51
|
Majdi M, Abdollahi MR, Maroufi A. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. PLANT CELL REPORTS 2015; 34:1909-1918. [PMID: 26183953 DOI: 10.1007/s00299-015-1837-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase.
Collapse
Affiliation(s)
- Mohammad Majdi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
- Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran.
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asad Maroufi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
52
|
Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:300-11. [PMID: 26017690 DOI: 10.1111/tpj.12887] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qingnan Hu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
53
|
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. TRENDS IN PLANT SCIENCE 2015; 20:176-85. [PMID: 25577424 DOI: 10.1016/j.tplants.2014.12.001] [Citation(s) in RCA: 1019] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
Collapse
Affiliation(s)
- Wenjia Xu
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Christian Dubos
- INRA and Centre National de la Recherche Scientifique (CNRS) SupAgro-M, Université Montpellier 2 (UM2), Biochimie et Physiologie Moléculaire des Plantes, 2 place Viala, 34060 Montpellier CEDEX 1, France.
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|
54
|
Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. FRONTIERS IN PLANT SCIENCE 2015; 6:950. [PMID: 26583025 PMCID: PMC4631823 DOI: 10.3389/fpls.2015.00950] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/18/2015] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a class of steroidal plant hormones that play diverse roles in plant growth and developmental processes. Recently, the easy availability of biological resources, and development of new molecular tools and approaches have provided the required impetus for deeper understanding of the processes involved in BRs biosynthesis, transport, signaling and degradation pathways. From recent studies it is also evident that BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid and polyamine in regulating wide range of physiological and developmental processes in plants. The inputs from these studies are now being linked to the versatile roles of BRs. The present review highlights the conceptual development with regard to BR homeostasis, signaling and its crosstalk with other phytohormones. This information will assist in developing predictive models to modulate various useful traits in plants and address current challenges in agriculture.
Collapse
|
55
|
Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. MOLECULAR PLANT 2014; 7:1267-1287. [PMID: 24777989 PMCID: PMC4168297 DOI: 10.1093/mp/ssu049] [Citation(s) in RCA: 915] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.
Collapse
Affiliation(s)
- Bethany Huot
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA
| | - Jian Yao
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Plant Biology, Michigan State University, MI 48824, USA; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, MI 48933, USA.
| |
Collapse
|
56
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|
57
|
Li W, Wang B, Wang M, Chen M, Yin JM, Kaleri GM, Zhang RJ, Zuo TN, You X, Yang Q. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:364-72. [PMID: 24304603 DOI: 10.1111/jipb.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/25/2013] [Indexed: 05/16/2023]
Abstract
Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wang Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Yang DH, Baldwin IT, Wu J. Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:514-526. [PMID: 23347255 DOI: 10.1111/jipb.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The brassinosteroid (BR) receptor, BR insensitive 1 (BRI1), plays a critical role in plant development, but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown. Here, we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta. Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels, but was important for the induction of JA-Ile. Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of Ile in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels. Consistently, M. sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants. Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides, chlorogenic acid, and rutin), but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors). Thus, NaBRI1-mediated BR signaling is likely involved in plant defense responses to M. sexta, including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.
Collapse
Affiliation(s)
- Da-Hai Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
59
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1534] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
60
|
Meldau S, Erb M, Baldwin IT. Defence on demand: mechanisms behind optimal defence patterns. ANNALS OF BOTANY 2012; 110:1503-14. [PMID: 23022676 PMCID: PMC3503495 DOI: 10.1093/aob/mcs212] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. SCOPE This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. CONCLUSIONS Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| | | | | |
Collapse
|
61
|
Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YII. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 2012; 34:93-101. [PMID: 22699753 PMCID: PMC3887782 DOI: 10.1007/s10059-012-0114-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022] Open
Abstract
In higher plants, the regulation of anthocyanin synthesis by various factors including light, sugars and hormones is mediated by numerous regulatory factors acting at the transcriptional level. Here, the association between sucrose and the plant hormone, cytokinin, in the presence of light was investigated to elucidate cytokinin signaling cascades leading to the transcriptional activation of anthocyanin biosynthesis genes in Arabidopsis seedlings. We showed that cytokinin enhances anthocyanin content and transcript levels of sugar inducible structural gene UDPglucose: flavonoid 3-O-glucosyl transferase (UF3GT) and regulatory gene PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1). Genetic analysis showed that cytokinin signaling modulates sugar-induced anthocyanin biosynthesis through a two-component signaling cascade involving the type-B response regulators ARR1, ARR10 and ARR12 in a redundant manner. Genetic, physiological and molecular biological approaches demonstrated that cytokinin enhancement is partially dependent on phytochrome and cryptochrome downstream component HY5, but mainly on photosynthetic electron transport. Taken together, we suggest that cytokinin acts down-stream of the photosynthetic electron transport chain in which the plastoquinone redox poise is modulated by sugars in a photoreceptor independent manner.
Collapse
Affiliation(s)
- Prasanta Kumar Das
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Dong Ho Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Sang-Bong Choi
- Division of Biosciences and Bioinformatics, Myongji University, Yongin 449-728,
Korea
| | - Sang-Dong Yoo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-764,
Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Youn-II Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
62
|
Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:1720-31. [PMID: 22041989 PMCID: PMC3329344 DOI: 10.4161/psb.6.11.17613] [Citation(s) in RCA: 918] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.
Collapse
Affiliation(s)
- Akula Ramakrishna
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Constituent Laboratory of Council of Scientific and Industrial Research; Mysore, India
| | - Gokare Aswathanarayana Ravishankar
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Constituent Laboratory of Council of Scientific and Industrial Research; Mysore, India
| |
Collapse
|