckle microscopy, MT polymerization rarely results, if ever, in bending. We suppressed dynamic instability using nocodazole, and we observed no qualitative change in the MT bending dynamics. Bending most often results from anterograde transport of proximal portions of the MT toward a nearly stationary distal tip. Interestingly, we found that in an in vitro kinesin-MT gliding assay, MTs buckle in a similar manner. To make quantitative comparisons, we measured curvature distributions of observed MTs and found that the in vivo and in vitro curvature distributions agree quantitatively. In addition, the measured MT curvature distribution is not Gaussian, as expected for a thermally driven semiflexible polymer, indicating that thermal forces play a minor role in MT bending. We conclude that many of the known mechanisms of MT deformation, such as polymerization and acto-myosin contractility, play an inconsequential role in mediating MT bending in LLC-PK1 cells and that MT-based molecular motors likely generate most of the strain energy stored in the MT lattice. The results argue against models in which MTs play a major mechanical role in LLC-PK1 cells and instead favor a model in which mechanical forces control the spatial distribution of the MT array.
Collapse
Affiliation(s)
| | - Erkan Tüzel
- Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455
| | | | - Maruti Uppalapati
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802; and
| | - William O. Hancock
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802; and
| | - Daniel M. Kroll
- Department of Physics, North Dakota State University, Fargo, ND 58105
| | | |
Collapse
|
80
|
Shea TB, Lee S, Kushkuley J, Dubey M, Chan WKH. Neurofilament dynamics: a tug of war by microtubule motors. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural support for axons, which can consist of volumes thousands of times larger than the neuronal perikaryon, is provided in part by neurofilaments (NFs), the major fibrous constituent of the axonal cytoskeleton. Most NFs undergo anterograde transport (towards the synapse or growth cone), while a few undergo retrograde transport (back towards the perikaryon). Some NFs exhibit an extended residence time along axons, which allows NFs to provide structural support to the axon yet minimizes NF turnover, which would otherwise impart a prohibitive metabolic burden upon the neuron. Herein, we explore known and hypothesized roles for microtubule motors in transport and distribution of NFs along axons. We present evidence that those NFs that display extended residence along axons are critically dependent upon surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force regulating their distribution.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sangmook Lee
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Jacob Kushkuley
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Maya Dubey
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Walter K-H Chan
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
81
|
Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem 2009; 109:683-93. [DOI: 10.1111/j.1471-4159.2009.06013.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller CCJ, Shaw PJ, Grierson AJ. Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 2009; 110:34-44. [PMID: 19453301 DOI: 10.1111/j.1471-4159.2009.06104.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.
Collapse
Affiliation(s)
- Paul R Kasher
- Academic Neurology Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I, Siciliano G, Di Bella D, Taroni F, Bassi MT, Cappelletti G, Rugarli EI. Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem 2009; 108:1277-88. [PMID: 19141076 DOI: 10.1111/j.1471-4159.2009.05875.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary spastic paraplegia (HSP) is characterized by weakness and spasticity of the lower limbs, owing to degeneration of corticospinal axons. The most common form is due to heterozygous mutations in the SPG4 gene, encoding spastin, a microtubule (MT)-severing protein. Here, we show that neurite growth in immortalized and primary neurons responds in pleiotropic ways to changes in spastin levels. Spastin depletion alters the development of primary hippocampal neurons leading to abnormal neuron morphology, dystrophic neurites, and axonal growth defects. By live imaging with End-Binding Protein 3-Fluorescent Green Protein (EB3-GFP), a MT plus-end tracking protein, we ascertained that the assembly rate of MTs is reduced when spastin is down-regulated. Spastin over-expression at high levels strongly suppresses neurite maintenance, while slight spastin up-regulation using an endogenous promoter enhances neurite branching and elongation. Spastin severing activity is exerted preferentially on stable acetylated and detyrosinated MTs. We further show that SPG4 nonsense or splice site mutations found in hereditary spastic paraplegia patients result in reduced spastin levels, supporting haploinsufficiency as the molecular cause of the disease. Our study reveals that SPG4 is a dosage-sensitive gene, and broadens the understanding of the role of spastin in neurite growth and MT dynamics.
Collapse
Affiliation(s)
- Elena Riano
- Division of Biochemistry and Genetics, Istituto Neurologico "C. Besta", Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Axons are occupied by dense arrays of cytoskeletal elements called microtubules, which are critical for generating and maintaining the architecture of the axon, and for acting as railways for the transport of organelles in both directions within the axon. Microtubules are organized and regulated by molecules that affect their assembly and disassembly, their stabilization, their association with other cytoskeletal elements, and their alignment and bundling with one another. Recent studies have accentuated the role of molecular motor proteins and microtubule-severing proteins in the establishment and maintenance of the axonal microtubule array. The growing body of knowledge on the proteins and mechanisms that regulate axonal microtubules has fostered a better understanding of how many debilitating diseases cause axons to degenerate. The purpose of this chapter is to provide an update on current knowledge of axonal microtubules and the proteins that regulate them, and to reflect on cutting-edge findings linking these proteins and mechanisms to diseases that afflict the human population.
Collapse
|
85
|
Mandelkow EM, Thies E, Konzack S, Mandelkow E. Tau and Intracellular Transport in Neurons. INTRACELLULAR TRAFFIC AND NEURODEGENERATIVE DISORDERS 2009. [DOI: 10.1007/978-3-540-87941-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
86
|
Shea TB, Chan WKH, Kushkuley J, Lee S. Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl Cell Differ 2009; 48:29-45. [PMID: 19554281 DOI: 10.1007/400_2009_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Departments of Biological Sciences and Biochemistry, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, England.
| | | | | | | |
Collapse
|
87
|
Nadar VC, Ketschek A, Myers KA, Gallo G, Baas PW. Kinesin-5 is essential for growth-cone turning. Curr Biol 2008; 18:1972-7. [PMID: 19084405 DOI: 10.1016/j.cub.2008.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 11/05/2008] [Accepted: 11/10/2008] [Indexed: 11/15/2022]
Abstract
Inhibition of kinesin-5, a mitotic motor protein also expressed in neurons, causes axons to grow faster as a result of alterations in the forces on microtubules (MTs) in the axonal shaft. Here, we investigate whether kinesin-5 plays a role in growth-cone guidance. Growth-cone turning requires that MTs in the central (C-) domain enter the peripheral (P-) domain in the direction of the turn. We found that inhibition of kinesin-5 in cultured neurons prevents MTs from polarizing within growth cones and causes them to grow past cues that would normally cause them to turn. We found that kinesin-5 is enriched in the transition (T-) zone of the growth cone and that kinesin-5 is preferentially phosphorylated on the side opposite the invasion of MTs. Moreover, when a growth cone encounters a turning cue, phospho-kinesin-5 polarizes even before the growth cone turns. Additional studies indicate that kinesin-5 works in part by antagonizing cytoplasmic dynein and that these motor-driven forces function together with the dynamic properties of the MTs to determine whether MTs can enter the P-domain. We propose that kinesin-5 permits MTs to selectively invade one side of the growth cone by opposing their entry into the other side.
Collapse
Affiliation(s)
- Vidya C Nadar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
88
|
Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 2008; 7:1127-38. [DOI: 10.1016/s1474-4422(08)70258-8] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 2008; 10:1172-80. [PMID: 18758451 DOI: 10.1038/ncb1777] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/05/2008] [Indexed: 11/08/2022]
Abstract
Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.
Collapse
|
90
|
Abstract
A paper by DeGiorgis et al. (DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; DOI: 10.1111/j.1600-0854.2008.00809.x) in this issue of Traffic reports on the identification and function of a second squid kinesin, a kinesin-3 motor. As expected, the newly discovered motor associates with axoplasmic organelles in situ and powers motility along microtubules of vesicles isolated from squid axoplasm. Less expected was the finding that kinesin-3 may be the predominant motor for anterograde organelle movement in the squid axon, which challenges the so far undisputed view that this function is fulfilled by the conventional kinesin, kinesin-1. These novel findings let us wonder what the real function of kinesin-1--the most abundant motor in squid axons--actually is.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
91
|
Kulic IM, Brown AEX, Kim H, Kural C, Blehm B, Selvin PR, Nelson PC, Gelfand VI. The role of microtubule movement in bidirectional organelle transport. Proc Natl Acad Sci U S A 2008; 105:10011-6. [PMID: 18626022 PMCID: PMC2481308 DOI: 10.1073/pnas.0800031105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Indexed: 12/22/2022] Open
Abstract
We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.
Collapse
Affiliation(s)
- Igor M Kulic
- School of Engineering and Applied Sciences, 29 Oxford Street, Pierce Hall 409, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for alpha- and beta-bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for alpha- and 460 MPa for beta-structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 +/- 0.14 GPa for alpha-tubulin structures and 1.39 +/- 0.68 GPa for beta-tubulin. Circumferentially the alpha- and beta-moduli were 936 +/- 216 MPa and 658 +/- 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components.
Collapse
|
93
|
Abstract
Neurofilament (NF) phosphorylation has long been considered to regulate axonal transport rate and in doing so to provide stability to mature axons. Studies utilizing mice in which the C-terminal region of NF subunits (which contains the vast majority of phosphorylation sites) has been deleted has prompted an ongoing challenge to this hypothesis. We evaluate the collective evidence to date for and against a role for NF C-terminal phosphorylation in regulation of axonal transport and in providing structural support for axons, including some novel studies from our laboratory. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance can contribute to motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
94
|
Miller KE, Heidemann SR. What is slow axonal transport? Exp Cell Res 2008; 314:1981-90. [DOI: 10.1016/j.yexcr.2008.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 12/26/2022]
|
95
|
Sudo H, Maru Y. LAPSER1/LZTS2: a pluripotent tumor suppressor linked to the inhibition of katanin-mediated microtubule severing. Hum Mol Genet 2008; 17:2524-40. [DOI: 10.1093/hmg/ddn153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
96
|
Yu W, Qiang L, Solowska JM, Karabay A, Korulu S, Baas PW. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol Biol Cell 2008; 19:1485-98. [PMID: 18234839 DOI: 10.1091/mbc.e07-09-0878] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurons express two different microtubule-severing proteins, namely P60-katanin and spastin. Here, we performed studies on cultured neurons to ascertain whether these two proteins participate differently in axonal branch formation. P60-katanin is more highly expressed in the neuron, but spastin is more concentrated at sites of branch formation. Overexpression of spastin dramatically enhances the formation of branches, whereas overexpression of P60-katanin does not. The excess spastin results in large numbers of short microtubules, whereas the excess P60-katanin results in short microtubules intermingled with longer microtubules. We hypothesized that these different microtubule-severing patterns may be due to the presence of molecules such as tau on the microtubules that more strongly shield them from being severed by P60-katanin than by spastin. Consistent with this hypothesis, we found that axons depleted of tau show a greater propensity to branch, and that this is true whether or not the axons are also depleted of spastin. We propose that there are two modes by which microtubule severing is orchestrated during axonal branch formation, one based on the local concentration of spastin at branch sites and the other based on local detachment from microtubules of molecules such as tau that regulate the severing properties of P60-katanin.
Collapse
Affiliation(s)
- Wenqian Yu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
97
|
Myers KA, Baas PW. Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. ACTA ACUST UNITED AC 2007; 178:1081-91. [PMID: 17846176 PMCID: PMC2064629 DOI: 10.1083/jcb.200702074] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kinesin-5 is a homotetrameric motor protein that interacts with adjacent microtubules in the mitotic spindle. Kinesin-5 is also highly expressed in developing postmitotic neurons. Axons of cultured neurons experimentally depleted of kinesin-5 grow up to five times longer than controls and display more branches. The faster growth rates are accompanied by a doubling of the frequency of transport of short microtubules, suggesting a major role for kinesin-5 in the balance of motor-driven forces on the axonal microtubule array. Live-cell imaging reveals that the effects on axonal length of kinesin-5 depletion are caused partly by a lower propensity of the axon and newly forming branches to undergo bouts of retraction. Overexpression of wild-type kinesin-5, but not a rigor mutant of kinesin-5, has the inverse effect on axonal length. These results indicate that kinesin-5 imposes restrictions on the growth of the axon and does so at least in part by generating forces on the axonal microtubule array.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
98
|
Jaworski J, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 2007; 40:619-37. [PMID: 18023603 DOI: 10.1016/j.biocel.2007.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/16/2007] [Accepted: 10/11/2007] [Indexed: 11/16/2022]
Abstract
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology , Warsaw, Poland.
| | | | | |
Collapse
|
99
|
Ahmad FJ, He Y, Myers KA, Hasaka TP, Francis F, Black MM, Baas PW. Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 2007; 7:524-37. [PMID: 16643276 DOI: 10.1111/j.1600-0854.2006.00403.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated potential roles of cytoplasmic dynein in organizing axonal microtubules either by depleting dynein heavy chain from cultured neurons or by experimentally disrupting dynactin. The former was accomplished by siRNA while the latter was accomplished by overexpressing P50-dynamitin. Both methods resulted in a persistent reduction in the frequency of transport of short microtubules. To determine if the long microtubules in the axon also undergo dynein-dependent transport, we ascertained the rates of EGFP-EB3 "comets" observed at the tips of microtubules during assembly. The rates of the comets, in theory, should reflect a combination of the assembly rate and any potential transport of the microtubule. Comets were initially slowed during P50-dynamitin overexpression, but this effect did not persist beyond the first day and was never observed in dynein-depleted axons. In fact, the rates of the comets were slightly faster in dynein-depleted axons. We conclude that the transient effect of P50-dynamitin overexpression reflects a reduction in microtubule polymerization rates. Interestingly, after prolonged dynein depletion, the long microtubules were noticeably misaligned in the distal regions of axons and failed to enter the filopodia of growth cones. These results suggest that the forces generated by cytoplasmic dynein do not transport long microtubules, but may serve to align them with one another and also permit them to invade filopodia.
Collapse
Affiliation(s)
- Fridoon J Ahmad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Fiala JC, Feinberg M, Peters A, Barbas H. Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 2007; 212:195-207. [PMID: 17717688 DOI: 10.1007/s00429-007-0153-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/10/2007] [Indexed: 01/06/2023]
Abstract
Recent data show that amyloid precursor protein accumulates inside axons after disruption of fast axonal transport, but how this leads to mature plaques with extracellular amyloid remains unclear. To investigate this issue, primitive plaques in prefrontal cortex of aged rhesus monkeys were reconstructed using serial section electron microscopy. The swollen profiles of dystrophic neurites were found to be diverticula from the main axis of otherwise normal neurites. Microtubules extended from the main neurite axis into the diverticulum to form circular loops or coils, providing a transport pathway for trapping organelles. The quantity and morphology of organelles contained within diverticula suggested a progression of degeneration. Primitive diverticula contained microtubules and normal mitochondria, while larger, presumably older, diverticula contained large numbers of degenerating mitochondria. In advanced stages of degeneration, apparent autophagosomes derived from mitochondria exhibited a loose lamellar to filamentous internal structure. Similar filamentous material and remnants of mitochondria were visible in the extracellular spaces of plaques. This progression of degeneration suggests that extracellular filaments originate inside degenerating mitochondria of neuritic diverticula, which may be a common process in diverse diseases.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA.
| | | | | | | |
Collapse
|