51
|
Xin Y, Zhang H, Hu Q, Tian S, Wang C, Luo L, Meng F. Oligotyrosines Inhibit Amyloid Formation of Human Islet Amyloid Polypeptide in a Tyrosine-Number-Dependent Manner. ACS Biomater Sci Eng 2018; 5:1092-1099. [DOI: 10.1021/acsbiomaterials.8b01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huazhi Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenhui Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
52
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
53
|
Miraee-Nedjad S, Sims PFG, Schwartz JM, Doig AJ. Effect of IAPP on the proteome of cultured Rin-5F cells. BMC BIOCHEMISTRY 2018; 19:9. [PMID: 30419808 PMCID: PMC6233276 DOI: 10.1186/s12858-018-0099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022]
Abstract
Background Islet amyloid polypeptide (IAPP) or amylin deposits can be found in the islets of type 2 diabetes patients. The peptide is suggested to be involved in the etiology of the disease through formation of amyloid deposits and destruction of β islet cells, though the underlying molecular events leading from IAPP deposition to β cell death are still largely unknown. Results We used OFFGEL™ proteomics to study how IAPP exposure affects the proteome of rat pancreatic insulinoma Rin-5F cells. The OFFGEL™ methodology is highly effective at generating quantitative data on hundreds of proteins affected by IAPP, with its accuracy confirmed by In Cell Western and Quantitative Real Time PCR results. Combining data on individual proteins identifies pathways and protein complexes affected by IAPP. IAPP disrupts protein synthesis and degradation, and induces oxidative stress. It causes decreases in protein transport and localization. IAPP disrupts the regulation of ubiquitin-dependent protein degradation and increases catabolic processes. IAPP causes decreases in protein transport and localization, and affects the cytoskeleton, DNA repair and oxidative stress. Conclusions Results are consistent with a model where IAPP aggregates overwhelm the ability of a cell to degrade proteins via the ubiquitin system. Ultimately this leads to apoptosis. IAPP aggregates may be also toxic to the cell by causing oxidative stress, leading to DNA damage or by decreasing protein transport. The reversal of any of these effects, perhaps by targeting proteins which alter in response to IAPP, may be beneficial for type II diabetes. Electronic supplementary material The online version of this article (10.1186/s12858-018-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Miraee-Nedjad
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
54
|
Buchanan LE, Maj M, Dunkelberger EB, Cheng PN, Nowick JS, Zanni MT. Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Biochemistry 2018; 57:6470-6478. [PMID: 30375231 DOI: 10.1021/acs.biochem.8b00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is now recognized that many amyloid-forming proteins can associate into multiple fibril structures. Here, we use two-dimensional infrared spectroscopy to study two fibril polymorphs formed by human islet amyloid polypeptide (hIAPP or amylin), which is associated with type 2 diabetes. The polymorphs exhibit different degrees of structural organization near the loop region of hIAPP fibrils. The relative populations of these polymorphs are systematically altered by the presence of macrocyclic peptides which template β-sheet formation at specific sections of the hIAPP sequence. These experiments are consistent with polymorphs that result from competing pathways for fibril formation and that the macrocycles bias hIAPP aggregation toward one pathway or the other. Another macrocyclic peptide that matches the loop region but extends the lag time leaves the relative populations of the polymorphs unaltered, suggesting that the branching point for structural divergence occurs after the lag phase, when the oligomers convert into seeds that template fibril formation. Thus, we conclude that the structures of the polymorphs stem from restricting oligomers along diverging folding pathways, which has implications for drug inhibition, cytotoxicity, and the free energy landscape of hIAPP aggregation.
Collapse
Affiliation(s)
- Lauren E Buchanan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Emily B Dunkelberger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Pin-Nan Cheng
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| |
Collapse
|
55
|
Hoffmann AR, Saravanan MS, Lequin O, Killian JA, Khemtemourian L. A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1783-1792. [DOI: 10.1016/j.bbamem.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
|
56
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
57
|
Maity BK, Vishvakarma V, Surendran D, Rawat A, Das A, Pramanik S, Arfin N, Maiti S. Spontaneous Fluctuations Can Guide Drug Design Strategies for Structurally Disordered Proteins. Biochemistry 2018; 57:4206-4213. [PMID: 29928798 DOI: 10.1021/acs.biochem.8b00504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Structure-based "rational" drug design strategies fail for diseases associated with intrinsically disordered proteins (IDPs). However, structural disorder allows large-amplitude spontaneous intramolecular dynamics in a protein. We demonstrate a method that exploits this dynamics to provide quantitative information about the degree of interaction of an IDP with other molecules. A candidate ligand molecule may not bind strongly, but even momentary interactions can be expected to perturb the fluctuations. We measure the amplitude and frequency of the equilibrium fluctuations of fluorescently labeled small oligomers of hIAPP (an IDP associated with type II diabetes) in a physiological solution, using nanosecond fluorescence cross-correlation spectroscopy. We show that the interterminal distance fluctuates at a characteristic time scale of 134 ± 10 ns, and 6.4 ± 0.2% of the population is in the "closed" (quenched) state at equilibrium. These fluctuations are affected in a dose-dependent manner by a series of small molecules known to reduce the toxicity of various amyloid peptides. The degree of interaction increases in the following order: resveratrol < epicatechin ∼ quercetin < Congo red < epigallocatechin 3-gallate. Such ordering can provide a direction for exploring the chemical space for finding stronger-binding ligands. We test the biological relevance of these measurements by measuring the effect of these molecules on the affinity of hIAPP for lipid vesicles and cell membranes. We find that the ability of a molecule to modulate intramolecular fluctuations correlates well with its ability to lower membrane affinity. We conclude that structural disorder may provide new avenues for rational drug design for IDPs.
Collapse
Affiliation(s)
- Barun Kumar Maity
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Vicky Vishvakarma
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Dayana Surendran
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Anoop Rawat
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Anirban Das
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Shreya Pramanik
- UM-DAE Centre for Excellence in Basic Sciences , University of Mumbai , Kalina, Mumbai 400098 , India
| | - Najmul Arfin
- Center for Interdisciplinary Research in Basic Sciences , Jamia Milia Islamia , New Delhi 110025 , India
| | - Sudipta Maiti
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Homi Bhabha Road , Colaba, Mumbai 400005 , India
| |
Collapse
|
58
|
Mietlicki-Baase EG. Amylin in Alzheimer's disease: Pathological peptide or potential treatment? Neuropharmacology 2018; 136:287-297. [PMID: 29233636 PMCID: PMC5994175 DOI: 10.1016/j.neuropharm.2017.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease for which we currently lack effective treatments or a cure. The pancreatic peptide hormone amylin has recently garnered interest as a potential pharmacological target for the treatment of AD. A number of studies have demonstrated that amylin and amylin analogs like the FDA-approved diabetes drug pramlintide can reduce amyloid burden in the brain and improve cognitive symptoms of AD. However, other data suggest that amylin may have pathological effects in AD due to its propensity to misfold and aggregate under certain conditions. Here, the literature supporting a beneficial versus harmful role of amylin in AD is reviewed. Additionally, several critical gaps in the literature are discussed, such as our limited understanding of the amylin system during aging and in disease states, as well as complexities of amylin receptor signaling and of changing pathophysiology during AD progression that might underlie the seemingly conflicting or contradictory results in the amylin/AD literature. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
59
|
Amperometric immunoassay for the obesity biomarker amylin using a screen printed carbon electrode functionalized with an electropolymerized carboxylated polypyrrole. Mikrochim Acta 2018; 185:323. [PMID: 29886520 DOI: 10.1007/s00604-018-2863-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
Amylin (the islet amyloid polypeptide) is a hormone related to adiposity, hunger and satiety. It is co-secreted with insulin from pancreatic B-cells. An amperometric immunosensor is presented here for the determination of amylin. It is making use of a screen printed carbon electrode (SPCE) functionalized with electropolymerized poly(pyrrole propionic acid) (pPPA) with abundant carboxyl groups that facilitate covalent binding of antibody against amylin. A competitive immunoassay was implemented using biotinylated amylin and streptavidin labeled with horse radish peroxidase (HRP-Strept) as the enzymatic tracer. The amperometric detection of H2O2 mediated by hydroquinone was employed as an electrochemical probe to monitor the affinity reaction. The variables involved in the preparation and function of the immunosensor were optimized and the electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The calibration graph for amylin, obtained by amperometry at -200 mV vs Ag pseudo-reference electrode, showed a range of linearity extending from 1.0 fg∙mL-1 to 50 pg∙mL-1, with a detection limit of 0.92 fg∙mL-1. This is approximately 7000 times lower than the minimum detectable concentration reported for the ELISA immunoassays available for amylin. The assay has excellent reproducibility and good selectivity over potential interferents. Graphical abstract Schematic of an amperometric competitive immunoassay for the obesity biomarker amylin using a poly(pyrrole propionic acid)-modified screen-printed electrode. The detection limit is 0.92 fg∙mL-1 amylin. The method provides excellent reproducibility for the measurements, good selectivity and successful applicability to human urine and serum samples.
Collapse
|
60
|
Rawat A, Langen R, Varkey J. Membranes as modulators of amyloid protein misfolding and target of toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1863-1875. [PMID: 29702073 DOI: 10.1016/j.bbamem.2018.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus. Significant number of studies have focused on how monomeric, disaggregated proteins transition into various amyloid structures leading to identification of a vast number of aggregation promoting molecules and processes over the years. Inasmuch as these factors likely enhance the formation of toxic, misfolded species, they might act as risk factors in disease. Cellular membranes, and particularly certain lipids, are considered to be among the major players for aggregation of α-synuclein and IAPP, and membranes might also be the target of toxicity. Past studies have utilized an array of biophysical tools, both in vitro and in vivo, to expound the membrane-mediated aggregation. Here, we focus on membrane interaction of α-synuclein and IAPP, and how various kinds of membranes catalyze or modulate the aggregation of these proteins and how, in turn, these proteins disrupt membrane integrity, both in vitro and in vivo. The membrane interaction and subsequent aggregation has been briefly contrasted to aggregation of α-synuclein and IAPP in solution. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Anoop Rawat
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
61
|
Abstract
The oligomerization and fibrillation of human islet amyloid polypeptide (hIAPP) play a central role in the pathogenesis of type 2 diabetes. Strategies for remodelling the formation of hIAPP oligomers and fibrils have promising application potential in type 2 diabetes therapy. Herein, we demonstrated that PEG-PE micelle could inhibit hIAPP oligomerization and fibrillation through blocking the hydrophobic interaction and the conformational change from random coil to β-sheet structures of hIAPP. In addition, we also found that PEG-PE micelle could remodel the preformed hIAPP fibrils allowing the formation of short fibrils and co-aggregates. Taken together, PEG-PE micelle could rescue hIAPP-induced cytotoxicity by decreasing the content of hIAPP oligomers and fibrils that are related to the oxidative stress and cell membrane permeability. This study could be beneficial for the design and development of antiamyloidogenic agents.
Collapse
|
62
|
Dong X, Qiao Q, Qian Z, Wei G. Recent computational studies of membrane interaction and disruption of human islet amyloid polypeptide: Monomers, oligomers and protofibrils. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [PMID: 29530482 DOI: 10.1016/j.bbamem.2018.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type 2 diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process. The detailed molecular mechanisms of hIAPP-membrane interactions and membrane disruption are complex and remain mostly unknown. Here in this review, we focus on recent computational studies that investigated the interactions of full length and fragmentary hIAPP monomers, oligomers and protofibrils with anionic, zwitterionic and mixed anionic-zwitterionic lipid bilayers. We mainly discuss the binding orientation of monomers at membrane surface, the conformational ensemble and the oligomerization of hIAPP inside membranes, the effect of lipid composition on hIAPP oligomers/protofibrils-membrane interactions, and the hIAPP-induced membrane perturbation. This review provides mechanistic insights into the interactions between hIAPP and lipid bilayers with different lipid composition at an atomistic level, which is helpful to understand the hIAPP cytotoxicity mediated by membrane. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, China
| | - Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China.
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, China.
| |
Collapse
|
63
|
Mo XD, Gao LP, Wang QJ, Yin J, Jing YH. Lipid accelerating the fibril of islet amyloid polypeptide aggravated the pancreatic islet injury in vitro and in vivo. Lipids Health Dis 2018. [PMID: 29523142 PMCID: PMC5845206 DOI: 10.1186/s12944-018-0694-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The fibrillation of islet amyloid polypeptide (IAPP) triggered the amyloid deposition, then enhanced the loss of the pancreatic islet mass. However, it is not clear what factor is the determinant in development of the fibril formation. The aim of this study is to investigate the effects of lipid on IAPP fibril and its injury on pancreatic islet. Methods The fibril form of human IAPP (hIAPP) was tested using thioflavin-T fluorescence assay and transmission electron microscope technology after incubated with palmitate for 5 h at 25 °C. The cytotoxicity of fibril hIAPP was evaluated in INS-1 cells through analyzing the leakage of cell membrane and cell apoptosis. Type 2 diabetes mellitus (T2DM) animal model was induced with low dose streptozotocin combined the high-fat diet feeding for two months in rats. Plasma biochemistry parameters were measured before sacrificed. Pancreatic islet was isolated to evaluate their function. Results The results showed that co-incubation of hIAPP and palmitate induced more fibril form. Fibril hIAPP induced cell lesions including cell membrane leakage and cell apoptosis accompanied insulin mRNA decrease in INS-1 cell lines. In vivo, Plasma glucose, triglyceride, rIAPP and insulin increased in T2DM rats compared with the control group. In addition, IAPP and insulin mRNA increased in pancreatic islet of T2DM rats. Furthermore, T2DM induced the reduction of insulin receptor expression and cleaved caspase-3 overexpression in pancreatic islet. Conclusions Results in vivo and in vitro suggested that lipid and IAPP plays a synergistic effect on pancreatic islet cell damage, which implicated in enhancing the IAPP expression and accelerating the fibril formation of IAPP.
Collapse
Affiliation(s)
- Xiao-Dan Mo
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China.
| |
Collapse
|
64
|
Amyloid growth and membrane damage: Current themes and emerging perspectives from theory and experiments on Aβ and hIAPP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1625-1638. [PMID: 29501606 DOI: 10.1016/j.bbamem.2018.02.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease (AD) and Type 2 diabetes mellitus (T2DM) are two incurable diseases both hallmarked by an abnormal deposition of the amyloidogenic peptides Aβ and Islet Amyloid Polypeptide (IAPP) in affected tissues. Epidemiological data demonstrate that patients suffering from diabetes are at high risk of developing AD, thus making the search for factors common to the two pathologies of special interest for the design of new therapies. Accumulating evidence suggests that the toxic properties of both Aβ or IAPP are ascribable to their ability to damage the cell membrane. However, the molecular details describing Aβ or IAPP interaction with membranes are poorly understood. This review focuses on biophysical and in silico studies addressing these topics. Effects of calcium, cholesterol and membrane lipid composition in driving aberrant Aβ or IAPP interaction with the membrane will be specifically considered. The cross correlation of all these factors appears to be a key issue not only to shed light in the countless and often controversial reports relative to this area but also to gain valuable insights into the central events leading to membrane damage caused by amyloidogenic peptides. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
|
65
|
Frigori RB. Be positive: optimizing pramlintide from microcanonical analysis of amylin isoforms. Phys Chem Chem Phys 2018; 19:25617-25633. [PMID: 28905065 DOI: 10.1039/c7cp04074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amylin, or human islet amyloid polypeptide (hIAPP), is a 37-residue hormone synergistic to insulin and co-secreted with it by β-cells in the pancreas. The deposition of its cytotoxic amyloid fibrils is strongly related to the progression of Type II diabetes (T2D) and islet graft failures. Notably, isoforms from some mammalian species, such as rats (rIAPP) and porcine (pIAPP), present a few key mutations preventing aggregation. This has lead to biotechnological development of drugs for adjunct therapies of T2D, such as pramlintide, a variant of hIAPP inspired by rIAPP whose proline substitutions have β-strand fibril-breaking properties. Ideally, such a drug should be formulated with insulin and co-administered, but this has been prevented by a poor solubility profile at the appropriate pH. Hopefully, this could be improved with appropriate point mutations, increasing the molecular net charge. Despite experimental progress, preliminary screening during rational drug design can greatly benefit from thermodynamic insight derived from molecular simulations. So we introduce microcanonical thermostatistics analysis of multicanonical (MUCA) simulations of wild-type amylin isoforms as a systematic assessment of protein thermostability. As a consequence of this comprehensive investigation, the most suitable single-point mutations able to optimize pramlintide are located among the wild-type amylin isoforms. In particular, we find that aggregation inhibition and increased solubility are inherited by pramlintide through further S20R substitution typical of pIAPP. Thus, we provide a consistent thermostatistical methodology to aid the design of improved adjunct therapies for T2D according to current clinical knowledge.
Collapse
Affiliation(s)
- Rafael B Frigori
- Universidade Tecnológica Federal do Paraná, Rua Cristo Rei 19, 85902-490, Toledo, PR, Brazil.
| |
Collapse
|
66
|
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:384. [PMID: 30061862 PMCID: PMC6054968 DOI: 10.3389/fendo.2018.00384] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes is caused by chronic insulin resistance and progressive decline in beta-cell function. Optimal beta-cell function and mass is essential for glucose homeostasis and beta-cell impairment leads to the development of diabetes. Elevated levels of circulating fatty acids (FAs) and disturbances in lipid metabolism regulation are associated with obesity, and they are major factors influencing the increase in the incidence of type 2 diabetes. Chronic free FA (FFA) treatment induces insulin resistance and beta-cell dysfunction; therefore, reduction of elevated plasma FFA levels might be an important therapeutic target in obesity and type 2 diabetes. Lipid signals via receptors, and intracellular mechanisms are involved in FFA-induced apoptosis. In this paper, we discuss lipid actions in beta cells, including effects on metabolic pathways and stress responses, to help further understand the molecular mechanisms of lipotoxicity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Yoon S. Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
- *Correspondence: Yoon S. Oh
| | - Gong D. Bae
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Dong J. Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Hee-Sook Jun
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
67
|
Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2614-2627. [PMID: 28589443 PMCID: PMC5736777 DOI: 10.1007/s11095-017-2199-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer's disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin's role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson's disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin's advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aβ (β-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Aleksandra Szydłowska
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Agata Skupień
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul., Muszyńskiego 1, 90-151, Lodz, Poland
| | - Kristiina M. Huttunen
- School Of Pharmacy, Faculty of Health Sciences, University of Eastern Finland,, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
| |
Collapse
|
68
|
Magrì A, Pietropaolo A, Tabbì G, La Mendola D, Rizzarelli E. From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry 2017; 23:17898-17902. [PMID: 29111583 DOI: 10.1002/chem.201704910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/28/2022]
Abstract
The copper-binding features of rat islet amyloid polypeptide (r-IAPP) are herein disclosed through the determination of the stability constants and spectroscopic properties of its copper complex species. To mimic the metal binding sites of the human IAPP (h-IAPP), a soluble, single-point mutated variant of r-IAPP, having a histidine residue in place of Arg18, was synthesized, that is, r-IAPP(1-37; R18H). The peptide IAPP(1-8) was also characterized to have deeper insight into the N-terminus copper(II)-binding features of r-IAPP as well as of its mutated form. A combined experimental (thermodynamic and spectroscopic) and computational approach allowed us to assess the metal loading and the coordination features of the whole IAPP. At physiological pH, the N-terminal amino group is the Cu2+ main binding site both of entire r-IAPP and of its mutated form that mimics h-IAPP. The histidine residue present in this mutated polypeptide accounts for the second Cu2+ binding. We can speculate that the copper driven toxicity of h-IAPP in comparison to that of r-IAPP can be attributed to the different metal loading and the presence of a second metal anchoring site, the His18 , whose role is usually invoked in the process of h-IAPP aggregation.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Campus Universitario, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 5, 95125, Catania, Italy
| |
Collapse
|
69
|
Recombinant human islet amyloid polypeptide forms shorter fibrils and mediates β-cell apoptosis via generation of oxidative stress. Biochem J 2017; 474:3915-3934. [DOI: 10.1042/bcj20170323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Protein misfolding and aggregation play an important role in many human diseases including Alzheimer's, Parkinson's and type 2 diabetes mellitus (T2DM). The human islet amyloid polypeptide (hIAPP) forms amyloid plaques in the pancreas of T2DM subjects (>95%) that are involved in deteriorating islet function and in mediating β-cell apoptosis. However, the detailed mechanism of action, structure and nature of toxic hIAPP species responsible for this effect remains elusive to date mainly due to the high cost associated with the chemical synthesis of pure peptide required for these studies. In the present work, we attempted to obtain structural and mechanistic insights into the hIAPP aggregation process using recombinant hIAPP (rhIAPP) isolated from Escherichia coli. Results from biophysical and structural studies indicate that the rhIAPP self-assembled into highly pure, β-sheet-rich amyloid fibrils with uniform morphology. rhIAPP-mediated apoptosis in INS-1E cells was associated with increased oxidative stress and changes in mitochondrial membrane potential. The transcript levels of apoptotic genes - Caspase-3 and Bax were found to be up-regulated, while the levels of the anti-apoptotic gene - Bcl2 were down-regulated in rhIAPP-treated cells. Additionally, the expression levels of genes involved in combating oxidative stress namely Catalase, SOD1 and GPx were down-regulated. rhIAPP exposure also affected glucose-stimulated insulin secretion from isolated pancreatic islets. The aggregation of rhIAPP also occurred significantly faster when compared with that of the chemically synthesized peptide. We also show that the rhIAPP fibrils were shorter and more cytotoxic. In summary, our study is one among the few to provide comprehensive evaluation of structural, biophysical and cytotoxic properties of rhIAPP.
Collapse
|
70
|
Protein aggregation: From background to inhibition strategies. Int J Biol Macromol 2017; 103:208-219. [DOI: 10.1016/j.ijbiomac.2017.05.048] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
|
71
|
Sivanesam K, Andersen NH. Inhibition of Human Amylin Amyloidogenesis by Human Amylin-Fragment Peptides: Exploring the Effects of Serine Residues and Oligomerization upon Inhibitory Potency. Biochemistry 2017; 56:5373-5379. [PMID: 28920428 DOI: 10.1021/acs.biochem.7b00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, fragments from within the amyloidogenic-patch region of human amylin (hAM) have been shown to aggregate independently of the full-length peptide. In this study, we show that under certain conditions, both oligomers of NFGAILSS and the monomeric form are capable of inhibiting the aggregation of the full-length hAM sequence. The inhibition, rather than aggregate seeding, observed with the soluble portion of aged NFGAILSS solutions was particularly striking occurring at far substoichiometric levels. Apparently, the oligomer form of this fragment is responsible for inhibiting the transition from random coil to β-sheet or serves as a disaggregator of hAM β-oligomers. Sequential deletion of the serine residues from NFGAILSS results in a decrease of inhibition, indicating that these residues are important to the activity of this fragment. We, like others, observed instances of α-helix-like CD spectra prior to β-sheet formation as part of the amyloidogenesis pathway. The partially aggregated sample and the fragments studied display spectroscopic diagnostics, suggesting that they slow down the conversion of full-length hAM monomers to cytotoxic oligomers.
Collapse
Affiliation(s)
- Kalkena Sivanesam
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Niels H Andersen
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
72
|
Wu J, Zhao J, Yang Z, Li H, Gao Z. Strong Inhibitory Effect of Heme on hIAPP Fibrillation. Chem Res Toxicol 2017; 30:1711-1719. [DOI: 10.1021/acs.chemrestox.7b00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinming Wu
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Jie Zhao
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhen Yang
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77004, United States
| | - Hailing Li
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Zhonghong Gao
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| |
Collapse
|
73
|
Abstract
Aggregation of the islet amyloid polypeptide (IAPP) to form fibrils and oligomers is important in the progression of type 2 diabetes. This article describes X-ray crystallographic and solution-state NMR studies of peptides derived from residues 11-17 of IAPP that assemble to form tetramers. Incorporation of residues 11-17 of IAPP (RLANFLV) into a macrocyclic β-sheet peptide results in a monomeric peptide that does not self-assemble to form oligomers. Mutation of Arg11 to the uncharged isostere citrulline gives peptide homologues that assemble to form tetramers in both the crystal state and in aqueous solution. The tetramers consist of hydrogen-bonded dimers that sandwich together through hydrophobic interactions. The tetramers share several features with structures reported for IAPP fibrils and demonstrate the importance of hydrogen bonding and hydrophobic interactions in the oligomerization of IAPP-derived peptides.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| | - Adam G. Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| | - Nicholas L. Truex
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025
| |
Collapse
|
74
|
Kell DB, Pretorius E. To What Extent Are the Terminal Stages of Sepsis, Septic Shock, Systemic Inflammatory Response Syndrome, and Multiple Organ Dysfunction Syndrome Actually Driven by a Prion/Amyloid Form of Fibrin? Semin Thromb Hemost 2017; 44:224-238. [PMID: 28778104 PMCID: PMC6193370 DOI: 10.1055/s-0037-1604108] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A well-established development of increasing disease severity leads from sepsis through systemic inflammatory response syndrome, septic shock, multiple organ dysfunction syndrome, and cellular and organismal death. Less commonly discussed are the equally well-established coagulopathies that accompany this. We argue that a lipopolysaccharide-initiated (often disseminated intravascular) coagulation is accompanied by a proteolysis of fibrinogen such that formed fibrin is both inflammatory and resistant to fibrinolysis. In particular, we argue that the form of fibrin generated is amyloid in nature because much of its normal α-helical content is transformed to β-sheets, as occurs with other proteins in established amyloidogenic and prion diseases. We hypothesize that these processes of amyloidogenic clotting and the attendant coagulopathies play a role in the passage along the aforementioned pathways to organismal death, and that their inhibition would be of significant therapeutic value, a claim for which there is considerable emerging evidence.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
75
|
Sequeira IR, Poppitt SD. Unfolding Novel Mechanisms of Polyphenol Flavonoids for Better Glycaemic Control: Targeting Pancreatic Islet Amyloid Polypeptide (IAPP). Nutrients 2017; 9:E788. [PMID: 28754022 PMCID: PMC5537902 DOI: 10.3390/nu9070788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is characterised by hyperglycaemia resulting from defective insulin secretion, insulin resistance, or both. The impact of over-nutrition and reduced physical activity, evidenced by the exponential rise in obesity and the prevalence of T2D, strongly supports the implementation of lifestyle modification programs. Accordingly, an increased consumption of fruits and plant-derived foods has been advocated, as their intake is inversely correlated with T2D prevalence; this has been attributed, in part, to their contained polyphenolic compounds. Over the last decade, a body of work has focussed on establishing the mechanisms by which polyphenolic compounds exert beneficial effects to limit carbohydrate digestion, enhance insulin-mediated glucose uptake, down-regulate hepatic gluconeogenesis and decrease oxidative stress; the latter anti-oxidative property being the most documented. Novel effects on the inhibition of glucocorticoid action and the suppression of amylin misfolding and aggregation have been identified more recently. Amyloid fibrils form from spontaneously misfolded amylin, depositing in islet cells to elicit apoptosis, beta cell degeneration and decrease insulin secretion, with amyloidosis affecting up to 80% of pancreatic islet cells in T2D. Therefore, intervening with polyphenolic compounds offers a novel approach to suppressing risk or progression to T2D. This review gives an update on the emerging mechanisms related to dietary polyphenol intake for the maintenance of glycaemic control and the prevention of T2D.
Collapse
Affiliation(s)
- Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
76
|
Yang G, Liu L, Wang J, Bortolini C, Dong M. Light-driven porphyrin modulating fibrillation of hIAPP20–29 peptide. J Colloid Interface Sci 2017; 495:37-43. [DOI: 10.1016/j.jcis.2017.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
|
77
|
Abstract
Amylin, a pancreatic β-cell-derived peptide hormone, forms inclusions in brain microvessels of patients with dementia who have been diagnosed with type 2 diabetes and Alzheimer's disease. The cellular localization of these inclusions and the consequences thereof are not yet known. Using immunohistochemical staining of hippocampus and parahippocampal cortex from patients with Alzheimer's disease and non-demented controls, we show that amylin cell inclusions are found in pericytes. The number of amylin cell inclusions did not differ between patients with Alzheimer's disease and controls, but amylin-containing pericytes displayed nuclear changes associated with cell death and reduced expression of the pericyte marker neuron-glial antigen 2. The impact of amylin on pericyte viability was further demonstrated in in vitro studies, which showed that pericyte death increased in presence of fibril- and oligomer amylin. Furthermore, oligomer amylin increased caspase 3/7 activity, reduced lysate neuron-glial antigen 2 levels and impaired autophagy. Our findings contribute to increased understanding of how aggregated amylin affects brain vasculature and highlight amylin as a potential factor involved in microvascular pathology in dementia progression.
Collapse
Affiliation(s)
- Nina Schultz
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Elin Byman
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Malin Fex
- 2 Unit for Molecular Metabolism, Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Malin Wennström
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
78
|
Su L, Lu C, Yan P, Zhang N, Cai S, Zhang G, Zhou X, Bin Li. The effect of aluminum ion on the aggregation of human islet amyloid polypeptide (11-28). Acta Biochim Biophys Sin (Shanghai) 2017; 49:355-360. [PMID: 28338927 DOI: 10.1093/abbs/gmx015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/20/2023] Open
Abstract
Metal ions play a critical role in human islet amyloid polypeptide (hIAPP) aggregation, which is believed to be closely associated with β-cell death in type II diabetes. In this work, the effect of Al3+ on the aggregation of hIAPP (11-28) was studied by several different experimental approaches. Atomic force microscopy measurements showed that Al3+ could remarkably inhibit hIAPP(11-28) fibrillogenesis, while Zn2+ had a slight promotion effect on peptide aggregation, which was also confirmed by Thioflavin T fluorescence observation. Furthermore, X-ray photoelectron spectroscopy measurement indicated that Al ions might form chemical bonds with neighboring atoms and destroy the secondary structures of the protein. Our studies could deepen the understanding of the role of metal ions in the aggregation of amyloid peptides.
Collapse
Affiliation(s)
- Lanlan Su
- School of Science, Ningbo University, Ningbo 315211, China
| | - Cheng Lu
- School of Science, Ningbo University, Ningbo 315211, China
| | - Peng Yan
- School of Science, Ningbo University, Ningbo 315211, China
| | - Nan Zhang
- School of Science, Ningbo University, Ningbo 315211, China
| | - Sheng Cai
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Gongjun Zhang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xingfei Zhou
- School of Science, Ningbo University, Ningbo 315211, China
| | - Bin Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
79
|
Lee SJ, Kang HK, Eum WS, Park J, Choi SY, Kwon HY. Tat-biliverdin reductase A protects INS-1 cells from human islet amyloid polypeptide-induced cytotoxicity by alleviating oxidative stress and ER stress. Cell Biol Int 2017; 41:514-524. [PMID: 28198575 DOI: 10.1002/cbin.10750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022]
Abstract
Human islet amyloid polypeptide (hIAPP), a major constituent of islet amyloid deposits, induces pancreatic β-cell apoptosis and eventually contributes to β-cell deficit in patients with type 2 diabetes mellitus (T2DM). In this study, Tat-mediated transduction of biliverdin reductase A (BLVRA) was investigated in INS-1 cells to examine whether exogenous supplementation of BLVRA prevented hIAPP-induced apoptosis and dysfunction in insulin secretion in β-cells. Tat-BLVRA fusion protein was efficiently delivered into INS-1 cells in a time- and dose-dependent manner. Exposure of cells to hIAPP induced apoptotic cell death, which was dose-dependently inhibited by pre-treatment with Tat-BLVRA for 1 h. Transduced Tat-BLVRA reduced hIAPP-evoked generation of reactive oxygen species, a crucial mediator of β-cell destruction. Immunoblot analysis showed that Tat-BLVRA suppressed hIAPP-induced increase in the levels of proteins involved in endoplasmic reticulum (ER) stress and apoptosis signaling. Transduced Tat-BLVRA also recovered hIAPP-induced dysfunction in basal and glucose-stimulated insulin secretions. These results suggested that transduced Tat-BLVRA enhanced the tolerance of β-cells against IAPP-induced cytotoxicity by alleviating oxidative stress and ER stress. Therefore, Tat-mediated transduction of BLVRA may provide a potential tool to ameliorate β-cell deficit in pancreas with T2DM.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon , 24252, Republic of Korea
| | - Hyung Kyung Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon , 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon , 24252, Republic of Korea
| |
Collapse
|
80
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
81
|
Bhowmick DC, Singh S, Trikha S, Jeremic AM. The Molecular Physiopathogenesis of Islet Amyloidosis. Handb Exp Pharmacol 2017; 245:271-312. [PMID: 29043504 DOI: 10.1007/164_2017_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human islet amyloid polypeptide or amylin (hA) is a 37-amino acid peptide hormone produced and co-secreted with insulin by pancreatic β-cells. Under physiological conditions, hA regulates a broad range of biological processes including insulin release and slowing of gastric emptying, thereby maintaining glucose homeostasis. However, under the pathological conditions associated with type 2 diabetes mellitus (T2DM), hA undergoes a conformational transition from soluble random coil monomers to alpha-helical oligomers and insoluble β-sheet amyloid fibrils or amyloid plaques. There is a positive correlation between hA oligomerization/aggregation, hA toxicity, and diabetes progression. Because the homeostatic balance between hA synthesis, release, and uptake is lost in diabetics and hA aggregation is a hallmark of T2DM, this chapter focuses on the biophysical and cell biology studies investigating molecular mechanisms of hA uptake, trafficking, and degradation in pancreatic cells and its relevance to h's toxicity. We will also discuss the regulatory role of endocytosis and proteolytic pathways in clearance of toxic hA species. Finally, we will discuss potential pharmacological approaches for specific targeting of hA trafficking pathways and toxicity in islet β-cells as potential new avenues toward treatments of T2DM patients.
Collapse
Affiliation(s)
| | - Sanghamitra Singh
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Aleksandar M Jeremic
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
82
|
Yu XL, Li YN, Zhang H, Su YJ, Zhou WW, Zhang ZP, Wang SW, Xu PX, Wang YJ, Liu RT. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct 2016; 6:3296-306. [PMID: 26242245 DOI: 10.1039/c5fo00500k] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD). Amylin and β-amyloid (Aβ) may share common pathophysiology and show strikingly similar neurotoxicity profiles in the brain. To explore the potential effects of rutin on AD, we here investigated the effect of rutin on amylin aggregation by thioflavin T dyeing, evaluated the effect of rutin on amylin-induced neurocytotoxicity by the MTT assay, and assessed oxidative stress, as well as the generation of nitric oxide (NO) and pro-inflammatory cytokines in neuronal cells. Our results showed that the flavonoid antioxidant rutin inhibited amylin-induced neurocytotoxicity, decreased the production of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), malondialdehyde (MDA) and pro-inflammatory cytokines TNF-α and IL-1β, attenuated mitochondrial damage and increased the GSH/GSSG ratio. These protective effects of rutin may have resulted from its ability to inhibit amylin aggregation, enhance the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduce inducible nitric oxide synthase (iNOS) activity. These in vitro results indicate that rutin is a promising natural product for protecting neuronal cells from amylin-induced neurotoxicity and oxidative stress, and rutin administration could be a feasible therapeutic strategy for preventing AD development and protecting the aging brain or slowing neurodegenerative processes.
Collapse
Affiliation(s)
- Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Proteasome regulates turnover of toxic human amylin in pancreatic cells. Biochem J 2016; 473:2655-70. [PMID: 27340132 DOI: 10.1042/bcj20160026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells.
Collapse
|
84
|
Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation. Int J Mol Sci 2016; 17:ijms17060964. [PMID: 27322259 PMCID: PMC4926496 DOI: 10.3390/ijms17060964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/27/2022] Open
Abstract
Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed-benzbromarone, quercetin, and folic acid-are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin.
Collapse
|
85
|
Ribarič S. The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules 2016; 21:molecules21060689. [PMID: 27240327 PMCID: PMC6273626 DOI: 10.3390/molecules21060689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a prevalence that increases with age. By 2050, the worldwide number of patients with AD is projected to reach more than 140 million. The prominent signs of AD are progressive memory loss, accompanied by a gradual decline in cognitive function and premature death. AD is the clinical manifestation of altered proteostasis. The initiating step of altered proteostasis in most AD patients is not known. The progression of AD is accelerated by several chronic disorders, among which the contribution of diabetes to AD is well understood at the cell biology level. The pathological mechanisms of AD and diabetes interact and tend to reinforce each other, thus accelerating cognitive impairment. At present, only symptomatic interventions are available for treating AD. To optimise symptomatic treatment, a personalised therapy approach has been suggested. Intranasal insulin administration seems to open the possibility for a safe, and at least in the short term, effective symptomatic intervention that delays loss of cognition in AD patients. This review summarizes the interactions of AD and diabetes from the cell biology to the patient level and the clinical results of intranasal insulin treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
86
|
Rajasekhar K, Narayanaswamy N, Murugan NA, Kuang G, Ågren H, Govindaraju T. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates. Sci Rep 2016; 6:23668. [PMID: 27032526 PMCID: PMC4817056 DOI: 10.1038/srep23668] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
A major challenge in the Alzheimer's disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 10(7) M(-1)) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Guanglin Kuang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
87
|
Abstract
The mechanisms or causes of pancreatic β-cell death as well as impaired insulin secretion, which are the principal events of diabetic etiopathology, are largely unknown. Diabetic complications are known to be associated with abnormal plasma lipid profile, mainly elevated level of cholesterol and free fatty acids. However, in recent years, elevated plasma cholesterol has been implicated as a primary modulator of pancreatic β-cell functions as well as death. High-cholesterol diet in animal models or excess cholesterol in pancreatic β-cell causes transporter desensitization and results in morphometric changes in insulin granules. Moreover, cholesterol is also held responsible to cause oxidative stress, mitochondrial dysfunction, and activation of proapoptotic markers leading to β-cell death. The present review focuses on the pathways and molecularevents that occur in the β-cell under the influence of excess cholesterol that hampers the basal physiology of the cell leading to the progression of diabetes.
Collapse
|
88
|
Amylin-mediated control of glycemia, energy balance, and cognition. Physiol Behav 2016; 162:130-40. [PMID: 26922873 DOI: 10.1016/j.physbeh.2016.02.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms.
Collapse
|
89
|
Westwell-Roper C, Denroche HC, Ehses JA, Verchere CB. Differential Activation of Innate Immune Pathways by Distinct Islet Amyloid Polypeptide (IAPP) Aggregates. J Biol Chem 2016; 291:8908-17. [PMID: 26786104 DOI: 10.1074/jbc.m115.712455] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 11/06/2022] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction in type 2 diabetes and islet transplantation. Like other amyloidogenic peptides, human IAPP induces macrophage IL-1β secretion by stimulating both the synthesis and processing of proIL-1β, a pro-inflammatory cytokine that (when chronically elevated) impairs beta cell insulin secretion. We sought to determine the specific mechanism of IAPP-induced proIL-1β synthesis. Soluble IAPP species produced early during IAPP aggregation provided a Toll-like-receptor-2- (TLR2-) dependent stimulus for NF-κB activation in HEK 293 cells and bone marrow-derived macrophages (BMDMs). Non-amyloidogenic rodent IAPP and thioflavin-T-positive fibrillar amyloid produced by human IAPP aggregation failed to activate TLR2. Blockade of TLR6 but not TLR1 prevented hIAPP-induced TLR2 activation, consistent with stimulation of a TLR2/6 heterodimer. TLR2 and its downstream adaptor protein MyD88 were required for IAPP-induced cytokine production by BMDMs, a process that is partially dependent on autoinduction by IL-1. BMDMs treated with soluble but not fibrillar IAPP provided a TLR2-dependent priming stimulus for ATP-induced IL-1β secretion, whereas late IAPP aggregates induced NLRP3-dependent IL-1β secretion by LPS-primed macrophages. Moreover, inhibition of TLR2 and depletion of islet macrophages prevented up-regulation of Il1b and Tnf expression in human IAPP-expressing transgenic mouse islets. These data suggest participation by both soluble and fibrillar aggregates in IAPP-induced islet inflammation. IAPP-induced activation of TLR2 and secretion of IL-1 may be important therapeutic targets to prevent amyloid-associated beta cell dysfunction.
Collapse
Affiliation(s)
| | - Heather C Denroche
- Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jan A Ehses
- Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - C Bruce Verchere
- From the Departments of Pathology & Laboratory Medicine and Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
90
|
Qian Z, Jia Y, Wei G. Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. J Diabetes Res 2016; 2016:1749196. [PMID: 26649316 PMCID: PMC4663351 DOI: 10.1155/2016/1749196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/22/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests that the interaction of human islet amyloid polypeptide (hIAPP) with lipids may facilitate hIAPP aggregation and cause the death of pancreatic islet β-cells. However, the detailed hIAPP-membrane interactions and the influences of lipid compositions are unclear. In this study, as a first step to understand the mechanism of membrane-mediated hIAPP aggregation, we investigate the binding behaviors of hIAPP monomer at zwitterionic palmitoyloleoyl-phosphatidylcholine (POPC) bilayer by performing atomistic molecular dynamics simulations. The results are compared with those of hIAPP at anionic palmitoyloleoyl-phosphatidylglycerol (POPG) bilayers. We find that the adsorption of hIAPP to POPC bilayer is mainly initiated from the C-terminal region and the peptide adopts a helical structure with multiple binding orientations, while the adsorption to POPG bilayer is mostly initiated from the N-terminal region and hIAPP displays one preferential binding orientation, with its hydrophobic residues exposed to water. hIAPP monomer inserts into POPC lipid bilayers more readily than into POPG bilayers. Peptide-lipid interaction analyses show that the different binding features of hIAPP at POPC and POPG bilayers are attributed to different magnitudes of electrostatic and hydrogen-bonding interactions with lipids. This study provides mechanistic insights into the different interaction behaviors of hIAPP with zwitterionic and anionic lipid bilayers.
Collapse
Affiliation(s)
- Zhenyu Qian
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yan Jia
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
- *Guanghong Wei:
| |
Collapse
|
91
|
Abedini A, Cao P, Raleigh DP. Detection of Helical Intermediates During Amyloid Formation by Intrinsically Disordered Polypeptides and Proteins. Methods Mol Biol 2016; 1345:55-66. [PMID: 26453205 DOI: 10.1007/978-1-4939-2978-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid formation and aberrant protein aggregation are hallmarks of more than 30 different human diseases. The proteins that form amyloid can be divided into two structural classes: those that form compact, well-ordered, globular structures in their unaggregated state and those that are intrinsically disordered in their unaggregated states. The latter include the Aβ peptide of Alzheimer's disease, islet amyloid polypeptide (IAPP, amylin) implicated in type 2 diabetes and α-synuclein, which is linked to Parkinson's disease. Work in the last 10 years has highlighted the potential role of pre-amyloid intermediates in cytotoxicity and has focused attention on their properties. A number of intrinsically disordered proteins appear to form helical intermediates during amyloid formation. We discuss the spectroscopic methods employed to detect and characterize helical intermediates in homogenous solution and in membrane-catalyzed amyloid formation, with the emphasis on the application of circular dichroism (CD). IAPP is used as an example, but the methods are generally applicable.
Collapse
Affiliation(s)
- Andisheh Abedini
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Research Program, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA.
| | - Ping Cao
- Structural Biology Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, 647 Chemistry, Stony Brook, NY, 11794-3400, USA.
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400, USA.
| |
Collapse
|
92
|
In Vitro Studies of Membrane Permeability Induced by Amyloidogenic Polypeptides Using Large Unilamellar Vesicles. Methods Mol Biol 2016; 1345:283-90. [PMID: 26453219 PMCID: PMC5627766 DOI: 10.1007/978-1-4939-2978-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The process of amyloid formation is cytotoxic and contributes to a wide range of human diseases, but the mechanisms of amyloid-induced cytotoxicity are not well understood. It has been proposed that amyloidogenic peptides exert their toxic effects by damaging membranes. Membrane disruption is clearly not the only mechanism of toxicity, but the literature suggests that loss of membrane integrity may be a contributing factor. In this chapter we describe the measurement of in vitro membrane leakage induced by amyloidogenic proteins via the use of model vesicles. We use islet amyloid polypeptide (IAPP, amylin) as an example, but the methods are general.
Collapse
|
93
|
Zhao J, Vu Q, Stains CI. Luminescent platforms for monitoring changes in the solubility of amylin and huntingtin in living cells. MOLECULAR BIOSYSTEMS 2016; 12:2984-7. [DOI: 10.1039/c6mb00454g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-based assays for amylin and huntingtin solubility, capable of reporting on the influence of mutations and small molecules, are reported.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Quyen Vu
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Cliff I. Stains
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| |
Collapse
|
94
|
Colorimetric determination of islet amyloid polypeptide fibrils and their inhibitors using resveratrol functionalized gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1687-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res 2015; 2016:2798269. [PMID: 26649319 PMCID: PMC4662979 DOI: 10.1155/2016/2798269] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 01/29/2023] Open
Abstract
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Harris Noor
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Amy G. Wong
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Xiaoxue Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Andisheh Abedini
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
96
|
Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci Rep 2015; 5:8240. [PMID: 25649462 PMCID: PMC4316164 DOI: 10.1038/srep08240] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
While islet amyloid polypeptide (IAPP) aggregation is associated with β-cell death in type-II diabetes (T2D), environmental elements of β-cell granules — e.g. high concentrations of insulin and Zn2+ — inhibit IAPP aggregation in healthy individuals. The inhibition by insulin is experimentally known, but the role of Zn2+ is controversial as both correlations and anti-correlations at the population level are observed between T2D risk and the activity of a β-cell specific zinc ion transporter, ZnT8. Since Zn2+ concentration determines insulin oligomer equilibrium, we computationally investigated interactions of IAPP with different insulin oligomers and compared with IAPP homodimer formation. We found that IAPP binding with insulin oligomers competes with the formation of both higher-molecular-weight insulin oligomers and IAPP homodimers. Therefore, zinc deficiency due to loss-of-function ZnT8 mutations shifts insulin oligomer equilibrium toward zinc-free monomers and dimers, which bind IAPP monomers more efficiently compared to zinc-bound hexamers. The hetero-molecular complex formation prevents IAPP from self-association and subsequent aggregation, reducing T2D risk.
Collapse
|
97
|
Profit AA, Vedad J, Saleh M, Desamero RZB. Aromaticity and amyloid formation: effect of π-electron distribution and aryl substituent geometry on the self-assembly of peptides derived from hIAPP(22-29). Arch Biochem Biophys 2015; 567:46-58. [PMID: 25524740 PMCID: PMC5490837 DOI: 10.1016/j.abb.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
Abstract
A comprehensive investigation of peptides derived from the 22-29 region of human islet amyloid polypeptide (hIAPP) that contain phenylalanine analogs at position 23 with a variety of electron donating and withdrawing groups, along with heteroaromatic surrogates, has been employed to interrogate how π-electron distribution effects amyloid formation. Kinetic aggregation studies using turbidity measurements indicate that electron rich aromatic ring systems consistently abolish the amyloidogenic propensity of hIAPP(22-29). Electron poor systems modulate the rate of aggregation. Raman and Fourier transform infrared spectroscopy confirm the parallel β-sheet secondary structure of aggregates derived from peptides containing electron poor phenylalanine analogs and provide direct evidence of ring stacking. Transmission electron microscopy confirms the presence of amyloid fibrils. The effect of aryl substituent geometry on peptide self-assembly reveals that the electronic nature of substituents and not their steric profile is responsible for failure of the electron donating group peptides to aggregate. Non-aggregating hIAPP(22-29) peptides were found to inhibit the self-assembly of full-length hIAPP(1-37). The most potent inhibitory peptides contain phenylalanine with the p-amino and p-formamido functionalities. These novel peptides may serve as leads for the development of future aggregation inhibitors. A potential mechanism for inhibition of amylin self-assembly by electron rich (-29) peptides is proposed.
Collapse
Affiliation(s)
- Adam A Profit
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States.
| | - Jayson Vedad
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States
| | - Mohamad Saleh
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States
| | - Ruel Z B Desamero
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States.
| |
Collapse
|
98
|
Bongiovanni MN, Gras SL. Bioactive TTR105-115-based amyloid fibrils reduce the viability of mammalian cells. Biomaterials 2015; 46:105-16. [PMID: 25678120 DOI: 10.1016/j.biomaterials.2014.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022]
Abstract
A growing number of protein-based fibrous biomaterials have been produced with a cross-β amyloid core yet the long-term effect of these materials on cell viability and the influence of core and non-core protein sequences on viability is not well understood. Here, synthetic bioactive TTR1-RGD and control TTR1-RAD or TTR1 fibrils were used to test the response of mammalian cells. At high fibril concentrations cell viability was reduced, as assessed by mitochondrial reduction assays, lactate dehydrogenase membrane integrity assays and apoptotic biomarkers. This reduction occurred despite the high density of RGD cell adhesion ligands and use of cells displaying integrin receptors. Cell viability was affected by fibril size, maturity and whether fibrils were added to the cell media or as a pre-coated surface layer. These findings show that while cells initially interact well with synthetic fibrils, cellular integrity can be compromised over longer periods of time, suggesting a better understanding of the role of core and non-core residues in determining cellular interactions is required before TTR1-based fibrils are used as biomaterials.
Collapse
Affiliation(s)
- Marie N Bongiovanni
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sally L Gras
- The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
99
|
Tu LH, Young LM, Wong AG, Ashcroft AE, Radford SE, Raleigh DP. Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 2015; 54:666-76. [PMID: 25531836 PMCID: PMC4310630 DOI: 10.1021/bi501016r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The process of amyloid formation by the normally soluble hormone islet amyloid polypeptide (IAPP) contributes to β-cell death in type 2 diabetes and in islet transplants. There are no clinically approved inhibitors of islet amyloidosis, and the mode of action of existing inhibitors is not well-understood. Resveratrol, a natural polyphenol, has been reported to inhibit amyloid formation by IAPP and by the Alzheimer's disease Aβ peptide. The mechanism of action of this compound is not known, nor is its mode of interaction with IAPP. In this study, we use a series of IAPP variants to examine possible interactions between resveratrol and IAPP. Fluorescence assays, transmission electron microscopy, and mass spectrometry demonstrate that resveratrol is much less effective as an inhibitor of IAPP amyloid formation than the polyphenol (-)-epigallocatechin 3-gallate (EGCG) and, unlike EGCG, does not significantly disaggregate preformed IAPP amyloid fibrils. Resveratrol is also shown to interfere with thioflavin-T assays. His-18 mutants, a truncation mutant, mutants of each of the aromatic residues, and mutants of Arg-11 of IAPP were examined. Mutation of His to Gln or Leu weakens the ability of resveratrol to inhibit amyloid formation by IAPP, as do mutations of Arg-11, Phe-15, or Tyr-37 to Leu, and truncation to form the variant Ac 8-37-IAPP, which removes the first seven residues to eliminate Lys-1 and the N-terminal amino group. In contrast, replacement of Phe-23 with Leu has a smaller effect. The data highlight Phe-15, His-18, and Tyr-37 as being important for IAPP-resveratrol interactions and are consistent with a potential role of the N-terminus and Arg-11 in polypeptide-resveratrol interactions.
Collapse
Affiliation(s)
- Ling-Hsien Tu
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | | | | | | | | | | |
Collapse
|
100
|
Ma L, Fu Y, Yu L, Li X, Zheng W, Chen T. Ruthenium complexes as inhibitors of human islet amyloid polypeptide aggregation, an effect that prevents beta cell apoptosis. RSC Adv 2015. [DOI: 10.1039/c4ra15152f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we show that ruthenium complexes could inhibit fibrosis of hIAPP and protect the hIAPP-induced cell damage by suppressing ROS generation, indicating the application potential of the complexes in treatment of T2DM by targeting hIAPP.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yuanting Fu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lianling Yu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|