51
|
Raileanu M, Borlan R, Campu A, Janosi L, Turcu I, Focsan M, Bacalum M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int J Pharm 2023:123169. [PMID: 37356506 DOI: 10.1016/j.ijpharm.2023.123169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In recent years, the unprecedented rise of bacterial antibiotic resistance together with the lack of adequate therapies have made the treatment of skin infections and chronic wounds challenging, urging the scientific community to focus on the development of new and more efficient treatment strategies. In this context, there is a growing interest in the use of natural molecules with antimicrobial features, capable of supporting wound healing i.e., antimicrobial peptides (AMPs), for the treatment of skin and soft tissue infections. In this review, we give a short overview of the bacterial skin infections as well as some of the classic treatments used for topical application. We then summarize the AMPs classes, stressing the importance of the appropriate selection of the peptides based on their characteristics and physicochemical properties in order to maximize the antibacterial efficacy of the therapeutic systems against multi-drug resistant pathogens. Additionally, the present paper provides a comprehensive and rigorous assessment of the latest clinical trials investigating the efficacy of AMPs in the treatment of skin and soft tissue infections, highlighting the relevant outcomes. Seeking to obtain novel and improved compounds with synergistic activity, while also decreasing some of the known side effects of AMPs, we present two employed strategies using AMPs: (i) AMPs-conjugated nanosystems for systemic and topical drug delivery systems and (ii) antibiotics-peptide conjugates as a strategy to overcome antibiotics resistance. Finally, an important property of some of the AMPs used in wound treatment is highlighted: their ability to help in wound healing by generally promoting cell proliferation and migration, and in some cases re-epithelialization and angiogenesis among others. Thus, as the pursuit of improvement is an ongoing effort, this work presents the advances made in the treatment of skin and soft tissue infections along with their advantages and limitations, while the still remaining challenges are addressed by providing future prospects and strategies to overcome them.
Collapse
Affiliation(s)
- Mina Raileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Lorant Janosi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania.
| |
Collapse
|
52
|
Shaib H, Aoun P, Ghaddar A, Al Labadi H, Obeid Y. Multidrug Resistance and Plasmid Profiles of Escherichia coli Isolated from Lebanese Broiler Farms. Int J Microbiol 2023; 2023:8811675. [PMID: 37303775 PMCID: PMC10250091 DOI: 10.1155/2023/8811675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
The present study was undertaken to determine the antimicrobial resistance patterns and plasmid fingerprints of commensal Escherichia coli isolated from Lebanese broiler chickens. To that end, a total of 30 E. coli isolates were collected from 15 semi-open broiler farms from North Lebanon and Bekaa Valley. Results showed that all the isolates were resistant to at least nine out of 18 evaluated antimicrobial agents. The best-performing antibiotic families were Carbapenems (Imipenem) and Quinolones (Ciprofloxacin and Norfloxacin) to which only 0.0 and 8.3% of the isolates were resistant, respectively. Fifteen various plasmid profiles were depicted, and all the isolates were found to possess one or multiple plasmids. The plasmid sizes varied from 1.2 to 21.0 kbp, and the most commonly detected plasmid had a size of 5.7 kbp (23.3% of the isolates). There was no significant association between the number of plasmids per isolate and resistance to a particular drug. Nevertheless, the presence of specific plasmids, namely, the 2.2 or 7.7 kbp sized ones, was strongly correlated to Quinolones or Trimethoprim resistance, respectively. Both the 7.7 and 6.8 kbp plasmids showed mild correlation to Amikacin resistance, and the 5.7 kbp plasmid was mildly correlated to Piperacillin-Tazobactam resistance. Our findings highlight the need to revise the list of antimicrobials currently used in Lebanese poultry and associate the presence of specific plasmids to antimicrobial resistance patterns in E. coli isolates. The revealed plasmid profiles could also serve any future epidemiological investigation of poultry disease outbreaks in the country.
Collapse
Affiliation(s)
- Houssam Shaib
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Paul Aoun
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ahmad Ghaddar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Hamza Al Labadi
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Youssef Obeid
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
53
|
Janardhanan J, Kim C, Qian Y, Yang J, Meisel J, Ding D, Speri E, Schroeder V, Wolter W, Oliver A, Mobashery S, Chang M. A dual-action antibiotic that kills Clostridioides difficile vegetative cells and inhibits spore germination. Proc Natl Acad Sci U S A 2023; 120:e2304110120. [PMID: 37155891 PMCID: PMC10193928 DOI: 10.1073/pnas.2304110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.
Collapse
Affiliation(s)
- Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jayda E. Meisel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Enrico Speri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Valerie A. Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - William R. Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, IN46556
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
54
|
Rømer Villumsen K, Allahghadry T, Karwańska M, Frey J, Bojesen AM. Quinolone Resistance in Gallibacterium anatis Determined by Mutations in Quinolone Resistance-Determining Region. Antibiotics (Basel) 2023; 12:903. [PMID: 37237806 PMCID: PMC10215703 DOI: 10.3390/antibiotics12050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Control of the important pathogen, Gallibacterium anatis, which causes salpingitis and peritonitis in poultry, relies on treatment using antimicrobial compounds. Among these, quinolones and fluoroquinolones have been used extensively, leading to a rise in the prevalence of resistant strains. The molecular mechanisms leading to quinolone resistance, however, have not previously been described for G. anatis, which is the aim of this study. The present study combines phenotypic antimicrobial resistance data with genomic sequence data from a collection of G. anatis strains isolated from avian hosts between 1979 and 2020. Minimum inhibitory concentrations were determined for nalidixic acid, as well as for enrofloxacin for each included strain. In silico analyses included genome-wide queries for genes known to convey resistance towards quinolones, identification of variable positions in the primary structure of quinolone protein targets and structural prediction models. No resistance genes known to confer resistance to quinolones were identified. Yet, a total of nine positions in the quinolone target protein subunits (GyrA, GyrB, ParC and ParE) displayed substantial variation and were further analyzed. By combining variation patterns with observed resistance patterns, positions 83 and 87 in GyrA, as well as position 88 in ParC, appeared to be linked to increased resistance towards both quinolones included. As no notable differences in tertiary structure were observed between subunits of resistant and sensitive strains, the mechanism behind the observed resistance is likely due to subtle shifts in amino acid side chain properties.
Collapse
Affiliation(s)
- Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Toloe Allahghadry
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Magdalena Karwańska
- Department of Epizootiology with Exotic Animal and Bird Clinic, Wroclaw University of Environmental and Life Sciences, 50-366 Wrocław, Poland;
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| |
Collapse
|
55
|
Tawfick MM, Adulall AK, El-Kholy AA, Manakhly ARE. Mutation-based fluoroquinolone resistance in carbapenem-resistant Acinetobacter baumannii and Escherichia coli isolates causing catheter-related bloodstream infections. Int J Health Sci (Qassim) 2023; 17:18-25. [PMID: 37151743 PMCID: PMC10155246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Objective We studied the presence of mutations in the chromosomal quinolone resistance-determining regions (QRDRs) of the fluoroquinolone targets gyrA and parC genes and detected the carbapenem resistance (CR) encoding genes among Acinetobacter baumannii and Escherichia coli isolates from catheter-related bloodstream infections (CRBSIs). Methods The study included 39 non-duplicate isolates of A. baumannii (14/39, 35.9%) and E. coli (25/39, 64.1%) isolated from 128 confirmed CRBSIs cases. Antimicrobial susceptibility testing was performed, followed by an evaluation of biofilm formation using the tissue culture plate method. The carbapenemase encoding genes were detected by multiplex polymerase chain reaction (PCR). The mutations in QRDRs of gyrA and parC genes were determined by singleplex PCR amplification followed by DNA sequencing and BlastN analysis in the GenBank database. DNA and the translated amino acid sequences were analyzed using the Mega7 bioinformatics tool. Results Multidrug-resistant (MDR) E. coli and A. baumannii isolates harbored CR encoding genes and combined gyrA and parC genes mutation. The specific substitutions observed in GyrA were Cys173Arg, Cys174Gly, Asp80Val, Tyr178ASP, Tyr84Gly, Glu85Lys, Ser172Leu, and Asp176Asn, while the specific substitutions observed in the ParC amino acid sequence were point mutation 62 Arg, Phe60Leu, Ils66Val, and Gln76Lys. Point mutation 62Arg was detected in two A. baumannii isolates, whereas Ser172Leu mutation was observed in two E. coli isolates. Conclusion The presence of new single and multiple mutations in QRDR causes the emergence of MDR E. coli and A. baumannii infections in carbapenem-resistant Enterobacteriaceae in Egypt, requiring further investigation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mahmoud M. Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Abeer K. Adulall
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amani A. El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Arwa Ramadan El Manakhly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
56
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
57
|
Rossi F, Péguilhan R, Turgeon N, Veillette M, Baray JL, Deguillaume L, Amato P, Duchaine C. Quantification of antibiotic resistance genes (ARGs) in clouds at a mountain site (puy de Dôme, central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161264. [PMID: 36587700 DOI: 10.1016/j.scitotenv.2022.161264] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance in bacteria is becoming a major sanitary concern worldwide. The extensive use of large quantities of antibiotics to sustain human activity has led to the rapid acquisition and maintenance of antibiotic resistant genes (ARGs) in bacteria and to their spread into the environment. Eventually, these can be disseminated over long distances by atmospheric transport. Here, we assessed the presence of ARGs in clouds as an indicator of long-distance travel potential of antibiotic resistance in the atmosphere. We hypothesized that a variety of ARGs can reach the altitude of clouds mainly located within the free troposphere. Once incorporated in the atmosphere, they are efficiently transported and their respective concentrations should differ depending on the sources and the geographical origin of the air masses. We deployed high-flow rate impingers and collected twelve clouds between September 2019 and October 2021 at the meteorological station of the puy de Dôme summit (1465 m a.s.l., France). Total airborne bacteria concentration was assessed by flow cytometry, and ARGs subtypes of the main families of antibiotic resistance (quinolone, sulfonamide, tetracycline; glycopeptide, aminoglycoside, β-lactamase, macrolide) including one mobile genetic element (transposase) were quantified by qPCR. Our results indicate the presence of 29 different ARGs' subtypes at concentrations ranging from 1.01 × 103 to 1.61 × 104 copies m-3 of air. Clear distinctions could be observed between clouds in air masses transported over marine areas (Atlantic Ocean) and clouds influenced by continental surfaces. Specifically, quinolones (mostly qepA) resistance genes were prevalent in marine clouds (54 % of the total ARGs on average), whereas higher contributions of sulfonamide, tetracycline; glycopeptide, β-lactamase and macrolide were found in continental clouds. This study constitutes the first evidence for the presence of microbial ARGs in clouds at concentrations comparable to other natural environments. This highlights the atmosphere as routes for the dissemination of ARGs at large scale.
Collapse
Affiliation(s)
- Florent Rossi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Nathalie Turgeon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand, UAR 833, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, F-63000 Clermont-Ferrand, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand, UAR 833, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, F-63000 Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
58
|
Genomic, Molecular, and Phenotypic Characterization of Arthrobacter sp. OVS8, an Endophytic Bacterium Isolated from and Contributing to the Bioactive Compound Content of the Essential Oil of the Medicinal Plant Origanum vulgare L. Int J Mol Sci 2023; 24:ijms24054845. [PMID: 36902273 PMCID: PMC10002853 DOI: 10.3390/ijms24054845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants play an important role in the discovery of new bioactive compounds with antimicrobial activity, thanks to their pharmacological properties. However, members of their microbiota can also synthesize bioactive molecules. Among these, strains belonging to the genera Arthrobacter are commonly found associated with the plant's microenvironments, showing plant growth-promoting (PGP) activity and bioremediation properties. However, their role as antimicrobial secondary metabolite producers has not been fully explored. The aim of this work was to characterize the Arthrobacter sp. OVS8 endophytic strain, isolated from the medicinal plant Origanum vulgare L., from molecular and phenotypic viewpoints to evaluate its adaptation and influence on the plant internal microenvironments and its potential as a producer of antibacterial volatile molecules (VOCs). Results obtained from the phenotypic and genomic characterization highlight its ability to produce volatile antimicrobials effective against multidrug-resistant (MDR) human pathogens and its putative PGP role as a producer of siderophores and degrader of organic and inorganic pollutants. The outcomes presented in this work identify Arthrobacter sp. OVS8 as an excellent starting point toward the exploitation of bacterial endophytes as antibiotics sources.
Collapse
|
59
|
Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023; 15:pharmaceutics15030804. [PMID: 36986665 PMCID: PMC10056716 DOI: 10.3390/pharmaceutics15030804] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.
Collapse
|
60
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
61
|
Kumar G, Kiran Tudu A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023; 80:117187. [PMID: 36731248 DOI: 10.1016/j.bmc.2023.117187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogen responsible for various community and hospital-acquired infections with life-threatening complications like bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. Antibiotics have been used to treat microbial infections since the introduction of penicillin in 1940. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi, including the treatment of non-microbial diseases, have led to the rapid emergence of multidrug-resistant pathogens with increased virulence. Bacteria have developed several complementary mechanisms to avoid the effects of antibiotics. These mechanisms include chemical transformations and enzymatic inactivation of antibiotics, modification of antibiotics' target site, and reduction of intracellular antibiotics concentration by changes in membrane permeability or by the overexpression of efflux pumps (EPs). The strategy to check antibiotic resistance includes synthesis of the antibiotic analogues, or antibiotics are given in combination with the adjuvant. The inhibitors of multidrug EPs are considered promising alternative therapeutic options with the potential to revive the effects of antibiotics and reduce bacterial virulence. Natural products played a vital role in drug discovery and significantly contributed to the area of infectious diseases. Also, natural products provide lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. This review discusses natural products and their derived compounds as NorA efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India.
| | - Asha Kiran Tudu
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India
| |
Collapse
|
62
|
Onikanni SA, Lawal B, Fadaka AO, Bakare O, Adewole E, Taher M, Khotib J, Susanti D, Oyinloye BE, Ajiboye BO, Ojo OA, Sibuyi NRS. Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor. Molecules 2023; 28:molecules28041593. [PMID: 36838579 PMCID: PMC9966190 DOI: 10.3390/molecules28041593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The African nutmeg (Monodora myristica) is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of Monodora myristica could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of Monodora myristica. Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Oluwafemi Bakare
- Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba Akoko 342111, Nigeria
| | - Ezekiel Adewole
- Industrial Chemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Babatunji Emmanuel Oyinloye
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Nicole Remaliah Samantha Sibuyi
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| |
Collapse
|
63
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
64
|
Dallo M, Patel K, Hebert AA. Topical Antibiotic Treatment in Dermatology. Antibiotics (Basel) 2023; 12:antibiotics12020188. [PMID: 36830098 PMCID: PMC9952385 DOI: 10.3390/antibiotics12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Many indications in dermatology can be effectively managed with topical antibiotics, including acne vulgaris, wound infections, secondarily infected dermatitis, and impetigo. Dermatologists must be familiar with the wide spectrum of topical antibiotics available, including indications, mechanisms of action, adverse events, and spectra of activity. Dermatologists must also keep antibiotic resistance in mind when utilizing these medications. Due to the widespread use of topical antibiotics and their importance in dermatology, a literature review was performed using a systematic search of PubMed and Google Scholar with the terms topical antibiotics, skin infections, dermatology, antimicrobials, and inflammatory dermatoses to identify English-language articles published between 1965-2022 from any country. Relevant publications were manually reviewed for additional content. The following literature review will summarize the common topical antibiotics used in dermatology.
Collapse
Affiliation(s)
- Matthew Dallo
- Department of Dermatology, The University of Texas Health Houston, Houston, TX 77030, USA
- Correspondence: (M.D.); (K.P.); Tel.: +1-713-500-8278 (M.D. & K.P.)
| | - Kavina Patel
- Department of Dermatology, The University of Texas Health Houston, Houston, TX 77030, USA
- Correspondence: (M.D.); (K.P.); Tel.: +1-713-500-8278 (M.D. & K.P.)
| | - Adelaide A. Hebert
- Department of Dermatology and Pediatrics, The University of Texas Health Houston, Houston, TX 77030, USA
| |
Collapse
|
65
|
Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med (Wars) 2023; 18:20230707. [PMID: 37197355 PMCID: PMC10183727 DOI: 10.1515/med-2023-0707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen that can cause a range of infections in hospitalized patients. With the growing use of antibiotics, MDR K. pneumoniae is more prevalent, posing additional difficulties and obstacles in clinical therapy. To provide a valuable reference to deeply understand K. pneumoniae, and also to provide the theoretical basis for clinical prevention of such bacteria infections, the antibiotic resistance and mechanism of K. pneumoniae are discussed in this article. We conducted a literature review on antibiotic resistance of K. pneumoniae. We ran a thorough literature search of PubMed, Web of Science, and Scopus, among other databases. We also thoroughly searched the literature listed in the papers. We searched all antibiotic resistance mechanisms and genes of seven important antibiotics used to treat K. pneumoniae infections. Antibiotics such as β-lactams, aminoglycosides, and quinolones are used in the treatment of K. pneumoniae infection. With both chromosomal and plasmid-encoded ARGs, this pathogen has diverse resistance genes. Carbapenem resistance genes, enlarged-spectrum β-lactamase genes, and AmpC genes are the most often β-lactamase resistance genes. K. pneumoniae is a major contributor to antibiotic resistance worldwide. Understanding K. pneumoniae antibiotic resistance mechanisms and molecular characteristics will be important for the design of targeted prevention and novel control strategies against this pathogen.
Collapse
Affiliation(s)
- Yanping Li
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - Lihu Zhang
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongyan Wu
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| |
Collapse
|
66
|
Impact of fluoroquinolones and aminoglycosides on P. aeruginosa virulence factor production and cytotoxicity. Biochem J 2022; 479:2511-2527. [PMID: 36504127 DOI: 10.1042/bcj20220527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.
Collapse
|
67
|
Increased Expression of Efflux Pump norA Drives the Rapid Evolutionary Trajectory from Tolerance to Resistance against Ciprofloxacin in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0059422. [PMID: 36445128 PMCID: PMC9765010 DOI: 10.1128/aac.00594-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The intensively intermittent use of antibiotics promotes the rapid evolution of tolerance, which may lead to resistance acquisition in the following evolutionary trajectory. In addition to directly exporting antibiotics as an instant resistance strategy, efflux pumps are overexpressed in tolerant strains. To investigate how efflux pumps participate in resistance development from tolerance to resistance, we performed in vitro evolutional experiments against the antibiotic ciprofloxacin in norA efflux pump mutants of Staphylococcus aureus. These experiments demonstrated that overexpression of norA rapidly facilitated the development of ciprofloxacin resistance from tolerance to resistance through elevated spontaneous mutations. The generated resistance mutations were further fixed in the population by increasing survival ability. The observed Ser80Phe and Glu84Lys mutations in the topoisomerase IV ParC (GrlA in S. aureus) may be responsible for tolerant strains to develop resistance to ciprofloxacin since it has been reported that such mutations disrupt the water-metal ion bridge between quinolones and ParC. MepA and Sav1866 are related to the same antibiotic (ciprofloxacin) susceptibility as NorA, and they also contributed to resistance development against ciprofloxacin. MgrA positively regulated NorA expression and the development of ciprofloxacin resistance. Importantly, blocking the evolutionary pathway by coadministering ciprofloxacin with the efflux pump inhibitor reserpine effectively delayed the resistance acquisition in an in vitro experiment. This study illustrated the role of efflux pumps in the evolutionary trajectory from tolerance to resistance. The delayed resistance development caused by the efflux pump inhibitor illuminates a possible strategy for postponing the resistance acquisition from tolerance to resistance by disrupting efflux pumps.
Collapse
|
68
|
Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120440. [PMID: 36265724 DOI: 10.1016/j.envpol.2022.120440] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics play an essential role in the medical healthcare world, but their widespread usage and high prevalence have posed negative environmental consequences. During the past few decades, various antibiotic drugs have been detected in aquatic and terrestrial ecosystems. Among them, the Fluoroquinolones (FQ) group is ubiquitous in the environment and has emerged as a major environmental pollutant. FQs are very significant, broad-spectrum antibiotics used in treating various pathogenic diseases of humans and animals. The most known and used FQs are ciprofloxacin, norfloxacin, ofloxacin, levofloxacin, enrofloxacin, danofloxacin, and moxifloxacin. After human and animal administration, about 70% of these drugs are excreted out in unaltered form into the environment. Besides, wastewater discharge from pharmaceutical industries, hospitals, and agriculture runoff is the major contributor to the accumulation of FQs into the ecosystem. Their long-term presence in the environment creates selection pressure on microorganisms and contributes to the emergence of multi-drug-resistant bacteria. In addition to the resistance, these antibiotics also impose ecotoxicological effects on various animals and plant species. The presence of the fluorine atom in Fluoroquinolones makes them highly electronegative, strong, recalcitrant, and less compatible with microbial degradation. Many biological and chemical processes have been invented and successfully implemented during the past few decades for the elimination of these pollutants from the environment. This review provides a detailed overview of the classification, occurrence, distribution, and ecotoxicological effects of Fluoroquinolones. Their modes of action, resistance mechanism, detection and analysis methods, and remediation strategies have also been discussed in detail.
Collapse
Affiliation(s)
- Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India; Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
69
|
Annisa N, Barliana MI, Santoso P, Ruslami R. Transporter and metabolizer gene polymorphisms affect fluoroquinolone pharmacokinetic parameters. Front Pharmacol 2022; 13:1063413. [PMID: 36588725 PMCID: PMC9798452 DOI: 10.3389/fphar.2022.1063413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease that occurs globally. Treatment of TB has been hindered by problems with multidrug-resistant strains (MDR-TB). Fluoroquinolones are one of the main drugs used for the treatment of MDR-TB. The success of therapy can be influenced by genetic factors and their impact on pharmacokinetic parameters. This review was conducted by searching the PubMed database with keywords polymorphism and fluoroquinolones. The presence of gene polymorphisms, including UGT1A1, UGT1A9, SLCO1B1, and ABCB1, can affect fluoroquinolones pharmacokinetic parameters such as area under the curve (AUC), creatinine clearance (CCr), maximum plasma concentration (Cmax), half-life (t1/2) and peak time (tmax) of fluoroquinolones.
Collapse
Affiliation(s)
- Nurul Annisa
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Unit of Clinical Pharmacy and Community, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Melisa I. Barliana
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia,*Correspondence: Melisa I. Barliana,
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
70
|
Afzal M, Vijay AK, Stapleton F, Willcox M. The Relationship between Ciprofloxacin Resistance and Genotypic Changes in S. aureus Ocular Isolates. Pathogens 2022; 11:1354. [PMID: 36422605 PMCID: PMC9695201 DOI: 10.3390/pathogens11111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of eye infections with some isolates exhibiting increased antimicrobial resistance to commonly prescribed antibiotics. The increasing resistance of ocular S. aureus to ciprofloxacin is a serious concern as it is a commonly used as a first line antibiotic to treat S. aureus keratitis. This study aimed to analyse genetic mutations in the genomes of 25 S. aureus isolates from infections or non-infectious ocular conditions from the USA and Australia and their relationship to ciprofloxacin resistance. Overall, 14/25 isolates were phenotypically resistant to ciprofloxacin. All isolates were analyzed for mutations in their quinolone resistance-determining regions (QRDRs) and efflux pump genes. Of the fourteen resistant isolates, 9/14 had ciprofloxacin resistance mutations within their QRDRs, at codons 80 or 84 within the parC subunit and codon 84 within the gyrA subunit of DNA gyrase. The highest resistance (MIC = 2560 μg/mL) was associated with two SNPs in both gyrA and parC. Other resistant isolates (3/14) had mutations within norB. Mutations in genes of other efflux pumps and their regulator (norA, norC, mepA, mdeA, sepA, sdrM, mepR, arlR, and arlS) or the DNA mismatch repair (MMR) system (mutL and mutS) were not associated with increased resistance to ciprofloxacin. The functional mutations associated with ciprofloxacin resistance in QRDRs (gyrA and parC) and norB suggests that these are the most common reasons for ciprofloxacin resistance in ocular isolates. Novel SNPs of gyrA Glu-88-Leu, Asn-860-Thr and Thr-845-Ala and IIe-855-Met, identified in this study, need further gene knock out/in studies to better understand their effect on ciprofloxacin resistance.
Collapse
|
71
|
Mamada SS, Nainu F, Masyita A, Frediansyah A, Utami RN, Salampe M, Emran TB, Lima CMG, Chopra H, Simal-Gandara J. Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Mar Drugs 2022; 20:691. [PMID: 36355013 PMCID: PMC9697125 DOI: 10.3390/md20110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.
Collapse
Affiliation(s)
- Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ayu Masyita
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Tangerang Selatan 15318, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Rifka Nurul Utami
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
72
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
73
|
Liu S, Ding Y, Xu Y, Li Z, Zeng Z, Liu J. An outbreak of extensively drug-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a teaching hospital in Southwest China. Front Cell Infect Microbiol 2022; 12:979219. [PMID: 36176583 PMCID: PMC9513609 DOI: 10.3389/fcimb.2022.979219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Extensively drug-resistant and hypervirulent Klebsiella pneumoniae (XDR-hvKp) is a new problem for patients in Intensive Care Unit (ICU) and can become an even more severe threat if resistant to tigecycline, considered one of the ‘last lines of defense’ drugs. This study collected seven non-replicated tigecycline-resistant XDR-hvKp from seven patients and performed genome analysis and epidemiological investigation using whole genome equencing (WGS) and other methods. All strains in this study were identified as ST11-KL64 and showed high resistance to antibiotics such as β-lactams, aminoglycosides, quinolones, and tigecycline, and one strain was also resistant to colistin. All strains were determined to be hvKp by the results of serum resistance assay and Galleria mellonella infection models. All strains had resistance genes blaCTX-M-65,blaKPC-2,blaLAP-2,blaTEM-1B, rmtB, and qnrS1 and virulence factors such as rmpA, rmpA2, and aerobactin (iucABCD, iutA). The expression of the AcrAB-TolC efflux pump was upregulated in all strains, and the expression levels of the gene pmrK was significantly upregulated in colistin-resistant strain DP compared to colistin-sensitive strain WT in this study. In conclusion, we described an outbreak caused by tigecycline-resistant XDR-hvKp in the ICU of a teaching hospital in southwest China. The spread of these superbugs poses a great threat to patients and therefore requires us to closely monitor these XDR-hvKp and develop relevant strategies to combat them.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinbo Liu
- *Correspondence: Jinbo Liu, ; Zhangrui Zeng,
| |
Collapse
|
74
|
Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022; 14:pharmaceutics14081749. [PMID: 36015376 PMCID: PMC9414178 DOI: 10.3390/pharmaceutics14081749] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance has motivated researchers to discover new antibacterial agents. Nowadays, fluoroquinolones keep their status as one of the essential classes of antibacterial agents. The new generations of fluoroquinolones are valuable therapeutic tools with a spectrum of activity, including Gram-positive, Gram-negative, and atypical bacteria. This review article surveys the design of fluoroquinolone hybrids with other antibacterial agents or active compounds and underlines the new hybrids' antibacterial properties. Antibiotic fluoroquinolone hybrids have several advantages over combined antibiotic therapy. Thus, some challenges related to joining two different molecules are under study. Structurally, the obtained hybrids may contain a cleavable or non-cleavable linker, an essential element for their pharmacokinetic properties and mechanism of action. The design of hybrids seems to provide promising antibacterial agents helpful in the fight against more virulent and resistant strains. These hybrid structures have proven superior antibacterial activity and less susceptibility to bacterial resistance than the component molecules. In addition, fluoroquinolone hybrids have demonstrated other biological effects such as anti-HIV, antifungal, antiplasmodic/antimalarial, and antitumor activity. Many fluoroquinolone hybrids are in various phases of clinical trials, raising hopes that new antibacterial agents will be approved shortly.
Collapse
|
75
|
Onishi R, Shigemura K, Osawa K, Yang YM, Maeda K, Tanimoto H, Kado M, Fang SB, Sung SY, Miyara T, Fujisawa M. Impact on quinolone resistance of plasmid-mediated quinolone resistance gene and mutations in quinolone resistance-determining regions in extended spectrum beta lactamase-producing Klebsiella pneumoniae isolated from urinary tract infection patients. Pathog Dis 2022; 80:6649813. [PMID: 35878410 DOI: 10.1093/femspd/ftac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae is a typical pathogen in urinary tract infections (UTI), and the emergence of extended spectrum beta-lactamase (ESBL)-producing strains has been frequently reported, accompanied by higher quinolone resistance rates. There are two major mechanisms of quinolone resistance, mutations in quinolone resistance-determining regions (QRDR) and the presence of the plasmid-mediated quinolone resistance (PMQR) genes. This study aimed to investigate quinolone resistance among 105 ESBL-producing K. pneumoniae specimens isolated from UTI patients in Indonesia. These were characterized for antimicrobial resistance to nalidixic acid, ciprofloxacin and levofloxacin, QRDR mutations in gyrA and parC and the presence of PMQR genes. We found that 84.8% of the collected isolates were resistant to at least one of the quinolones. QRDR mutation in gyrA was observed in 49.5% of these strains and parC mutations in 61.0%. PMQR genes were identified in 84.8% of strains. The QRDR mutations clearly had a greater effect on resistance than the PMQR genes. In conclusion, we found high quinolone resistance rates in Indonesian ESBL-producing K. pneumoniae, in which QRDR mutation played a major role.
Collapse
Affiliation(s)
- Reo Onishi
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Young-Min Yang
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koki Maeda
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroshi Tanimoto
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Mitsuki Kado
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Shiuh-Bin Fang
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City, 23561, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu Hsing Street, Hsin Yi District, Taipei, 11031, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
76
|
Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections. J Control Release 2022; 349:338-353. [PMID: 35820538 DOI: 10.1016/j.jconrel.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Ciprofloxacin (CIP) a broad-spectrum antibiotic, is used extensively for the treatment of diverse infections and diseases of bacteria origin, and this includes infections caused by E. coli; P. aeruginosa; S. aureus; and MRSA. This extensive use of CIP has therefore led to an increase in resistance by these infection causing organisms. Nano delivery systems has recently proven to be a possible solution to resistance to these organisms. They have been applied as a strategy to improve the target specificity of CIP against infections and diseases caused by these organisms, thereby maximising the efficacy of CIP to overcome the resistance. Herein, we proffer a brief overview of the mechanisms of resistance; the causes of resistance; and the various approaches employed to overcome this resistance. The review then proceeds to critically evaluate various nano delivery systems including inorganic based nanoparticles; lipid-based nanoparticles; capsules, dendrimers, hydrogels, micelles, and polymeric nanoparticles; and others; that have been applied for the delivery of CIP against E. coli; P. aeruginosa; S. aureus; and MRSA infections. Finally, the review highlights future areas of research, for the optimisation of various nano delivery systems, to maximise the therapeutic efficacy of CIP against these organisms. This review confirms the potential of nano delivery systems, for addressing the challenges of resistance to caused by E. coli; P. aeruginosa; S. aureus; and MRSA to CIP.
Collapse
Affiliation(s)
- Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.; Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa..
| |
Collapse
|
77
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
78
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Wong EH, Abdul Rahim N. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 2022; 18:47. [PMID: 35781167 DOI: 10.1007/s11306-022-01903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rise of antimicrobial resistance at an alarming rate is outpacing the development of new antibiotics. The worrisome trends of multidrug-resistant Gram-negative bacteria have enormously diminished existing antibiotic activity. Antibiotic treatments may inhibit bacterial growth or lead to induce bacterial cell death through disruption of bacterial metabolism directly or indirectly. In light of this, it is imperative to have a thorough understanding of the relationship of bacterial metabolism with antimicrobial activity and leverage the underlying principle towards development of novel and effective antimicrobial therapies. OBJECTIVE Herein, we explore studies on metabolic analyses of Gram-negative pathogens upon antibiotic treatment. Metabolomic studies revealed that antibiotic therapy caused changes of metabolites abundance and perturbed the bacterial metabolism. Following this line of thought, addition of exogenous metabolite has been employed in in vitro, in vivo and in silico studies to activate the bacterial metabolism and thus potentiate the antibiotic activity. KEY SCIENTIFIC CONCEPTS OF REVIEW Exogenous metabolites were discovered to cause metabolic modulation through activation of central carbon metabolism and cellular respiration, stimulation of proton motive force, increase of membrane potential, improvement of host immune protection, alteration of gut microbiome, and eventually facilitating antibiotic killing. The use of metabolites as antimicrobial adjuvants may be a promising approach in the fight against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program, Department of Microbiology, Monash University, 3800, Victoria, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
79
|
Chung CH, Chandrasekaran S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions. PNAS NEXUS 2022; 1:pgac132. [PMID: 36016709 PMCID: PMC9396445 DOI: 10.1093/pnasnexus/pgac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy design. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism) in predicting drug interactions for Escherichia coli cultured in 57 metabolic conditions based on experimental validation. The entropy in bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation of metabolic heterogeneity using population FBA identified two subpopulations of E. coli cells defined by the levels of three proteins (eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential for clinical use.
Collapse
Affiliation(s)
- Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
80
|
Melgarejo T, Sharp N, Krumbeck JA, Wu G, Kim YJ, Linde A. The Urinary Resistome of Clinically Healthy Companion Dogs: Potential One Health Implications. Antibiotics (Basel) 2022; 11:antibiotics11060780. [PMID: 35740186 PMCID: PMC9220278 DOI: 10.3390/antibiotics11060780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
An interdisciplinary approach to antimicrobial resistance (AMR) is essential to effectively address what is projected to soon become a public health disaster. Veterinary medicine accounts for a majority of antimicrobial use, and mainly in support of industrial food animal production (IFAP), which has significant exposure implications for human and nonhuman animals. Companion dogs live in close proximity to humans and share environmental exposures, including food sources. This study aimed to elucidate the AMR-gene presence in microorganisms recovered from urine from clinically healthy dogs to highlight public health considerations in the context of a species-spanning framework. Urine was collected through cystocentesis from 50 companion dogs in Southern California, and microbial DNA was analyzed using next-generation sequencing. Thirteen AMR genes in urine from 48% of the dogs {n=24} were detected. The most common AMR genes were aph(3')Ia, and ermB, which confer resistance to aminoglycosides and MLS (macrolides, lincosamides, streptogramins) antibiotics, respectively. Antibiotic-resistance profiles based on the AMR genes detected, and the intrinsic resistance profiles of bacterial species, were inferred in 24% of the samples {n=12} for 57 species, with most belonging to Streptococcus, Staphylococcus, and Corynebacterium genera. The presence of AMR genes that confer resistance to medically important antibiotics suggests that dogs may serve as reservoirs of clinically relevant resistomes, which is likely rooted in excessive IFAP antimicrobial use.
Collapse
Affiliation(s)
- Tonatiuh Melgarejo
- Veterinary Clinical Center, College of Veterinary Medicine, Western University of Health Sciences, 611 E. Second Street, Pomona, CA 91766, USA; (N.S.); (Y.J.K.)
- Correspondence: (T.M.); (A.L.)
| | - Nathan Sharp
- Veterinary Clinical Center, College of Veterinary Medicine, Western University of Health Sciences, 611 E. Second Street, Pomona, CA 91766, USA; (N.S.); (Y.J.K.)
| | | | - Guangxi Wu
- MiDOG LLC, 14672 Bentley Cir, Tustin, CA 92780, USA; (J.A.K.); (G.W.)
| | - Young J. Kim
- Veterinary Clinical Center, College of Veterinary Medicine, Western University of Health Sciences, 611 E. Second Street, Pomona, CA 91766, USA; (N.S.); (Y.J.K.)
| | - Annika Linde
- Veterinary Clinical Center, College of Veterinary Medicine, Western University of Health Sciences, 611 E. Second Street, Pomona, CA 91766, USA; (N.S.); (Y.J.K.)
- Correspondence: (T.M.); (A.L.)
| |
Collapse
|
81
|
Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Horwitz SM, Blue TC, Ambarian JA, Hoshino S, Seyedsayamdost MR, Davis KM. Structural insights into inhibition of the drug target dihydroorotate dehydrogenase by bacterial hydroxyalkylquinolines. RSC Chem Biol 2022; 3:420-425. [PMID: 35441142 PMCID: PMC8984913 DOI: 10.1039/d1cb00255d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxyalkylquinolines (HAQs) are ubiquitious natural products but their interactions with associated protein targets remain elusive. We report X-ray crystal structures of two HAQs in complex with dihydroorotate dehydrogenase (DHODH). Our results reveal the structural basis of DHODH inhibition by HAQs and open the door to downstream structure-activity relationship studies.
Collapse
Affiliation(s)
| | - Tamra C Blue
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | | - Shotaro Hoshino
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | |
Collapse
|
83
|
Ribeiro AI, Dias AM, Zille A. Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS APPLIED NANO MATERIALS 2022; 5:3030-3064. [PMID: 36568315 PMCID: PMC9773423 DOI: 10.1021/acsanm.1c03891] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanotechnology has expanded into a broad range of clinical applications. In particular, metal nanoparticles (MNPs) display unique antimicrobial properties, a fundamental function of novel medical devices. The combination of MNPs with commercial antimicrobial drugs (e.g., antibiotics, antifungals, and antivirals) may offer several opportunities to overcome some disadvantages of their individual use and enhance effectiveness. MNP conjugates display multiple advantages. As drug delivery systems, the conjugates can extend the circulation of the drugs in the body, facilitate intercellular targeting, improve drug stabilization, and possess superior delivery. Concomitantly, they reduce the required drug dose, minimize toxicity, and broaden the antimicrobial spectrum. In this work, the common strategies to combine MNPs with clinically used antimicrobial agents are underscored. Furthermore, a comprehensive survey about synergistic antimicrobial effects, the mechanism of action, and cytotoxicity is depicted.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Alice Maria Dias
- Centre
of Chemistry, Department of Chemistry, University
of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andrea Zille
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
84
|
Garcia JF, Nastro M, Dabos L, Campos J, Traglia G, Ocampo CV, Famiglietti A, Rodriguez CH, Vay CA. Molecular and Phenotypic Characterization of a Multidrug-Resistant Escherichia coli Coproducing OXA-232 and MCR -1.1 in Argentina. Microb Drug Resist 2022; 28:511-516. [PMID: 35275771 DOI: 10.1089/mdr.2021.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spread of carbapenem-resistant Enterobacterales has raised concern in clinical settings due to the limited therapeutic options available. OXA-48-like enzymes are still sporadic in South America. The aim of this study was to characterize a multidrug-resistant Escherichia coli isolate from a hospitalized patient in Buenos Aires city. The isolate was characterized phenotypically by determination of its susceptibility pattern, synergistic and colorimetric tests, and molecularly, by PCR, whole genome sequencing, and plasmid analysis. It belonged to ST-744, phylogroup A, and serotype O162/O89: H9. It remained susceptible to ceftazidime, meropenem, aminoglycosides, trimethoprim/sulfamethoxazole, and tigecycline. The presence of blaOXA-232 harbored by a nonconjugative plasmid ColKp3, and blaCTX-M-14, mcr-1.1, and fosL1 in 2 conjugative plasmids, together with their genetic environment, was revealed. To the best of our knowledge, this is the first report of the coproduction of the enzyme OXA-232 and the mcr-1.1 gene in an E. coli clinical isolate in South America in a patient who had not received colistin therapy.
Collapse
Affiliation(s)
- Javier F Garcia
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Nastro
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Dabos
- Evolutionary Systems Genetics of Microbes Laboratory, Center for Plant Biotechnology and Genomics (CBGP, UPM-INIA) Technical University of Madrid, Madrid, Spain
| | - Josefina Campos
- Plataforma Genómica y Bioinformática ANLIS "Dr Carlos G Malbran", Buenos Aires, Argentina
| | - German Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Vera Ocampo
- Servicio de Infectología, Sanatorio Mater Dei, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Angela Famiglietti
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H Rodriguez
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Vay
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Bacteriología. Sanatorio Mater Dei, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
85
|
Molecular Characterization of Salmonella Detected along the Broiler Production Chain in Trinidad and Tobago. Microorganisms 2022; 10:microorganisms10030570. [PMID: 35336145 PMCID: PMC8955423 DOI: 10.3390/microorganisms10030570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
This cross-sectional study determined the serovars, antimicrobial resistance genes, and virulence factors of Salmonella isolated from hatcheries, broiler farms, processing plants, and retail outlets in Trinidad and Tobago. Salmonella in silico serotyping detected 23 different serovars where Kentucky 20.5% (30/146), Javiana 19.2% (28/146), Infantis 13.7% (20/146), and Albany 8.9% (13/146) were the predominant serovars. There was a 76.0% (111/146) agreement between serotyping results using traditional conventional methods and whole-genome sequencing (WGS) in in silico analysis. In silico identification of antimicrobial resistance genes conferring resistance to aminoglycosides, cephalosporins, peptides, sulfonamides, and antiseptics were detected. Multidrug resistance (MDR) was detected in 6.8% (10/146) of the isolates of which 100% originated from broiler farms. Overall, virulence factors associated with secretion systems and fimbrial adherence determinants accounted for 69.3% (3091/4463), and 29.2% (1302/4463) counts, respectively. Ten of 20 isolates of serovar Infantis (50.0%) showed MDR and contained the blaCTX-M-65 gene. This is the first molecular characterization of Salmonella isolates detected along the entire broiler production continuum in the Caribbean region using WGS. The availability of these genomes will help future source tracking during epidemiological investigations associated with Salmonella foodborne outbreaks in the region and worldwide.
Collapse
|
86
|
Nocchetti M, Boccalon E, Pica M, Giordano NMR, Finori F, Pietrella D, Cipiciani A. Overcoming Antibiotic Resistance: Playing the 'Silver Nanobullet' Card. MATERIALS (BASEL, SWITZERLAND) 2022; 15:932. [PMID: 35160881 PMCID: PMC8839980 DOI: 10.3390/ma15030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022]
Abstract
Enhancing the antibacterial activity of old antibiotics by a multitarget approach, such as combining antibiotics with metal nanoparticles, is a valuable strategy to overcome antibacterial resistance. In this work, the synergistic antimicrobial effect of silver nanoparticles and antibiotics, immobilized on a solid support, was investigated. Nanometric layered double hydroxides (LDH) based on Zn(II) and Al(III) were prepared by the double microemulsion technique. The dual function of LDH as an anionic exchanger and support for metal nanoparticles was exploited to immobilize both silver and antibiotics. Cefazolin (CFZ), a β-lactam, and nalidixic acid (NAL), a quinolone, were selected and intercalated into LDH obtaining ZnAl-CFZ and ZnAl-NAL samples. These samples were used for the growth of silver nanoparticles with dimension ranging from 2.5 to 8 nm. Silver and antibiotics release profiles, from LDH loaded with antibiotics and Ag/antibiotics, were evaluated in two different media: water and phosphate buffer. Interestingly, the release profiles are affected by both the acceptor media and the presence of silver. The synergistic antibacterial activity of LDH containing both silver and antibiotics were investigated on gram-positives (Staphylococcus aureus and Streptococcus pneumoniae) and gram-negatives (Pseudomonas aeruginosa) and compared with the plain antimicrobials and LDH containing only antibiotics or silver.
Collapse
Affiliation(s)
- Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (M.P.); (N.M.R.G.)
| | - Elisa Boccalon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
| | - Monica Pica
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (M.P.); (N.M.R.G.)
| | | | - Francesco Finori
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy; (F.F.); (A.C.)
| | - Donatella Pietrella
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli, 1, 06129 Perugia, Italy;
| | - Antonio Cipiciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy; (F.F.); (A.C.)
| |
Collapse
|
87
|
Goyal B, Verma N, Kharewal T, Gahlaut A, Hooda V. Structural effects of nanoparticles on their antibacterial activity against multi-drug resistance. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bharti Goyal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
88
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
89
|
Kulabaş N, Türe A, Bozdeveci A, Krishna VS, Alpay Karaoğlu Ş, Sriram D, Küçükgüzel İ. Novel fluoroquinolones containing 2‐arylamino‐2‐oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Necla Kulabaş
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Aslı Türe
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Vagolu Siva Krishna
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| |
Collapse
|
90
|
Saxena N, Kumar R, Shankhdhar S, Srivastava N. Synthesis of new 3-substituted quinolone derivatives with benzene sulfonamide group using hydrazine linker with their docking and antibacterial studies in vitro. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
91
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
92
|
MIP-based extraction techniques for the determination of antibiotic residues in edible meat samples: Design, performance & recent developments. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Genetic Diversity, Antimicrobial Resistance Pattern, and Biofilm Formation in Klebsiella pneumoniae Isolated from Patients with Coronavirus Disease 2019 (COVID-19) and Ventilator-Associated Pneumonia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2347872. [PMID: 34957300 PMCID: PMC8703158 DOI: 10.1155/2021/2347872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
Introduction Patients with acute respiratory distress syndrome caused by coronavirus disease 2019 (COVID-19) are at risk for superadded infections, especially infections caused by multidrug resistant (MDR) pathogens. Before the COVID-19 pandemic, the prevalence of MDR infections, including infections caused by MDR Klebsiella pneumoniae (K. pneumoniae), was very high in Iran. This study is aimed at assessing the genetic diversity, antimicrobial resistance pattern, and biofilm formation in K. pneumoniae isolates obtained from patients with COVID-19 and ventilator-associated pneumonia (VAP) hospitalized in an intensive care unit (ICU) in Iran. Methods In this cross-sectional study, seventy K. pneumoniae isolates were obtained from seventy patients with COVID-19 hospitalized in the ICU of Shahid Beheshti hospital, Kashan, Iran, from May to September, 2020. K. pneumoniae was detected through the ureD gene. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and biofilm was detected using the microtiter plate assay method. Genetic diversity was also analyzed through polymerase chain reaction based on enterobacterial repetitive intergenic consensus (ERIC-PCR). The BioNumerics software (v. 8.0, Applied Maths, Belgium) was used for analyzing the data and drawing dendrogram and minimum spanning tree. Findings. K. pneumoniae isolates had varying levels of resistance to antibiotics meropenem (80.4%), cefepime-aztreonam-piperacillin/tazobactam (70%), tobramycin (61.4%), ciprofloxacin (57.7%), gentamicin (55.7%), and imipenem (50%). Around 77.14% of isolates were MDR, and 42.8% of them formed biofilm. Genetic diversity analysis revealed 28 genotypes (E1-E28) and 74.28% of isolates were grouped into ten clusters (i.e., clusters A-J). Clusters were further categorized into three major clusters, i.e., clusters E, H, and J. Antimicrobial resistance to meropenem, tobramycin, gentamicin, and ciprofloxacin in cluster J was significantly higher than cluster H, denoting significant relationship between ERIC clusters and antimicrobial resistance. However, there was no significant difference among major clusters E, H, and J respecting biofilm formation. Conclusion K. pneumoniae isolates obtained from patients with COVID-19 have high antimicrobial resistance, and 44.2% of them have genetic similarity and can be clustered in three major clusters. There is a significant difference among clusters respecting antimicrobial resistance.
Collapse
|
94
|
Long Y, Lu X, Ni X, Liu J, Wang M, Li X, Li Z, Zhou H, Li Z, Wu K, Wang W, Yang L, Xu J, Chen H, Kan B. High Carriage Rate of the Multiple Resistant Plasmids Harboring Quinolone Resistance Genes in Enterobacter spp. Isolated from Healthy Individuals. Antibiotics (Basel) 2021; 11:antibiotics11010015. [PMID: 35052892 PMCID: PMC8773380 DOI: 10.3390/antibiotics11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial-resistant bacteria causing intractable and even fatal infections are a major health concern. Resistant bacteria residing in the intestinal tract of healthy individuals present a silent threat because of frequent transmission via conjugation and transposition. Plasmids harboring quinolone resistance genes are increasingly detected in clinical isolates worldwide. Here, we investigated the molecular epidemiology of plasmid-mediated quinolone resistance (PMQR) in Gram-negative bacteria from healthy service trade workers. From 157 rectal swab samples, 125 ciprofloxacin-resistant strains, including 112 Escherichia coli, 10 Klebsiella pneumoniae, two Proteus mirabilis, and one Citrobacter braakii, were isolated. Multiplex PCR screening identified 39 strains harboring the PMQR genes (including 17 qnr,19 aac(6')-Ib-cr, and 22 oqxA/oqxB). The genome and plasmid sequences of 39 and 31 strains, respectively, were obtained by short- and long-read sequencing. PMQR genes mainly resided in the IncFIB, IncFII, and IncR plasmids, and coexisted with 3-11 other resistance genes. The high PMQR gene carriage rate among Gram-negative bacteria isolated from healthy individuals suggests the high-frequency transmission of these genes via plasmids, along with other resistance genes. Thus, healthy individuals may spread antibiotic-resistant bacterial, highlighting the need for improved monitoring and control of the spread of antibiotic-resistant bacteria and genes in healthy individuals.
Collapse
Affiliation(s)
- Yongyan Long
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
| | - Xiansheng Ni
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
| | - Jiaqi Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
- Beijing Technology and Business University, Beijing 102206, China; (X.L.); (J.X.)
| | - Mengyu Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
| | - Xu Li
- Beijing Technology and Business University, Beijing 102206, China; (X.L.); (J.X.)
| | - Zhe Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
| | - Kui Wu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
| | - Wei Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
| | - Liya Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
- Beijing Technology and Business University, Beijing 102206, China; (X.L.); (J.X.)
| | - Jialiang Xu
- Beijing Technology and Business University, Beijing 102206, China; (X.L.); (J.X.)
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Province Key Laboratory of Animal-Origin and Vector-Borne Disease, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China; (Y.L.); (X.N.); (M.W.); (K.W.); (W.W.)
- Correspondence: (H.C.); (B.K.)
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (J.L.); (Z.L.); (H.Z.); (Z.L.); (L.Y.)
- School of Public Health, Shandong University, Jinan 250012, China
- Correspondence: (H.C.); (B.K.)
| |
Collapse
|
95
|
Aliabadi S, Jauneikaite E, Müller-Pebody B, Hope R, Vihta KD, Horner C, Costelloe CE. Exploring temporal trends and risk factors for resistance in Escherichia coli-causing bacteraemia in England between 2013 and 2018: an ecological study. J Antimicrob Chemother 2021; 77:782-792. [PMID: 34921311 DOI: 10.1093/jac/dkab440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Escherichia coli are Gram-negative bacteria associated with an increasing burden of antimicrobial resistance (AMR) in England. OBJECTIVES To create a comprehensive epidemiological picture of E. coli bacteraemia resistance trends and risk factors in England by linking national microbiology data sources and performing a longitudinal analysis of rates. METHODS A retrospective observational study was conducted on all national records for antimicrobial susceptibility testing on E. coli bacteraemia in England from 1 January 2013 to 31 December 2018 from the UK Health Security Agency (UKHSA) and the BSAC Resistance Surveillance Programme (BSAC-RSP). Trends in AMR and MDR were estimated using iterative sequential regression. Logistic regression analyses were performed on UKHSA data to estimate the relationship between risk factors and AMR or MDR in E. coli bacteraemia isolates. RESULTS An increase in resistance rates was observed in community- and hospital-onset bacteraemia for third-generation cephalosporins, co-amoxiclav, gentamicin and ciprofloxacin. Among community-acquired cases, and after adjustment for other factors, patients aged >65 years were more likely to be infected by E. coli isolates resistant to at least one of 11 antibiotics than those aged 18-64 years (OR: 1.21, 95% CI: 1.18-1.25; P < 0.05). In hospital-onset cases, E. coli isolates from those aged 1-17 years were more likely to be resistant than those aged 18-64 years (OR: 1.33, 95% CI: 1.02-1.73; P < 0.05). CONCLUSIONS Antibiotic resistance rates in E. coli-causing bacteraemia increased between 2013 and 2018 in England for key antimicrobial agents. Findings of this study have implications for guiding future policies on a prescribing of antimicrobial agents, for specific patient populations in particular.
Collapse
Affiliation(s)
- Shirin Aliabadi
- Global Digital Health Unit, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Berit Müller-Pebody
- Division of Healthcare Associated Infections and Antimicrobial Resistance, National Infection Service, UK Health Security Agency, London, UK
| | - Russell Hope
- Division of Healthcare Associated Infections and Antimicrobial Resistance, National Infection Service, UK Health Security Agency, London, UK
| | - Karina-Doris Vihta
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Céire E Costelloe
- Global Digital Health Unit, Department of Primary Care and Public Health, Imperial College London, London, UK.,Division of Clinical studies, Institute of Cancer Research, London, UK
| |
Collapse
|
96
|
López Y, Muñoz L, Gargallo-Viola D, Cantón R, Vila J, Zsolt I. Uptake of Ozenoxacin and Other Quinolones in Gram-Positive Bacteria. Int J Mol Sci 2021; 22:13363. [PMID: 34948159 PMCID: PMC8708121 DOI: 10.3390/ijms222413363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
The big problem of antimicrobial resistance is that it requires great efforts in the design of improved drugs which can quickly reach their target of action. Studies of antibiotic uptake and interaction with their target it is a key factor in this important challenge. We investigated the accumulation of ozenoxacin (OZN), moxifloxacin (MOX), levofloxacin (LVX), and ciprofloxacin (CIP) into the bacterial cells of 5 species, including Staphylococcus aureus (SA4-149), Staphylococcus epidermidis (SEP7602), Streptococcus pyogenes (SPY165), Streptococcus agalactiae (SAG146), and Enterococcus faecium (EF897) previously characterized.The concentration of quinolone uptake was estimated by agar disc-diffusion bioassay. Furthermore, we determined the inhibitory concentrations 50 (IC50) of OZN, MOX, LVX, and CIP against type II topoisomerases from S. aureus.The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The rapid penetration of OZN into the cell was reflected during the first minute of exposure with antibiotic values between 190 and 447 ng/mg (dry weight) of bacteria in all strains. Moreover, OZN showed the greatest inhibitory activity among the quinolones tested for both DNA gyrase and topoisomerase IV isolated from S. aureus with IC50 values of 10 and 0.5 mg/L, respectively. OZN intracellular concentration was significantly higher than that of MOX, LVX and CIP. All of these features may explain the higher in vitro activity of OZN compared to the other tested quinolones.
Collapse
Affiliation(s)
- Yuly López
- Institute of Global Health of Barcelona, 08036 Barcelona, Spain;
| | - Laura Muñoz
- Institute of Global Health of Barcelona, 08036 Barcelona, Spain;
| | | | - Rafael Cantón
- Department of Clinical Microbiology, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
- CIBER Enfermedades Infecciosas, ISCIII, 28029 Madrid, Spain
| | - Jordi Vila
- Institute of Global Health of Barcelona, 08036 Barcelona, Spain;
- CIBER Enfermedades Infecciosas, ISCIII, 28029 Madrid, Spain
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, 08007 Barcelona, Spain
| | | |
Collapse
|
97
|
Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int J Mol Sci 2021; 22:ijms222413259. [PMID: 34948055 PMCID: PMC8703488 DOI: 10.3390/ijms222413259] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.
Collapse
|
98
|
Gu Y, Huang L, Wu C, Huang J, Hao H, Yuan Z, Cheng G. The Evolution of Fluoroquinolone Resistance in Salmonella under Exposure to Sub-Inhibitory Concentration of Enrofloxacin. Int J Mol Sci 2021; 22:ijms222212218. [PMID: 34830098 PMCID: PMC8619427 DOI: 10.3390/ijms222212218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
The evolution of resistance in Salmonella to fluoroquinolones (FQs) under a broad range of sub-inhibitory concentrations (sub-MICs) has not been systematically studied. This study investigated the mechanism of resistance development in Salmonella enterica serovar Enteritidis (S. Enteritidis) under sub-MICs of 1/128×MIC to 1/2×MIC of enrofloxacin (ENR), a widely used veterinary FQ. It was shown that the resistance rate and resistance level of S. Enteritidis varied with the increase in ENR concentration and duration of selection. qRT-PCR results demonstrated that the expression of outer membrane porin (OMP) genes, ompC, ompD and ompF, were down-regulated first to rapidly adapt and develop the resistance of 4×MIC, and as the resistance level increased (≥8×MIC), the up-regulated expression of efflux pump genes, acrB, emrB amd mdfA, along with mutations in quinolone resistance-determining region (QRDR) gradually played a decisive role. Cytohubba analysis based on transcriptomic profiles demonstrated that purB, purC, purD, purF, purH, purK, purL, purM, purN and purT were the hub genes for the FQs resistance. The 'de novo' IMP biosynthetic process, purine ribonucleoside monophosphate biosynthetic process and purine ribonucleotide biosynthetic process were the top three biological processes screened by MCODE. This study first described the dynamics of FQ resistance evolution in Salmonella under a long-term selection of sub-MICs of ENR in vitro. In addition, this work offers greater insight into the transcriptome changes of S. Enteritidis under the selection of ENR and provides a framework for FQs resistance of Salmonella for further studies.
Collapse
Affiliation(s)
- Yufeng Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuirong Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (L.H.); (C.W.); (J.H.); (H.H.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-8728-7165
| |
Collapse
|
99
|
Cotta KB, Mehra S, Bandyopadhyaya R. pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1127-1139. [PMID: 34703723 PMCID: PMC8505898 DOI: 10.3762/bjnano.12.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle deployment in drug delivery is contingent upon controlled drug loading and a desired release profile, with simultaneous biocompatibility and cellular targeting. Iron oxide nanoparticles (IONPs), being biocompatible, are used as drug carriers. However, to prevent aggregation of bare IONPs, they are coated with stabilizing agents. We hypothesize that, zwitterionic drugs like norfloxacin (NOR, a fluoroquinolone) can manifest dual functionality - nanoparticle stabilization and antibiotic activity, eliminating the need of a separate stabilizing agent. Since these drugs have different charges, depending on the surrounding pH, drug loading enhancement could be pH dependent. Hence, upon synthesizing IONPs, they were coated with NOR, either at pH 5 (predominantly as cationic, NOR+) or at pH 10 (predominantly as anionic, NOR-). We observed that, drug loading at pH 5 exceeded that at pH 10 by 4.7-5.7 times. Furthermore, only the former (pH 5 system) exhibited a desirable slower drug release profile, compared to the free drug. NOR-coated IONPs also enable a 22 times higher drug accumulation in macrophages, compared to identical extracellular concentrations of the free drug. Thus, lowering the drug coating pH to 5 imparts multiple benefits - improved IONP stability, enhanced drug coating, higher drug uptake in macrophages at reduced toxicity and slower drug release.
Collapse
Affiliation(s)
- Karishma Berta Cotta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Powai, Mumbai, Maharashtra – 400076, India
| | - Sarika Mehra
- Chemical Engineering Department, IIT Bombay, Powai, Mumbai, Maharashtra – 400076, India
| | - Rajdip Bandyopadhyaya
- Chemical Engineering Department, IIT Bombay, Powai, Mumbai, Maharashtra – 400076, India
| |
Collapse
|
100
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 10: Quinolones: flumequine and oxolinic acid. EFSA J 2021; 19:e06862. [PMID: 34729090 PMCID: PMC8546796 DOI: 10.2903/j.efsa.2021.6862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specific concentrations of flumequine and oxolinic acid in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.
Collapse
|