51
|
Mayorga L, Salassa BN, Marzese DM, Loos MA, Eiroa HD, Lubieniecki F, García Samartino C, Romano PS, Roqué M. Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA. Cell Mol Life Sci 2019; 76:1397-1417. [PMID: 30673822 PMCID: PMC11105675 DOI: 10.1007/s00018-019-03008-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction represents an important cellular stressor and when intense and persistent cells must unleash an adaptive response to prevent their extinction. Furthermore, mitochondria can induce nuclear transcriptional changes and DNA methylation can modulate cellular responses to stress. We hypothesized that mitochondrial dysfunction could trigger an epigenetically mediated adaptive response through a distinct DNA methylation patterning. We studied cellular stress responses (i.e., apoptosis and autophagy) in mitochondrial dysfunction models. In addition, we explored nuclear DNA methylation in response to this stressor and its relevance in cell survival. Experiments in cultured human myoblasts revealed that intense mitochondrial dysfunction triggered a methylation-dependent pro-survival response. Assays done on mitochondrial disease patient tissues showed increased autophagy and enhanced DNA methylation of tumor suppressor genes and pathways involved in cell survival regulation. In conclusion, mitochondrial dysfunction leads to a "pro-survival" adaptive state that seems to be triggered by the differential methylation of nuclear genes.
Collapse
Affiliation(s)
- Lía Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina.
| | - Betiana N Salassa
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Odontología, Univeridad Nacional de Cuyo- Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - Diego M Marzese
- John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA, 90404, USA
| | - Mariana A Loos
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Hernán D Eiroa
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Hospital de Pediatría J.P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - Clara García Samartino
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - Patricia S Romano
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| | - María Roqué
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET)-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo-Centro Universitario UNCuyo, 5500, Mendoza, Argentina
| |
Collapse
|
52
|
Rawat A, Misra G, Saxena M, Tripathi S, Dubey D, Saxena S, Aggarwal A, Gupta V, Khan MY, Prakash A. 1H NMR based serum metabolic profiling reveals differentiating biomarkers in patients with diabetes and diabetes-related complication. Diabetes Metab Syndr 2019; 13:290-298. [PMID: 30641714 DOI: 10.1016/j.dsx.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetes is among the most prevalent diseases worldwide, of all the affected individuals a significant proportion of the population remains undiagnosed due to lack of specific symptoms early in this disorder and inadequate diagnostics. Diabetes and its associated sequela, i.e., comorbidity are associated with microvascular and macrovascular complications. As diabetes is characterized by an altered metabolism of key metabolites and regulatory pathways. Metabolic phenotyping can provide us with a better understanding of the unique set of regulatory perturbations that predispose to diabetes and its associated complication/comorbidities. METHODOLOGY The present study utilizes the analytical platform NMR spectroscopy coupled with Random Forest statistical analysis to identify the discriminatory metabolites in diabetes (DB = 38) vs. diabetes-related complication (DC = 35) along with the healthy control (HC = 50) subjects. A combined and pairwise analysis was performed to identify the discriminatory metabolites responsible for class separation. The perturbed metabolites were further rigorously validated using t-test, AUROC analysis to examine the statistical significance of the identified metabolites. RESULTS The DB and DC patients were well discriminated from HC. However, 15 metabolites were found to be significantly perturbed in DC patients compared to DB, the identified panel of metabolites are TCA cycle (succinate, citrate), methylamine metabolism (trimethylamine, methylamine, betaine), -intermediates; energy metabolites (glucose, lactate, pyruvate); and amino acids (valine, arginine, glutamate, methionine, proline, and threonine). CONCLUSION The 1H NMR metabolomics may prove a promising technique to differentiate and predict diabetes and its complication on their onset or progression by determining the altered levels of the metabolites in serum.
Collapse
Affiliation(s)
- Atul Rawat
- Centre of Biomedical Research, Lucknow, India; Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Gunjan Misra
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Department of Biotechnology, CSJMU, Kanpur, India
| | - Madhukar Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Durgesh Dubey
- Centre of Biomedical Research, Lucknow, India; Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sulekha Saxena
- Department of Critical Care Medicine, King George Medical University, Lucknow, India
| | - Avinash Aggarwal
- Department of Critical Care Medicine, King George Medical University, Lucknow, India
| | - Varsha Gupta
- Department of Biotechnology, CSJMU, Kanpur, India
| | - M Y Khan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India.
| |
Collapse
|
53
|
Lledo B, Ortiz JA, Morales R, García-Hernández E, Ten J, Bernabeu A, Llácer J, Bernabeu R. Comprehensive mitochondrial DNA analysis and IVF outcome. Hum Reprod Open 2018; 2018:hoy023. [PMID: 30895263 PMCID: PMC6396640 DOI: 10.1093/hropen/hoy023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Do mitochondrial DNA (mtDNA) copy number and heteroplasmy in human embryos affect the ongoing pregnancy rate? SUMMARY ANSWER Our study suggests that mtDNA copy number above a specific threshold is associated with the ongoing pregnancy rate. WHAT IS KNOWN ALREADY Mitochondria play a vital role in cell function. Recently, there has been increasing research on mtDNA as a biomarker of embryo implantation. Although reports showed that high levels of mtDNA in the blastocyst are associated with low implantation potential, other publications were unable to confirm this. Confounding factors may influence the mtDNA copy number in euploid embryos. On the other hand it has been speculated that both mtDNA heteroplasmy and copy number contribute to mitochondrial function. Next generation sequencing (NGS) allows us to study in depth mtDNA heteroplasmy and copy number simultaneously. STUDY DESIGN, SIZE, DURATION A prospective non-selection study was performed. We included 159 blastocyst biopsies from 142 couples who attended our clinic for preimplantation genetic testing for aneuploidies (PGT-A), from January 2017 to December 2017. All embryos were biopsied on Day 5 or Day 6. The aneuploid testing was performed by NGS. All blastocysts were diagnosed as euploid non-mosaic and were transferred. The mtDNA analysis was performed once the embryo diagnosis was known. PARTICIPANTS/MATERIALS, SETTING, METHODS Sequencing reads mapping to the mtDNA genome were extracted from indexed bam files to identify copy number and heteroplasmy. The relative measure of mtDNA copy number was calculated by dividing the mtDNA reads by the nuclear DNA value to normalize for technical variants and the number of cells collected at the biopsy. All the results were subjected to a mathematical correction factor according to the embryo genome. Heteroplasmy was assigned by MitoSeek. MAIN RESULTS AND THE ROLE OF CHANCE The mean average copy number and SD of mtDNA per genome was 0.0016 ± 0.0012. Regarding heteroplasmy, 40 embryos were heteroplasmy carriers (26.32%). MtDNA variants were detected in coding and non-coding regions and the highest number of variants in an embryo was eight. With respect to IVF outcome for mtDNA copy number analysis, we set a threshold of 0.003 for the following analysis. The vast majority of the embryos were below the threshold (142/159, 89.31%) and 17 embryos were classified as having higher mtDNA levels. We showed a reduction in ongoing pregnancy rate associated with elevated mtDNA copy number (42.96% versus 17.65%, P < 0.05). This result was independent of maternal age and day of the biopsy: these factors were included as confounding factors because mtDNA copy number was negatively correlated with female age (25 –30 y: 0.0017 ± 0.0011, 30 –35 y: 0.0012 ± 0.0007, 35 –40 y: 0.0016 ± 0.0009, over 40 y: 0.0024 + 0.0017, P < 0.05). Embryos biopsied on Day 5 were more likely to have higher quantities of mtDNA compared with those biopsied on Day 6 (0.0017 versus 0.0009, P < 0.001). According to IVF outcome and heteroplasmy, a lower ongoing pregnancy rate was reported for embryos that carried more than two variants. However, this did not reach statistical significance when we compared embryos with a number of variants lower or higher than two (39.15 versus 20.0, P = 0.188). Finally, a clear positive association between the mtDNA variants and copy number was reported when we compare embryos with or without heteroplasmy (0.0013 ± 0.0009 versus 0.0025 ± 0.0014, P < 0.001) and among different numbers of variants (0:0.0013 ± 0.0009, 1–2:0.0023 ± 0.0012, >2:0.0043 ± 0.0014, P < 0.05). LIMITATIONS, REASONS FOR CAUTION A limitation may be the size of the sample and the high-throughput sequencing technology that might not have detected heteroplasmy levels below 2% which requires high sequence depth A clinical randomized trial comparing the clinical outcome after the transfer of embryos selected according to mtDNA levels or only by morphological evaluation will be necessary. More research into the impact of mtDNA heteroplasmy and copy number on IVF outcome is needed. WIDER IMPLICATIONS OF THE FINDINGS Our results demonstrate that embryos with elevated mtDNA copy number have a lower chance of producing an ongoing pregnancy. MtDNA copy number is higher in older women and is dependent upon the number of cell divisions that preceded biopsy. Moreover, our data suggest that mitochondrial activity could be a balance between functional capacity and relative mtDNA copy number. STUDY FUNDING/COMPETING INTEREST(S) There are no conflicts of interest or sources of funding to declare. Trial registration number Not applicable.
Collapse
Affiliation(s)
- B Lledo
- Instituto Bernabeu Biotech, 03016 Alicante, Spain
| | - J A Ortiz
- Instituto Bernabeu Biotech, 03016 Alicante, Spain
| | - R Morales
- Instituto Bernabeu Biotech, 03016 Alicante, Spain
| | | | - J Ten
- Instituto Bernabeu of Fertility and Gynecology, Alicante, Spain
| | - A Bernabeu
- Instituto Bernabeu Biotech, 03016 Alicante, Spain
| | - J Llácer
- Instituto Bernabeu of Fertility and Gynecology, Alicante, Spain
| | - R Bernabeu
- Instituto Bernabeu Biotech, 03016 Alicante, Spain.,Instituto Bernabeu of Fertility and Gynecology, Alicante, Spain
| |
Collapse
|
54
|
Yagil C, Varadi-Levi R, Yagil Y. A novel mutation in the NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 ( Ndufa4) gene links mitochondrial dysfunction to the development of diabetes in a rodent model. Dis Model Mech 2018; 11:dmm.036699. [PMID: 30361421 PMCID: PMC6262808 DOI: 10.1242/dmm.036699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023] Open
Abstract
The mechanisms underlying diabetes remain unresolved. The Cohen diabetic rat represents a model of diet-induced diabetes, in which the disease is induced after exposure to a diabetogenic diet (DD) in the diabetes-sensitive (CDs/y) but not in the -resistant (CDr/y) strain. Diet imposes a metabolic strain that leads to diabetes in the appropriate genetic background. We previously identified, through whole-genome linkage analysis, a diabetes-related quantitative trait locus on rat chromosome 4 (RNO4), which incorporates NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (Ndufa4), a nuclear gene that affects mitochondrial function. Here, we sequenced the gene and found a major deletion in CDs/y that leads to lack of expression of the NDUFA4 protein that has been reported to be involved in the activities of mitochondrial complexes I and IV. In the absence of NDUFA4 in the diabetic CDs/y on DD, complex I activity is reduced in comparison to that in nondiabetic CDs/y on regular diet and CDr/y on either diet; complex IV activity is reduced in both strains provided DD, and thus as a result of diet and unrelated to the gene mutation. ATP fails to increase in diabetic CDs/y in response to DD, in comparison to nondiabetic CDr/y on DD. Plasma malondialdehyde levels are elevated in CDs/y on DD, whereas SOD1 and SOD2 levels fail to increase, indicating increased oxidative stress and inability of the pancreas to generate an appropriate antioxidative stress response. These findings suggest that the Ndufa4 mutation in CDs/y on DD is directly associated with mitochondrial dysfunction, which we attribute to the lack of expression of NDUFA4 and to diet, and which prevents the anticipated increase in ATP production. The resulting enhanced oxidative stress impairs the ability of the pancreas to secrete insulin, leading to the development of diabetes. This is the first demonstration of an inherited mutation in a nuclear gene that adversely affects mitochondrial function and promotes diet-induced diabetes. Summary: Here, we report, for the first time, a major inherited mutation in a diabetes-prone animal model that adversely affects mitochondrial function and leads, through oxidative stress, to the development of diet-induced diabetes.
Collapse
Affiliation(s)
- Chana Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba 8410501, Israel
| | - Ronen Varadi-Levi
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Barzilai University Medical Center, Ashkelon 7830604, Israel .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba 8410501, Israel
| |
Collapse
|
55
|
Chalkia D, Chang YC, Derbeneva O, Lvova M, Wang P, Mishmar D, Liu X, Singh LN, Chuang LM, Wallace DC. Mitochondrial DNA associations with East Asian metabolic syndrome. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:878-892. [PMID: 29997041 PMCID: PMC6530988 DOI: 10.1016/j.bbabio.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/31/2023]
Abstract
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N = 498, mean age 52 and N = 1002, mean age 44) and one from a non-urban environment (N = 501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.
Collapse
Affiliation(s)
- Dimitra Chalkia
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Medical College, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University Medical College, Taipei, Taiwan; Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Olga Derbeneva
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Maria Lvova
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ping Wang
- Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697, United States of America
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Xiaogang Liu
- Douglas C. Wallace Institute for Mitochondrial and Epigenomic Information Sciences, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Medical College, Taipei, Taiwan
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Douglas C. Wallace Institute for Mitochondrial and Epigenomic Information Sciences, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
56
|
Yiqi Yangyin and Huatan Quyu granule can improve skeletal muscle energy metabolism in a type 2 diabetic rat model by promoting the AMPK/SIRT/PGC-1α signalling pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
57
|
Abstract
Diabetes mellitus is characterized by increased levels of reactive oxygen species (ROS), leading to high levels of adenosine triphosphate (ATP) and the activation of purinergic receptors (P2X7), which results in cell death. Klotho was recently described as a modulator of oxidative stress and as having anti-apoptotic properties, among others. However, the roles of P2X7 and klotho in the progression of diabetic nephropathy are still unclear. In this context, the aim of the present study was to characterize P2X7 and klotho in several stages of diabetes in rats. Diabetes was induced in Wistar rats by streptozotocin, while the control group rats received the drug vehicle. From the 1st to 8th weeks after the diabetes induction, the animals were placed in metabolic cages on the 1st day of each week for 24 h to analyze metabolic parameters and for the urine collection. Then, blood samples and the kidneys were collected for biochemical analysis, including Western blotting and qPCR for P2X7 and klotho. Diabetic rats presented a progressive loss of renal function, with reduced nitric oxide and increased lipid peroxidation. The P2X7 and klotho expressions were similar up to the 4th week; then, P2X7 expression increased in diabetes mellitus (DM), but klotho expression presented an opposite behavior, until the 8th week. Our data show an inverse correlation between P2X7 and klotho expressions through the development of DM, which suggests that the management of these molecules could be useful for controlling the progression of this disease and diabetic nephropathy.
Collapse
|
58
|
Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics 2017; 18:890. [PMID: 29157198 PMCID: PMC5697406 DOI: 10.1186/s12864-017-4287-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85 years old, recruited in the TwinsUK cohorts. RESULTS We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (β = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (β = -0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers. CONCLUSIONS Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kaixiong Ye
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Department of Neurology and Columbia Translational Neuroscience Initiative, Columbia Aging Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
59
|
Yang YW, Hsieh TF, Li CI, Liu CS, Lin WY, Chiang JH, Li TC, Lin CC. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine (Baltimore) 2017; 96:e5921. [PMID: 28099356 PMCID: PMC5279101 DOI: 10.1097/md.0000000000005921] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This nationwide population-based study investigated the risk of Parkinson disease (PD) in relation to diabetes mellitus (DM) through the National Health Insurance Research Database in Taiwan.A retrospective study was conducted, consisting of 36,294 patients who were newly diagnosed with DM between January 1, 2000 and December 31, 2006 and 108,882 individuals without DM as healthy controls from insurance claims data from Taiwan's National Health Research Institutes Dataset. The subjects were followed up until December 31, 2011 or until the first manifestation of PD. The hazard ratio (HR) of DM for PD incidence was estimated by Cox proportional hazard regression model.Compared with the non-DM cohort, the incidence density rate of PD was 1.36-fold higher in the DM cohort (1.53 vs 2.08 per 1000 person-years) with an adjusted HR of 1.19 (95% confidence interval = 1.08-1.32) after adjusting for age, sex, comorbidities, and medication use. The adjusted HR of PD for DM with a larger magnitude was observed in females (1.29, 1.12-1.49); individuals age 65 years and older (1.20, 1.06-1.35); those without schizophrenia (1.20, 1.08-1.33), bipolar disorder (1.20, 1.08-1.33), hypertension (1.18, 1.06-1.32), hyperlipidemia (1.21, 1.09-1.34), chronic obstructive pulmonary disease (1.19, 1.06-1.32), coronary artery disease (1.22, 1.09-1.36), stroke (1.23, 1.10-1.37), asthma (1.20, 1.08-1.34), flunarizine use (1.21, 1.08-1.35), zolpidem use (1.16, 1.04-1.30), Charlson comorbidity index score of 0 (1.23, 1.08-1.40), and those using metoclopramide (1.35, 1.14-1.60) and zolpidem (1.46, 1.12-1.90).DM increased the risk of PD during a mean follow-up of 7.3 years. Further mechanistic research on the effect of DM on PD is needed.
Collapse
Affiliation(s)
- Yu-Wan Yang
- Department of Neurology, China Medical University Hospital
- School of Medicine, China Medical University
| | - Teng-Fu Hsieh
- Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung
- School of Medicine, Tzu Chi University, Hualian
| | - Chia-Ing Li
- School of Medicine, College of Medicine, China Medical University
- Department of Medical Research, China Medical University Hospital
| | - Chiu-Shong Liu
- School of Medicine, College of Medicine, China Medical University
- Department of Medical Research, China Medical University Hospital
- Department of Family Medicine, China Medical University Hospital
| | - Wen-Yuan Lin
- School of Medicine, College of Medicine, China Medical University
- Department of Family Medicine, China Medical University Hospital
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital
- Research Center for Chinese Medicine and Acupuncture, China Medical University
| | - Tsai-Chung Li
- Department of Public Health, College of Public Health, China Medical University
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- School of Medicine, College of Medicine, China Medical University
- Department of Medical Research, China Medical University Hospital
- Department of Family Medicine, China Medical University Hospital
| |
Collapse
|
60
|
Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases. Mediators Inflamm 2016; 2016:1851420. [PMID: 28074080 PMCID: PMC5198184 DOI: 10.1155/2016/1851420] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Inflammation is considered to be one of the most critical factors involved in the development of complex metabolic diseases such as type 2 diabetes, cancer, and cardiovascular disease. A few decades ago, the discovery of mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) was followed by the identification of its roles in regulating cellular homeostatic processes, ranging from cellular bioenergetics to apoptosis. MAM provides an excellent platform for numerous signaling pathways; among them, inflammatory signaling pathways associated with MAM play a critical role in cellular defense during pathogenic infections and metabolic disorders. However, induction of MAM causes deleterious effects by amplifying mitochondrial reactive oxygen species generation through increased calcium transfer from the ER to mitochondria, thereby causing mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns (DAMPs). These mitochondrial DAMPs rapidly activate MAM-resident inflammasome components and other inflammatory factors, which promote inflammasome complex formation and release of proinflammatory cytokines in pathological conditions. Long-term stimulation of the inflammasome instigates chronic inflammation, leading to the pathogenesis of metabolic diseases. In this review, we summarize the current understanding of MAM and its association with inflammation-mediated metabolic diseases.
Collapse
|
61
|
Zhao Y, Shi K, Su X, Xie L, Yan Y. Microcystin-LR induces dysfunction of insulin secretion in rat insulinoma (INS-1) cells: Implications for diabetes mellitus. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:11-21. [PMID: 27107231 DOI: 10.1016/j.jhazmat.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/26/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Microcystins (MCs) are the most frequent cyanobacterial toxins observed in freshwater systems. Accumulating evidence suggests that MCs pose a serious threat to public health. However, the contributions of the exposure of MCs to the occurrence of human diseases remain largely unknown. This study provides the evidence of the effects of MC-LR on pancreatic β-cell function through the exposure of rat insulinoma (INS-1) cells to 0, 10, 20, or 40μM MC-LR for 72h and explores the underlying molecular mechanisms. Our results demonstrate that exposure to MC-LR for 72h suppresses cell viability, disturbs glucose-stimulated insulin secretion (GSIS), and decreases the expression of insulin protein. Moreover, MC-LR disrupts the cell cycle distribution and increases cell apoptosis at 20 or 40μM for 72h, respectively, indicating that the β-cell mass would be decreased by MC-LR exposure. A transcriptomic analysis revealed several key genes (e.g., Pdx-1, Neurod1, and Abcc8) involved in insulin secretion are significantly differentially expressed in INS-1 cells in response to MC-LR exposure. In addition, several signal transduction pathways associated with diabetes (e.g., type 1 and 2 diabetes) were also identified compared with the control cells. We recommend that MC be considered as a new environmental factor that promotes diabetes development. The identified key genes or pathways may potentially contribute to the future therapies in the environmental contaminants induced β-cell damage.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| |
Collapse
|
62
|
Zhao Y, Xue Q, Su X, Xie L, Yan Y, Wang L, Steinman AD. First Identification of the Toxicity of Microcystins on Pancreatic Islet Function in Humans and the Involved Potential Biomarkers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3137-3144. [PMID: 26859764 DOI: 10.1021/acs.est.5b03369] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microcystins (MCs) produced by cyanobacteria have been recognized as a major public health threat. However, the toxicity of MCs to humans is still largely unknown. In this study, we examined the changes in pancreatic islet function in fishers exposed to ambient levels of MCs at Lake Taihu and, using a mouse model, explored the molecular mechanisms involved in toxicity. MCs content in the serum of fishers tested positive, with a range from 0.10 to 0.64 μg/L. Both lower blood insulin levels (2.26 ± 0.96 μIU/mL) and impaired fasting glucose were found in participants from the Meiliang Bay area in Lake Taihu, where MC-LR levels were substantially greater than the MC threshold established by WHO for drinking water. Animal experiments showed that glucose level increased by 27.9% in mice exposed to 5 μg/kg bw and decreased by 41.5% in mice exposed to 20 μg/kg bw. Blood insulin levels declined by 21.9% and 56.2% in mice exposed to 5 and 20 μg/kg bw MC-LR, respectively, which was consistent with the results observed in fishers. Furthermore, the diabetes gene pdx1 and several other proteins (such as Ppp3ca, Ide, Marcks, Pgk1, Suclg1, Ndufs4) involved in insulin secretion were identified for the first time in mice following MC-LR exposure; these biomarkers were considered responsible for MC-LR induced islet dysfunction. This study suggests that subchronic exposure to environmental levels of MCs may increase the risk of the occurrence of diabetes in humans.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, P. R. China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, P. R. China
| | - Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, P. R. China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, P. R. China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University , 740 West Shoreline Drive, Muskegon, Michigan 49441, United States
| |
Collapse
|
63
|
Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D'Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. J Am Soc Nephrol 2015; 27:1362-78. [PMID: 26424786 DOI: 10.1681/asn.2014121271] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid β-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid β-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado;
| | - Michal Herman Edelstein
- Rabin Medical Center, Department of Nephrology and Hypertension; Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Uzi Gafter
- Rabin Medical Center, Department of Nephrology and Hypertension; Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Liru Qiu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yuhuan Luo
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Evgenia Dobrinskikh
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott Lucia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Vivette D D'Agati
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Jonathan Levi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Avi Rosenberg
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey B Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - David R Gius
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Moin A Saleem
- University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | - Moshe Levi
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado;
| |
Collapse
|
64
|
Kang MY, Oh TJ, Cho YM. Glucagon-Like Peptide-1 Increases Mitochondrial Biogenesis and Function in INS-1 Rat Insulinoma Cells. Endocrinol Metab (Seoul) 2015; 30:216-20. [PMID: 26194081 PMCID: PMC4508267 DOI: 10.3803/enm.2015.30.2.216] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that increases glucose-stimulated insulin secretion in pancreatic β-cells. Since mitochondrial function is crucial to insulin secretion, we hypothesized that GLP-1 may increase mitochondrial biogenesis in pancreatic β-cells. We treated INS-1 rat insulinoma cells with GLP-1 or exendin-4 for 48 hours and measured mitochondrial mass and function. Both GLP-1 and exendin-4 increased mitochondrial mass by approximately 20%. The mitochondria/cytosol ratio was increased from 7.60±3.12% to 10.53±2.70% by exendin-4. In addition, GLP-1 increased the mitochondrial membrane potential and oxygen consumption. Proliferator-activated receptor-gamma coactivator 1α expression was increased approximately 2-fold by GLP-1 treatment. In conclusion, the present study presents evidence for a new mechanism of action by which GLP-1 improves pancreatic β-cell function via enhanced mitochondrial mass and performance.
Collapse
Affiliation(s)
- Mi Yeon Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|