51
|
Kelly AB, Chan GC, White A, Saunders JB, Baker PJ, Connor JP. Is there any evidence of changes in patterns of concurrent drug use among young Australians 18-29 years between 2007 and 2010? Addict Behav 2014; 39:1249-52. [PMID: 24813551 DOI: 10.1016/j.addbeh.2014.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/06/2014] [Accepted: 04/02/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND A significant minority of Australians engage in concurrent drug use (using more than one drug in a given period). We examined clusters and correlates of concurrent drug use using the latest available nationally representative survey data on Australian young adults. SAMPLE 3836 participants aged 18-29 years (mean age 24 years) from the 2010 National Drug Strategy Household Survey (NDSHS). METHOD Clusters were distilled using latent class analysis of past year use of alcohol, tobacco, cannabis, cocaine, hallucinogens, ecstasy, ketamine, GHB, inhalants, steroids, barbiturates, meth/amphetamines, heroin, methadone/buprenorphine, other opiates, painkillers and tranquillisers/sleeping pills. RESULTS Concurrent drug use in this sample was best described using a 4-class solution. The majority (87.5%) of young adults predominantly used alcohol only (50.9%) or alcohol and tobacco (36.6%). 10.2% reported using alcohol, tobacco, marijuana, and ecstasy, and 2.3% reported using an extensive range of drugs. CONCLUSION Most drug use clusters were robust in their profile and stable in their prevalence, indicating little meaningful change at the population level from 2007. The targeting of alcohol and tobacco use remains a priority, but openness to experiencing diverse drug-related effects remains a significant concern for 12.5% of young people in this age group.
Collapse
|
52
|
New perspectives on using brain imaging to study CNS stimulants. Neuropharmacology 2014; 87:104-14. [PMID: 25080072 DOI: 10.1016/j.neuropharm.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022]
Abstract
While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
53
|
Acheson A, Wijtenburg SA, Rowland LM, Bray BC, Gaston F, Mathias CW, Fox PT, Lovallo WR, Wright SN, Hong LE, McGuire S, Kochunov P, Dougherty DM. Combining diffusion tensor imaging and magnetic resonance spectroscopy to study reduced frontal white matter integrity in youths with family histories of substance use disorders. Hum Brain Mapp 2014; 35:5877-87. [PMID: 25044331 DOI: 10.1002/hbm.22591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023] Open
Abstract
Individuals with a family history of substance use disorder (FH+) show impaired frontal white matter as indicated by diffusion tensor imaging (DTI). This impairment may be due to impaired or delayed development of myelin in frontal regions, potentially contributing to this population's increased risk for developing substance use disorders. In this study, we examined high angular resolution DTI and proton magnetic resonance spectroscopy data from the anterior corona radiata were collected in 80 FH+ and 34 FH- youths (12.9 ± 1.0 years old). White matter integrity indices included fractional anisotropy (FA), N-acetylaspartate (NAA), and total choline (tCho). Lower FA suggests decreased myelination. Decreased NAA coupled with higher tCho suggests impaired build-up and maintenance of cerebral myelin and consequently greater breakdown of cellular membranes. We found FH+ youths had lower FA (P < 0.0001) and NAA (P = 0.017) and higher tCho (P = 0.04). FH density (number of parents and grandparents with substance use disorders) was negatively correlated with FA (P < 0.0001) and NAA (P = 0.011) and positively correlated with tCho (P = 0.001). FA was independently predicted by both FH density (P = 0.006) and NAA (P = 0.002), and NAA and tCho were both independent predictors of FH density (P < 0.001). Our finding of lower frontal FA in FH+ youths corresponding to lower NAA and increased tCho is consistent with delayed or impaired development of frontal white matter in FH+ youths. Longitudinal studies are needed to determine how these differences relate to substance use outcomes.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Polysubstance use is common, particularly amongst some age groups and subcultures. It is also associated with elevated risk of psychiatric and physical health problems. We review the recent research findings, comment on changes to polysubstance diagnoses, report on contemporary clinical and epidemiological polysubstance trends, and examine the efficacy of preventive and treatment approaches. RECENT FINDINGS Approaches to describing polysubstance use profiles are becoming more sophisticated. Models over the last 18 months that employ latent class analysis typically report a no use or limited-range cluster (alcohol, tobacco and marijuana), a moderate-range cluster (limited range and amphetamine derivatives), and an extended-range cluster (moderate range, and nonmedical use of prescription drugs and other illicit drugs). Prevalence rates vary as a function of the population surveyed. Wide-ranging polysubstance users carry higher risk of comorbid psychopathology, health problems, and deficits in cognitive functioning. SUMMARY Wide-ranging polysubstance use is more prevalent in subcultures such as 'ravers' (dance club attendees) and those already dependent on substances. Health risks are elevated in these groups. Research into the prevention and treatment of polysubstance use is underdeveloped. There may be benefit in targeting specific polysubstance use and risk profiles in prevention and clinical research.
Collapse
|
55
|
Matthews BA, Kish SJ, Xu X, Boileau I, Rusjan PM, Wilson AA, DiGiacomo D, Houle S, Meyer JH. Greater monoamine oxidase a binding in alcohol dependence. Biol Psychiatry 2014; 75:756-64. [PMID: 24269057 PMCID: PMC4942263 DOI: 10.1016/j.biopsych.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Alcohol dependence (AD) is a multiorgan disease in which excessive oxidative stress and apoptosis are implicated. Monoamine oxidase A (MAO-A) is an important enzyme on the outer mitochondrial membrane that participates in the cellular response to oxidative stress and mitochondrial toxicity. It is unknown whether MAO-A levels are abnormal in AD. We hypothesized that MAO-A VT, an index of MAO-A level, is elevated in the prefrontal cortex (PFC) during AD, because markers of greater oxidative stress and apoptosis are reported in the brain in AD and a microarray analysis reported greater MAO-A messenger RNA in the PFC of rodents exposed to alcohol vapor. METHODS Sixteen participants with alcohol dependence and 16 healthy control subjects underwent [(11)C]-harmine positron emission tomography. All were nonsmoking, medication- and drug-free, and had no other past or present psychiatric or medical illnesses. RESULTS MAO-A VT was significantly greater in the PFC (37%, independent samples t test, t₃₀ = 3.93, p < .001), and all brain regions analyzed (mean 32%, multivariate analysis of variance, F₇,₂₄ = 3.67, p = .008). Greater duration of heavy drinking correlated positively with greater MAO-A VT in the PFC (r = .67, p = .005) and all brain regions analyzed (r = .73 to .57, p = .001-.02). CONCLUSIONS This finding represents a new pathological marker present in AD that is therapeutically targetable through direct inhibition or by novel treatments toward oxidative/pro-apoptotic processes implicated by MAO-A overexpression.
Collapse
|
56
|
Physiological effects of cigarette smoking in the limbic system revealed by 3 tesla magnetic resonance spectroscopy. J Neural Transm (Vienna) 2014; 121:1211-9. [PMID: 24643301 DOI: 10.1007/s00702-014-1190-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/02/2014] [Indexed: 01/07/2023]
Abstract
Several studies and recent models of effects of nicotine, the main addictive and psychoactive component in tobacco, point to action of the drug on the limbic system during maintenance of addiction, either direct or indirect via projections from the ventral tegmental area. The objective of this study was to demonstrate physiological effects of cigarette smoking on the hippocampus and the grey matter of the dorsal anterior cingulate cortex in the human brain with regard to addiction and withdrawal. This aim was achieved by group comparisons of results of magnetic resonance spectroscopy between non-smokers, smokers and smokers during withdrawal. 12 smokers and 12 non-smokers were measured with single voxel proton magnetic resonance spectroscopy for total N-acetyl aspartate, glutamate and glutamine, choline-containing compounds, myo-inositol and total creatine in the right and the left hippocampus and in the right and the left dorsal anterior cingulate cortex. Smokers were examined twice, first during regular cigarette smoking and second on the third day of nicotine withdrawal. The ratios to total creatine were used for better reliability. In our study, Glx/tCr was significantly increased and tCho/tCr was significantly decreased in the left cingulate cortex in smokers compared to non-smokers (p = 0.01, both). Six out of seven smokers showed normalization of the Glx/tCr in the left cingulate cortex during withdrawal. Although these results are preliminary due to the small sample size, our results confirm the assumption that cigarette smoking interferes directly or indirectly with the glutamate circuit in the dorsal anterior cingulate cortex.
Collapse
|
57
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|
58
|
The Directive 2010/63/EU on animal experimentation may skew the conclusions of pharmacological and behavioural studies. Sci Rep 2014; 3:2380. [PMID: 23924859 PMCID: PMC3737502 DOI: 10.1038/srep02380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023] Open
Abstract
All laboratory animals shall be provided some form of environmental enrichment (EE) in the nearest future (Directive 2010/63/EU). Displacing standard housing with EE entails the possibility that data obtained under traditional housing may be reconsidered. Specifically, while EE often contrasts the abnormalities of consolidated disease models, it also indirectly demonstrates that their validity depends on housing conditions. We mimicked a situation in which the consequences of a novel pharmacological compound were addressed before and after the adoption of the Directive. We sub-chronically exposed standard- or EE-reared adolescent CD1 mice (postnatal days 23-33) to the synthetic compound JWH-018, and evaluated its short- and long-term potential cannabinoid properties on: weight gain, locomotion, analgesia, motor coordination, body temperature, brain metabolism (1H MRI/MRS), anxiety- and depressive-related behaviours. While several parameters are modulated by JWH-018 independently of housing, other effects are environmentally mediated. The transition from standard housing to EE shall be carefully monitored.
Collapse
|
59
|
Meyerhoff DJ. Brain proton magnetic resonance spectroscopy of alcohol use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:313-37. [PMID: 25307583 DOI: 10.1016/b978-0-444-62619-6.00019-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This chapter critically reviews brain proton magnetic resonance spectroscopy ((1)H MRS) studies performed since 1994 in individuals with alcohol use disorders (AUD). We describe the neurochemicals that can be measured in vivo at the most common magnetic field strengths, summarize our knowledge about their general brain functions, and briefly explain some basic human (1)H MRS methods. Both cross-sectional and longitudinal research of individuals in treatment and of treatment-naïve individuals with AUD are discussed and interpreted on the basis of reported neuropathology. As AUDs are highly comorbid with chronic cigarette smoking and illicit substance abuse, we also summarize reports on their respective influences on regional proton metabolite levels. After reviewing research on neurobiologic correlates of relapse and genetic influences on brain metabolite levels, we finish with suggestions on future directions for (1)H MRS studies in AUDs. The review demonstrates that brain metabolic alterations associated with AUDs as well as their cognitive correlates are not simply a consequence of chronic alcohol consumption. Future MR research of AUDs in general has to be better prepared - and supported - to study clinically complex relationships between personality characteristics, comorbidities, neurogenetics, lifestyle, and living environment, as all these factors critically affect an individual's neurometabolic profile. (1)H MRS is uniquely positioned to tackle these complexities by contributing to a comprehensive biopsychosocial profile of individuals with AUD: it can provide non-invasive biochemical information on select regions of the brain at comparatively low overall cost for the ultimate purpose of informing more efficient treatments of AUDs.
Collapse
Affiliation(s)
- Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
60
|
Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations. Amino Acids 2014; 46:921-30. [PMID: 24381007 DOI: 10.1007/s00726-013-1658-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/20/2013] [Indexed: 01/27/2023]
Abstract
The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol% alcohol) and subsequently the acute exposure (0, 0.5 or 1.0% alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.
Collapse
|
61
|
Verkhratsky A, Rodríguez JJ, Steardo L. Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 2013; 20:576-88. [PMID: 24301046 DOI: 10.1177/1073858413510208] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Astroglia are the homoeostatic cells of the central nervous system that control a normal function of synaptically connected neuronal networks and contribute to brain defense. Recent advances in comprehension of pathological potential of astroglia indicate that astrocytes are fundamental for most (if not all) neurological diseases. Neuropathological and neuroimaging studies demonstrate prominent astroglial atrophy and astroglial asthenia occurring in most of neuropsychiatric illnesses. In chronic diseases such as schizophrenia and major depression, decrease in astroglial numbers and functional capabilities are, arguably, fundamental for pathological developments being responsible for neurotransmitter disbalance and failures in connectivity within neural networks. In neurodegenerative diseases atrophic changes in astrocytes are complemented by astrogliosis triggered by specific lesions such as senile plaques or dying neurons, these two processes contributing to cognitive decline and ultimately neuronal death. It is therefore possible to hypothesize that neuropsychiatric diseases represent a chronic astrogliopathology, which compromises glial homeostatic and defensive capabilities, and the degree and the alacrity of gliodegenerative changes define the progression and outcome of these disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José J Rodríguez
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer" Sapienza University of Rome, Italy
| |
Collapse
|
62
|
Ramadan S, Lin A, Stanwell P. Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR IN BIOMEDICINE 2013; 26:1630-46. [PMID: 24123328 PMCID: PMC3849600 DOI: 10.1002/nbm.3045] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2013] [Accepted: 09/08/2013] [Indexed: 05/21/2023]
Abstract
Our understanding of the roles that the amino acids glutamate (Glu) and glutamine (Gln) play in the mammalian central nervous system has increased rapidly in recent times. Many conditions are known to exhibit a disturbance in Glu-Gln equilibrium, and the exact relationships between these changed conditions and these amino acids are not fully understood. This has led to increased interest in Glu/Gln quantitation in the human brain in an array of conditions (e.g. mental illness, tumor, neuro-degeneration) as well as in normal brain function. Accordingly, this review has been undertaken to describe the increasing number of in vivo techniques available to study Glu and Gln separately, or pooled as 'Glx'. The present MRS methods used to assess Glu and Gln vary in approach, complexity, and outcome, thus the focus of this review is on a description of MRS acquisition approaches, and an indication of relative utility of each technique rather than brain pathologies associated with Glu and/or Gln perturbation. Consequently, this review focuses particularly on (1) one-dimensional (1)H MRS, (2) two-dimensional (1)H MRS, and (3) one-dimensional (13)C MRS techniques.
Collapse
Affiliation(s)
- Saadallah Ramadan
- School of Health Sciences, Faculty of Health, Hunter Building, University of Newcastle, Callaghan NSW 2308, Australia
| | - Alexander Lin
- Alexander Lin: Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 4 Blackfan Street, HIM-820, Boston MA 02115
| | - Peter Stanwell
- School of Health Sciences, Faculty of Health, Hunter Building, University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
63
|
Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013; 38:1401-8. [PMID: 23403696 PMCID: PMC3682141 DOI: 10.1038/npp.2013.45] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The upregulation of glutamatergic excitatory neurotransmission is thought to be partly responsible for the acute withdrawal symptoms and craving experienced by alcohol-dependent patients. Most physiological evidence supporting this hypothesis is based on data from animal studies. In addition, clinical data show that GABAergic and anti-glutamatergic drugs ameliorate withdrawal symptoms, offering indirect evidence indicative of glutamatergic hyperexcitability in alcohol-dependent subjects. We used proton magnetic resonance spectroscopy to quantify the glutamate (Glu) levels in healthy control subjects and in alcohol-dependent patients immediately after detoxification. The volumes of interest were located in the nucleus accumbens (NAcc) and the anterior cingulate cortex (ACC), which are two brain areas that have important functions in reward circuitry. In addition to Glu, we quantified the levels of combined Glu and glutamine (Gln), N-acetylaspartate, choline-containing compounds, and creatine. The Glu levels in the NAcc were significantly higher in patients than in controls. Craving, which was measured using the Obsessive Compulsive Drinking Scale, correlated positively with levels of combined Glu and Gln in the NAcc and in the ACC. The levels of all other metabolites were not significantly different between patients and controls. The increased Glu levels in the NAcc in alcohol-dependent patients shortly after detoxification confirm the animal data and suggest that striatal glutamatergic dysfunction is related to ethanol withdrawal. The positive correlation between craving and glutamatergic metabolism in both key reward circuitry areas support the hypothesis that the glutamatergic system has an important role in the later course of alcohol dependence with respect to abstinence and relapse.
Collapse
|
64
|
Abé C, Mon A, Hoefer ME, Durazzo TC, Pennington DL, Schmidt TP, Meyerhoff DJ. Metabolic abnormalities in lobar and subcortical brain regions of abstinent polysubstance users: magnetic resonance spectroscopic imaging. Alcohol Alcohol 2013; 48:543-51. [PMID: 23797281 DOI: 10.1093/alcalc/agt056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. METHODS Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-month-abstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (CON). Neuropsychological testing assessed cognitive function. RESULTS While CON and ALC had similar metabolite levels, persistent metabolic abnormalities (primarily higher myo-inositol) were present in temporal gray matter, cerebellar vermis and lenticular nuclei of PSU. Moreover, lower cortical gray matter concentration of the neuronal marker N-acetylaspartate within PSU correlated with higher cocaine (but not alcohol) use quantities and with a reduced cognitive processing speed. CONCLUSIONS These metabolite group differences reflect cellular/astroglial injury and/or dysfunction in alcohol-dependent PSU. Associations of other metabolite concentrations with neurocognitive performance suggest their functional relevance. The metabolic alterations in PSU may represent polydrug abuse biomarkers and/or potential targets for pharmacological and behavioral PSU-specific treatment.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Abé C, Mon A, Durazzo TC, Pennington DL, Schmidt TP, Meyerhoff DJ. Polysubstance and alcohol dependence: unique abnormalities of magnetic resonance-derived brain metabolite levels. Drug Alcohol Depend 2013; 130:30-7. [PMID: 23122599 PMCID: PMC3624044 DOI: 10.1016/j.drugalcdep.2012.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/26/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although comorbid substance misuse is common in alcohol dependence, and polysubstance abusers (PSU) represent the largest group of individuals seeking treatment for drug abuse today, we know little about potential brain abnormalities in this population. Brain magnetic resonance spectroscopy studies of mono-substance use disorders (e.g., alcohol or cocaine) reveal abnormal levels of cortical metabolites (reflecting neuronal integrity, cell membrane turnover/synthesis, cellular bioenergetics, gliosis) and altered concentrations of glutamate and γ-aminobutyric acid (GABA). The concurrent misuse of several substances may have unique and different effects on brain biology and function compared to any mono-substance misuse. METHODS High field brain magnetic resonance spectroscopy at 4 T and neurocognitive testing were performed at one month of abstinence in 40 alcohol dependent individuals (ALC), 28 alcohol dependent PSU and 16 drug-free controls. Absolute metabolite concentrations were calculated in anterior cingulate (ACC), parieto-occipital (POC) and dorso-lateral prefrontal cortices (DLPFC). RESULTS Compared to ALC, PSU demonstrated significant metabolic abnormalities in the DLPFC and strong trends to lower GABA in the ACC. Metabolite levels in ALC and light drinking controls were statistically equivalent. Within PSU, lower DLPFC GABA levels are related to greater cocaine consumption. Several cortical metabolite concentrations were associated with cognitive performance. CONCLUSIONS While metabolite concentrations in ALC at one month of abstinence were largely normal, PSU showed persistent and functionally significant metabolic abnormalities, primarily in the DLPFC. Our results point to specific metabolic deficits as biomarkers in polysubstance misuse and as targets for pharmacological and behavioral PSU-specific treatment.
Collapse
Affiliation(s)
- Christoph Abé
- Department of Radiology and Biomedical Imaging, University of California, San Francisco and Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci Biobehav Rev 2013; 37:2037-46. [PMID: 23628740 DOI: 10.1016/j.neubiorev.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Cocaine remains one of the most addictive substances of abuse and one of the most difficult to treat. Although increasingly sophisticated experimental and technologic advancements in the last several decades have yielded a large body of clinical and preclinical knowledge on the direct effects of cocaine on the brain, we still have a relatively incomplete understanding of the neurobiological processes that occur when drug use is discontinued. The goal of this manuscript is to review both clinical and preclinical data related to abstinence from cocaine and discuss the complementary conclusions that emerge from these different levels of inquiry. This commentary will address observed alterations in neural function, neural structure, and neurotransmitter system regulation that are present in both animal models of cocaine abstinence and data from recovering clinical populations. Although these different levels of inquiry are often challenging to integrate, emerging data discussed in this commentary suggest that from a structural and functional perspective, the preservation of cortical function that is perhaps the most important biomarker associated with extended abstinence from cocaine.
Collapse
|
67
|
Sneider JT, Mashhoon Y, Silveri MM. A Review of Magnetic Resonance Spectroscopy Studies in Marijuana using Adolescents and Adults. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 4:010. [PMID: 24587965 PMCID: PMC3936252 DOI: 10.4172/2155-6105.s4-010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Marijuana (MJ) remains the most widely used illicit drug of abuse, and accordingly, is associated with adverse effects on mental and physical health, and neurocognitive decline. Studies investigating the neurobiology of underlying MJ effects have demonstrated structural and functional alterations in brain areas that contain moderate to high concentrations of cannabinoid (CB1) receptors and that are implicated in MJ-related cognitive decrements. Proton magnetic resonance spectroscopy (1H MRS), a non-invasive imaging technique used to assess neurochemistry, has been widely applied to probe a variety of substance-abusing populations. To date, however, there is a relative paucity of MRS published studies characterizing changes in neurometabolite concentrations in MJ users. Thus, the current review provides a summary of data from the eight existing MRS studies of MJ use in adolescents and adults, as well as interpretations and implications of study findings. Future MRS studies that address additional factors such as sex differences, onset and duration of use, abstinence and age, are warranted, and would lead to a more thorough characterization of potential neurochemical correlates of chronic MJ use, which would fill critical gaps in the existing literature.
Collapse
Affiliation(s)
- Jennifer T Sneider
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Yasmin Mashhoon
- Behavioral Psychopharmacology Research Laboratory, McLean Imaging Center, McLean Hospital, Belmont, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Cysique LA, Moffat K, Moore DM, Lane TA, Davies NWS, Carr A, Brew BJ, Rae C. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One 2013; 8:e61738. [PMID: 23620788 PMCID: PMC3631163 DOI: 10.1371/journal.pone.0061738] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) and premature aging have been hypothesized as new risk factors for HIV associated neurocognitive disorders (HAND) in adults with virally-suppressed HIV infection. Moreover, their significance and relation to more classical HAND biomarkers remain unclear. METHODS 92 HIV- infected (HIV+) adults stable on combined antiretroviral therapy (cART) and 30 age-comparable HIV-negative (HIV-) subjects underwent (1)H Magnetic Resonance Spectroscopy (MRS) of the frontal white matter (targeting HIV, normal aging or CVD-related neurochemical injury), caudate nucleus (targeting HIV neurochemical injury), and posterior cingulate cortex (targeting normal/pathological aging, CVD-related neurochemical changes). All also underwent standard neuropsychological (NP) testing. CVD risk scores were calculated. HIV disease biomarkers were collected and cerebrospinal fluid (CSF) neuroinflammation biomarkers were obtained in 38 HIV+ individuals. RESULTS Relative to HIV- individuals, HIV+ individuals presented mild MRS alterations: in the frontal white matter: lower N-Acetyl-Aspartate (NAA) (p<.04) and higher myo-inositol (mIo) (p<.04); in the caudate: lower NAA (p = .01); and in the posterior cingulate cortex: higher mIo (p<.008- also significant when Holm-Sidak corrected) and higher Choline/NAA (p<.04). Regression models showed that an HIV*age interaction was associated with lower frontal white matter NAA. CVD risk factors were associated with lower posterior cingulate cortex and caudate NAA in both groups. Past acute CVD events in the HIV+ group were associated with increased mIo in the posterior cingulate cortex. HIV duration was associated with lower caudate NAA; greater CNS cART penetration was associated with lower mIo in the posterior cingulate cortex and the degree of immune recovery on cART was associated with higher NAA in the frontal white matter. CSF neopterin was associated with higher mIo in the posterior cingulate cortex and frontal white matter. CONCLUSIONS In chronically HIV+ adults with long-term viral suppression, current CVD risk, past CVD and age are independent factors for neuronal injury and inflammation. This suggests a tripartite model of HIV, CVD and age likely driven by chronic inflammation.
Collapse
Affiliation(s)
- Lucette A Cysique
- University of New South Wales, St. Vincent's Clinical School, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Verdejo-García A, Lubman DI, Roffel K, Vilar-López R, Bora E, MacKenzie T, Yücel M. Cingulate biochemistry in heroin users on substitution pharmacotherapy. Aust N Z J Psychiatry 2013; 47:244-9. [PMID: 23060530 DOI: 10.1177/0004867412463088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE High doses of opiate substitution pharmacotherapy are associated with greater treatment retention and lower illicit drug consumption, although the neurobiological bases of these benefits are poorly understood. Dysfunction of the anterior cingulate cortex (ACC) is associated with greater addiction severity and mood dysregulation in opiate users, such that the beneficial effects of substitution pharmacotherapy may relate to normalisation of ACC function. This study aimed to investigate the differential impact of methadone compared with buprenorphine on dorsal ACC biochemistry. A secondary aim was to explore the differential effects of methadone and buprenorphine on dorsal ACC biochemistry in relation to depressive symptoms. METHODS Twenty-four heroin-dependent individuals stabilised on methadone (n=10) or buprenorphine (n=14) and 24 healthy controls were scanned using proton Magnetic Resonance Spectroscopy and compared for metabolite concentrations of N-acetylaspartate, glutamate/glutamine, and myo-inositol. RESULTS (1) Methadone was associated with normalisation of dorsal ACC biochemistry (increased N-acetylaspartate and glutamate/glutamine levels, and decreased myo-inositol levels) in a dose-dependent manner; (2) buprenorphine-treated individuals had higher myo-inositol and glutamate/glutamine levels than methadone-treated patients in the right dorsal ACC; and (3) myo-inositol levels were positively correlated with depressive symptoms in participants stabilised on buprenorphine. CONCLUSIONS These findings point to a beneficial role of high-dose methadone on dorsal ACC biochemistry, and suggest a link between elevated myo-inositol levels and depressive symptoms in the context of buprenorphine treatment.
Collapse
|
70
|
Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, Torrens M, Pujol J, Farré M, Martin-Santos R. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One 2013; 8:e55821. [PMID: 23390554 PMCID: PMC3563634 DOI: 10.1371/journal.pone.0055821] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/02/2013] [Indexed: 12/18/2022] Open
Abstract
Background The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Methods Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. Results One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. Limitations However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Conclusion Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.
Collapse
Affiliation(s)
- Albert Batalla
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Jose Alexandre Crippa
- Neuroscience and Cognitive Behavior Department, University of Sao Paulo, Ribeirao Preto, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Santiago Nogué
- Clinical Toxicology Unit, Emergency Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Torrens
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Jesús Pujol
- Institut d’Alta Tecnologia-PRBB, CRC Mar, Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Rocio Martin-Santos
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
- * E-mail:
| |
Collapse
|
71
|
Cai K, Nanga RPR, Lamprou L, Schinstine C, Elliott M, Hariharan H, Reddy R, Epperson CN. The impact of gabapentin administration on brain GABA and glutamate concentrations: a 7T ¹H-MRS study. Neuropsychopharmacology 2012; 37:2764-71. [PMID: 22871916 PMCID: PMC3499716 DOI: 10.1038/npp.2012.142] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are implicated in numerous neuropsychiatric and substance abuse conditions, but their spectral overlap with other resonances makes them a challenge to quantify in humans. Gabapentin, marketed for the treatment of seizures and neuropathic pain, has been shown to increase in vivo GABA concentration in the brain of both rodents and humans. Gabapentin effects on glutamate are not known. We conducted a gabapentin (900 mg) challenge in healthy human subjects to confirm and explore its effects on GABA and glutamate concentrations, respectively, and to test the ability of single voxel localized proton magnetic resonance spectroscopy (¹H-MRS) to reliably measure GABA and glutamate in the visual cortex at the ultra-high magnetic field of 7 Tesla. Reproducibility of GABA and glutamate measurements was determined in a comparison group without drug twice within day and 2 weeks apart. Although GABA concentration changes were small both within day (average 5.6%) and between day (average 4.8%), gabapentin administration was associated with an average increase in GABA concentration of 55.7% (6.9-91.0%). Importantly, drug-induced change in GABA levels was inversely correlated to the individual's baseline GABA level (R²=0.72). Mean glutamate concentrations did not change significantly with or without drug administration. In conclusion, localized ¹H-MRS at 7 Tesla can be successfully applied to the measurement of GABA concentration and is sensitive to acute drug-induced changes in cortical GABA. Whether baseline GABA concentrations predict clinical efficacy of gabapentin is an area worthy of exploration.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging (CMROI), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi PR Nanga
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging (CMROI), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Lamprou
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Schinstine
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging (CMROI), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hari Hariharan
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging (CMROI), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging (CMROI), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - C Neill Epperson
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Penn Center for Women's Behavioral Wellness, 3535 Market Street, Room 3001, Philadelphia, PA 19104, USA, Tel: +1 215 573-8871, Fax: +1 215 573 8881, E-mail:
| |
Collapse
|
72
|
Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012; 4:1787-804. [PMID: 22877223 DOI: 10.4155/bio.12.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.
Collapse
|
73
|
Hinton DJ, Lee MR, Jacobson TL, Mishra PK, Frye MA, Mrazek DA, Macura SI, Choi DS. Ethanol withdrawal-induced brain metabolites and the pharmacological effects of acamprosate in mice lacking ENT1. Neuropharmacology 2012; 62:2480-8. [PMID: 22616110 DOI: 10.1016/j.neuropharm.2012.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Acamprosate is clinically used to treat alcohol-dependent patients. While the molecular and pharmacological mechanisms of acamprosate remain unclear, it has been shown to regulate γ-aminobutyric acid (GABA) or glutamate levels in the cortex and striatum. To investigate the effect of acamprosate on brain metabolites in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), we employed in vivo 16.4 T proton magnetic resonance spectroscopy. We utilized type 1 equilibrative nucleoside transporter (ENT1) null mice since acamprosate attenuates ethanol drinking in these mice. Our findings demonstrated that ethanol withdrawal reduced GABA levels and increased phosphorylated choline compounds in the mPFC of both wild-type and ENT1 null mice. Notably, acamprosate normalized these withdrawal-induced changes only in ENT1 null mice. In the NAc, ethanol withdrawal increased glutamate and glutamine (Glx) levels only in wild-type mice. Interestingly, acamprosate reduced Glx levels in the NAc compared to the withdrawal state in both genotypes. These results provide a molecular basis for the pharmacological effect of acamprosate in the cortical-striatal circuit.
Collapse
Affiliation(s)
- David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Gass JT, Olive MF. Neurochemical and neurostructural plasticity in alcoholism. ACS Chem Neurosci 2012; 3:494-504. [PMID: 22896799 DOI: 10.1021/cn300013p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023] Open
Abstract
The behavioral manifestations of alcoholism are primarily attributable to the numerous and lasting adaptations that occur in the brain as a result of chronic heavy alcohol consumption. As will be reviewed here, these adaptations include alcohol-induced plasticity in chemical neurotransmission, density and morphology of dendritic spines, as well as neurodegeneration and cerebral atrophy. Within the context of these neuroadaptations that have been observed in both human and animal studies, we will discuss how these changes potentially contribute to the cognitive and behavioral dysfunctions that are hallmark features of alcoholism, as well as how they reveal novel potential pharmacological targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Justin T. Gass
- Center for
Drug and Alcohol
Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South
Carolina 29425, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, United
States
- Interdisciplinary
Graduate Program
in Neuroscience, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
75
|
Pan Y, Chatterjee D, Gerlai R. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets. Physiol Behav 2012; 107:773-80. [PMID: 22313674 DOI: 10.1016/j.physbeh.2012.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.
Collapse
Affiliation(s)
- Y Pan
- Departments of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
76
|
Netherland J. “We haven't Sliced Open anyone's Brain yet”: Neuroscience, Embodiment and the Governance of Addiction. ADVANCES IN MEDICAL SOCIOLOGY 2011. [DOI: 10.1108/s1057-6290(2011)0000013011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
Shahana N, Delbello M, Chu WJ, Jarvis K, Fleck D, Welge J, Strakowski S, Adler C. Neurochemical alteration in the caudate: implications for the pathophysiology of bipolar disorder. Psychiatry Res 2011; 193:107-12. [PMID: 21683555 DOI: 10.1016/j.pscychresns.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/28/2022]
Abstract
Several lines of evidence suggest that the neuropathophysiology of bipolar disorder is marked by structural and functional abnormalities in the caudate. We used magnetic resonance spectroscopy imaging (MRSI) to examine potential neurochemical changes in the caudate of adult bipolar patients (BP). 2D-MRSI scans including the caudate were obtained from 25 BP and 9 healthy subjects (HS). BP patients were further divided into medicated (n=14) and unmedicated (n=11) groups; the majority of medicated patients received atypical antipsychotics (AAP). Ratios of Cr/Cho, Cho/NAA and Cr/NAA in the caudate were compared between groups, controlling for age, gender and gray/white ratio. BP and HS did not significantly differ on any ratios. The Cr/Cho ratio, however, was significantly greater in medicated BP compared to HS. Conversely, the Cho/NAA ratio was non-significantly lower in medicated BP vs. HS. Medicated BP also showed significantly greater Cr/Cho and significantly smaller Cho/NAA ratios than unmedicated BP. Although we did not observe significant overall differences between BP and HS, our findings suggest the presence of reduced choline levels in the caudate of medicated BP receiving AAP. While speculative, these results suggest that AAP do not cause oxidative injury to neuronal membranes.
Collapse
Affiliation(s)
- Nasrin Shahana
- Division of Bipolar Disorders Research, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Lahti AC, Reid MA. Is there evidence for neurotoxicity in the prodromal and early stages of schizophrenia? Neuropsychopharmacology 2011; 36:1779-80. [PMID: 21753798 PMCID: PMC3154114 DOI: 10.1038/npp.2011.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Meredith A Reid
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
79
|
Thoma R, Mullins P, Ruhl D, Monnig M, Yeo RA, Caprihan A, Bogenschutz M, Lysne P, Tonigan S, Kalyanam R, Gasparovic C. Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacology 2011; 36:1359-65. [PMID: 21389979 PMCID: PMC3096805 DOI: 10.1038/npp.2011.20] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As acute ethanol exposure inhibits N-methyl-D-aspartate glutamate (Glu) receptors, sudden withdrawal from chronic alcohol use may lead to an increased activation of these receptors with excitotoxic effects. In the longer term, brain levels of Glu and its metabolites, such as glutamine (Gln), are likely to be chronically altered by alcohol, possibly providing a measure of overall abnormal Glu-Gln cycling. However, few studies have assessed concentrations of these metabolites in clinical populations of individuals with alcohol use disorders. Glu and Gln levels were compared in groups of 17 healthy controls and in 13 participants with alcohol dependence. Within the alcohol-dependent group, seven participants had current alcohol use disorder (AUD), and six had AUD in remission for at least 1 year (AUD-R). Neurometabolite concentrations were measured with proton magnetic resonance spectroscopy ((1)H-MRS) in a predominantly gray matter voxel that included the bilateral anterior cingulate gyri. Tissue segmentation provided an assessment of the proportion of gray matter in the (1)H-MRS voxel. The Drinker Inventory of Consequences (DrInC) and Form-90 were administered to all participants to quantify alcohol consequences and use. Glu level was lower and Gln level was higher in the AUD and AUD-R groups relative to the control group; creatine, choline, myo-inositol, and total N-acetyl groups, primarily N-acetylaspartate did not differ across groups. These results were not confounded by age, sex, or proportion of gray matter in the (1)H-MRS voxel. Neurometabolite concentrations did not differ between AUD and AUD-R groups. Subsequent regressions in the combined clinical group, treating voxel gray matter proportion as a covariate, revealed that total score on the DrInC was positively correlated with Gln but negatively correlated with both Glu and gray matter proportion. Regression analyses, including DrInC scores and smoking variables, identified a marginal independent effect of smoking on Gln. The current findings of higher Gln and lower Glu in the combined AUD and AUD-R groups might indicate a perturbation of the Glu-Gln cycle in alcohol use disorders. The absence of differences in mean Glu and Gln between the AUD and AUD-R groups suggests that altered Glu-Gln metabolism may either predate the onset of abuse or persist during prolonged abstinence.
Collapse
Affiliation(s)
| | - Paul Mullins
- Mind Research Network, Albuquerque, NM, USA,Bangor Imaging Center, School of Psychology, Bangor University, Gwynedd, UK
| | - David Ruhl
- Mind Research Network, Albuquerque, NM, USA
| | - Mollie Monnig
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Ronald A Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - Michael Bogenschutz
- Department of Psychiatry, Center for Neuropsychological Services, University of New Mexico, Albuquerque, NM, USA
| | - Per Lysne
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Scott Tonigan
- Center on Alcoholism, Substance Abuse, and Addictions (CASAA), Albuquerque, NM, USA
| | | | - Charles Gasparovic
- Mind Research Network, Albuquerque, NM, USA,Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
80
|
Joos AAB, Perlov E, Büchert M, Hartmann A, Saum B, Glauche V, Freyer T, Weber-Fahr W, Zeeck A, Tebartz van Elst L. Magnetic resonance spectroscopy of the anterior cingulate cortex in eating disorders. Psychiatry Res 2011; 191:196-200. [PMID: 21310595 DOI: 10.1016/j.pscychresns.2010.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
The anterior cingulate cortex plays a key role in eating disorders (ED), but it remains an open question whether there are deviations of the neurochemistry of this region in patients with ED. Seventeen adult female patients with ED (10 with bulimia nervosa, 7 with anorexia nervosa) were compared to 14 matched female healthy controls using single voxel magnetic resonance spectroscopy of the anterior cingulate cortex. Group comparisons did not reveal any differences between patients and controls, but a positive correlation between glutamate and myo-inositol signals with "drive for thinness" in patients with bulimia nervosa was found in exploratory correlation analyses.
Collapse
Affiliation(s)
- Andreas A B Joos
- University of Freiburg, Department of Psychosomatic Medicine and Psychotherapy, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
D’Anci KE, Allen PJ, Kanarek RB. A Potential Role for Creatine in Drug Abuse? Mol Neurobiol 2011; 44:136-41. [DOI: 10.1007/s12035-011-8176-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
|
82
|
|