51
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
52
|
Levkovich SA, Gazit E, Laor Bar-Yosef D. Two Decades of Studying Functional Amyloids in Microorganisms. Trends Microbiol 2020; 29:251-265. [PMID: 33041179 DOI: 10.1016/j.tim.2020.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
In the past two decades, amyloids, typically associated with human diseases, have been described to play various functional roles in nearly all life forms. The structural and functional diversity of microbial 'functional amyloids' has dramatically increased in recent years, expanding the canonical definition of these assembled molecules. Here, we provide a broad review of the current understanding of microbial functional amyloids and their diverse roles, putting the spotlight on recent discoveries in the field. We discuss their functions as structural scaffolds, surface-tension modulators, adhesion molecules, cell-cycle and gametogenesis regulators, toxins, and mediators of host-pathogen interactions. We outline how noncanonical amyloid morphologies and sophisticated regulatory mechanisms underlie their functional diversity and emphasize their therapeutic and biotechnological implications and applications.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
53
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
54
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
55
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
56
|
Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Front Immunol 2020; 11:1629. [PMID: 32849553 PMCID: PMC7412598 DOI: 10.3389/fimmu.2020.01629] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological self-assembly is a concept that is classically associated with amyloids, such as amyloid-β (Aβ) in Alzheimer's disease and α-synuclein in Parkinson's disease. In prokaryotic organisms, amyloids are assembled extracellularly in a similar fashion to human amyloids. Pathogenicity of amyloids is attributed to their ability to transform into several distinct structural states that reflect their downstream biological consequences. While the oligomeric forms of amyloids are thought to be responsible for their cytotoxicity via membrane permeation, their fibrillar conformations are known to interact with the innate immune system to induce inflammation. Furthermore, both eukaryotic and prokaryotic amyloids can self-assemble into molecular chaperones to bind nucleic acids, enabling amplification of Toll-like receptor (TLR) signaling. Recent work has shown that antimicrobial peptides (AMPs) follow a strikingly similar paradigm. Previously, AMPs were thought of as peptides with the primary function of permeating microbial membranes. Consistent with this, many AMPs are facially amphiphilic and can facilitate membrane remodeling processes such as pore formation and fusion. We show that various AMPs and chemokines can also chaperone and organize immune ligands into amyloid-like ordered supramolecular structures that are geometrically optimized for binding to TLRs, thereby amplifying immune signaling. The ability of amphiphilic AMPs to self-assemble cooperatively into superhelical protofibrils that form structural scaffolds for the ordered presentation of immune ligands like DNA and dsRNA is central to inflammation. It is interesting to explore the notion that the assembly of AMP protofibrils may be analogous to that of amyloid aggregates. Coming full circle, recent work has suggested that Aβ and other amyloids also have AMP-like antimicrobial functions. The emerging perspective is one in which assembly affords a more finely calibrated system of recognition and response: the detection of single immune ligands, immune ligands bound to AMPs, and immune ligands spatially organized to varying degrees by AMPs, result in different immunologic outcomes. In this framework, not all ordered structures generated during multi-stepped AMP (or amyloid) assembly are pathological in origin. Supramolecular structures formed during this process serve as signatures to the innate immune system to orchestrate immune amplification in a proportional, situation-dependent manner.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lauren K Nicastro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.,California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
57
|
Munsch-Alatossava P, Alatossava T. Potential of N 2 Gas Flushing to Hinder Dairy-Associated Biofilm Formation and Extension. Front Microbiol 2020; 11:1675. [PMID: 32849349 PMCID: PMC7399044 DOI: 10.3389/fmicb.2020.01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.
Collapse
Affiliation(s)
| | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
58
|
Landry KS, Morey JM, Bharat B, Haney NM, Panesar SS. Biofilms-Impacts on Human Health and Its Relevance to Space Travel. Microorganisms 2020; 8:microorganisms8070998. [PMID: 32635371 PMCID: PMC7409192 DOI: 10.3390/microorganisms8070998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
As the world looks towards the stars, the impacts of endogenous and exogenous microorganisms on human health during long-duration space flight are subjects of increased interest within the space community. The presence and continued growth of bacterial biofilms about spacecraft has been documented for decades; however, the impact on crew health is in its infancy. The impacts of biofilms are well known in the medical, agricultural, commercial, and industrial spaces. It less known that biofilms are undermining many facets of space travel and that their effects need to be understood and addressed for future space missions. Biofilms can damage space crew health and spoil limited food supply. Yet, at the same time, they can benefit plant systems for food growth, nutrient development, and other biological systems that are being explored for use in space travel. Various biofilm removal techniques have been studied to mitigate the hazards posed by biofilm persistence during space travel. Because the presence of biofilms can advance or hinder humanity’s space exploration efforts, an understanding of their impacts over the duration of space flights is of paramount importance.
Collapse
Affiliation(s)
- Kyle S Landry
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
- Correspondence:
| | - Jose M Morey
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
| | - Bharat Bharat
- Department of Psychology, University of South Florida, St. Petersburg, FL 33620, USA;
| | - Nora M Haney
- Department of Urology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sandip S Panesar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
59
|
Vollaro A, Esposito A, Esposito EP, Zarrilli R, Guaragna A, De Gregorio E. PYED-1 Inhibits Biofilm Formation and Disrupts the Preformed Biofilm of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E240. [PMID: 32397205 PMCID: PMC7277567 DOI: 10.3390/antibiotics9050240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
60
|
Karygianni L, Attin T, Thurnheer T. Combined DNase and Proteinase Treatment Interferes with Composition and Structural Integrity of Multispecies Oral Biofilms. J Clin Med 2020; 9:jcm9040983. [PMID: 32244784 PMCID: PMC7231231 DOI: 10.3390/jcm9040983] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Modification of oral biofilms adhering to dental hard tissues could lead to new treatment approaches in cariology and periodontology. In this study the impact of DNase I and/or proteinase K on the formation of a simulated supragingival biofilm was investigated in vitro. Six-species biofilms were grown anaerobically in the presence of DNase I and proteinase K. After 64 h biofilms were either harvested and quantified by culture analysis or proceeded to staining followed by confocal laser scanning microscopy. Microbial cells were stained using DNA-dyes or fluorescent in situ hybridization. Exopolysaccharides, eDNA and exoproteins were stained with Calcofluor, anti-DNA-antibody, and SyproTM Ruby, respectively. Overall, results showed that neither DNase I nor proteinase K had an impact on total colony-forming units (CFUs) compared to the control without enzymes. However, DNase I significantly suppressed the growth of Actinomyces oris, Fusobacterium nucleatum, Streptococcus mutans, Streptococcus oralis and Candida albicans. Proteinase K treatment induced significant increase in S. mutans and S. oralis CFUs (p < 0.001), whereas C. albicans and V. dispar showed lower CFUs compared to the control. Interestingly, confocal images visualized the biofilm degradation caused by DNase I and proteinase K. Thus, enzymatic treatment should be combined with conventional antimicrobial agents aiming at both bactericidal effectiveness and biofilm dispersal.
Collapse
|
61
|
Abstract
A hallmark feature of Alzheimer’s disease (AD) and other tauopathies is the misfolding, aggregation and cerebral accumulation of tau deposits. Compelling evidence indicates that misfolded tau aggregates are neurotoxic, producing synaptic loss and neuronal damage. Misfolded tau aggregates are able to spread the pathology from cell-to-cell by a prion like seeding mechanism. The factors implicated in the initiation and progression of tau misfolding and aggregation are largely unclear. In this study, we evaluated the effect of DNA extracted from diverse prokaryotic and eukaryotic cells in tau misfolding and aggregation. Our results show that DNA from various, unrelated gram-positive and gram-negative bacteria results in a more pronounced tau misfolding compared to eukaryotic DNA. Interestingly, a higher effect in promoting tau aggregation was observed for DNA extracted from certain bacterial species previously detected in the brain, CSF or oral cavity of patients with AD. Our findings indicate that microbial DNA may play a previously overlooked role in the propagation of tau protein misfolding and AD pathogenesis, providing a new conceptual framework that positions the compromised blood-brain and intestinal barriers as important sources of microbial DNA in the CNS, opening novel opportunities for therapeutic interventions.
Collapse
|
62
|
Deng B, Ghatak S, Sarkar S, Singh K, Das Ghatak P, Mathew-Steiner SS, Roy S, Khanna S, Wozniak DJ, McComb DW, Sen CK. Novel Bacterial Diversity and Fragmented eDNA Identified in Hyperbiofilm-Forming Pseudomonas aeruginosa Rugose Small Colony Variant. iScience 2020; 23:100827. [PMID: 32058950 PMCID: PMC6997594 DOI: 10.1016/j.isci.2020.100827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/30/2019] [Accepted: 01/06/2020] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa biofilms represent a major threat to health care. Rugose small colony variants (RSCV) of P. aeruginosa, isolated from chronic infections, display hyperbiofilm phenotype. RSCV biofilms are highly resistant to antibiotics and host defenses. This work shows that RSCV biofilm aggregates consist of two distinct bacterial subpopulations that are uniquely organized displaying contrasting physiological characteristics. Compared with that of PAO1, the extracellular polymeric substance of RSCV PAO1ΔwspF biofilms presented unique ultrastructural characteristics. Unlike PAO1, PAO1ΔwspF released fragmented extracellular DNA (eDNA) from live cells. Fragmented eDNA, thus released, was responsible for resistance of PAO1ΔwspF biofilm to disruption by DNaseI. When added to PAO1, such fragmented eDNA enhanced biofilm formation. Disruption of PAO1ΔwspF biofilm was achieved by aurine tricarboxylic acid, an inhibitor of DNA-protein interaction. This work provides critical novel insights into the contrasting structural and functional characteristics of a hyperbiofilm-forming clinical bacterial variant relative to its own wild-type strain. Hyperbiofilm clinical isolate PAO1ΔwspF contain unique cell state and organization Bacterial cells in PAO1ΔwspF biofilm are morphologically and physiologically unique PAO1ΔwspF, unlike PAO1 that undergo explosive lysis, release eDNA from live cells Aurine tricarboxylic acid, not DNAseI as for PAO1, disrupts PAO1ΔwspF biofilm
Collapse
Affiliation(s)
- Binbin Deng
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Center for Electron Microscopy and Analysis, College of Engineering, The Ohio State University, Columbus, OH 43212, USA
| | - Subhadip Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Subendu Sarkar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Piya Das Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Infectious Disease Institute, Ohio State University, Columbus, OH 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, College of Engineering, The Ohio State University, Columbus, OH 43212, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chandan K Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
63
|
Monticolo F, Palomba E, Termolino P, Chiaiese P, de Alteriis E, Mazzoleni S, Chiusano ML. The Role of DNA in the Extracellular Environment: A Focus on NETs, RETs and Biofilms. FRONTIERS IN PLANT SCIENCE 2020; 11:589837. [PMID: 33424885 PMCID: PMC7793654 DOI: 10.3389/fpls.2020.589837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
The capacity to actively release genetic material into the extracellular environment has been reported for bacteria, archaea, fungi, and in general, for microbial communities, but it is also described in the context of multicellular organisms, animals and plants. This material is often present in matrices that locate outside the cells. Extracellular matrices have important roles in defense response and disease in microbes, animal and plants cells, appearing as barrier against pathogen invasion or for their recognition. Specifically, neutrophils extracellular traps (NETs) in animals and root extracellular traps (RETs) in plants, are recognized to be important players in immunity. A growing amount of evidence revealed that the extracellular DNA, in these contexts, plays an active role in the defense action. Moreover, the protective role of extracellular DNA against antimicrobials and mechanical stress also appears to be confirmed in bacterial biofilms. In parallel, recent efforts highlighted different roles of self (homologous) and non-self (heterologous) extracellular DNA, paving the way to discussions on its role as a "Damage-associated molecular pattern" (DAMP). We here provide an evolutionary overview on extracellular DNA in extracellular matrices like RETs, NETs, and microbial biofilms, discussing on its roles and inferring on possible novel functionalities.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council, Portici, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | - Stefano Mazzoleni
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
- *Correspondence: Maria Luisa Chiusano,
| |
Collapse
|
64
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
65
|
Tetz V, Tetz G. Bacterial DNA induces the formation of heat-resistant disease-associated proteins in human plasma. Sci Rep 2019; 9:17995. [PMID: 31784694 PMCID: PMC6884558 DOI: 10.1038/s41598-019-54618-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023] Open
Abstract
Our study demonstrated for the first time that bacterial extracellular DNA (eDNA) can change the thermal behavior of specific human plasma proteins, leading to an elevation of the heat-resistant protein fraction, as well as to de novo acquisition of heat-resistance. In fact, the majority of these proteins were not known to be heat-resistant nor do they possess any prion-like domain. Proteins found to become heat-resistant following DNA exposure were named "Tetz-proteins". Interestingly, plasma proteins that become heat-resistant following treatment with bacterial eDNA are known to be associated with cancer. In pancreatic cancer, the proportion of proteins exhibiting eDNA-induced changes in thermal behavior was found to be particularly elevated. Therefore, we analyzed the heat-resistant proteome in the plasma of healthy subjects and in patients with pancreatic cancer and found that exposure to bacterial eDNA made the proteome of healthy subjects more similar to that of cancer patients. These findings open a discussion on the possible novel role of eDNA in disease development following its interaction with specific proteins, including those involved in multifactorial diseases such as cancer.
Collapse
Affiliation(s)
- Victor Tetz
- Human Microbiology Institute, New York, NY, 10027, USA.,Tetz Laboratories, New York, NY, 10027, USA
| | - George Tetz
- Human Microbiology Institute, New York, NY, 10027, USA. .,Tetz Laboratories, New York, NY, 10027, USA.
| |
Collapse
|
66
|
Pesarrodona M, Jauset T, Díaz‐Riascos ZV, Sánchez‐Chardi A, Beaulieu M, Seras‐Franzoso J, Sánchez‐García L, Baltà‐Foix R, Mancilla S, Fernández Y, Rinas U, Schwartz S, Soucek L, Villaverde A, Abasolo I, Vázquez E. Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900849. [PMID: 31559131 PMCID: PMC6755514 DOI: 10.1002/advs.201900849] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Indexed: 05/07/2023]
Abstract
Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
| | - Toni Jauset
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Zamira V. Díaz‐Riascos
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Alejandro Sánchez‐Chardi
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaAv. Diagonal 64308028BarcelonaSpain
| | - Marie‐Eve Beaulieu
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Joaquin Seras‐Franzoso
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Sánchez‐García
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ricardo Baltà‐Foix
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Sandra Mancilla
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Yolanda Fernández
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Ursula Rinas
- Leibniz University of HannoverTechnical Chemistry and Life ScienceCallinstr. 530167HannoverGermany
- Helmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Simó Schwartz
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)08010BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ibane Abasolo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Esther Vázquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| |
Collapse
|
67
|
Cytotoxic Curli Intermediates Form during Salmonella Biofilm Development. J Bacteriol 2019; 201:JB.00095-19. [PMID: 31182496 DOI: 10.1128/jb.00095-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Enterobacteriaceae produce amyloid proteins called curli that are the major proteinaceous component of biofilms. Amyloids are also produced by humans and are associated with diseases such as Alzheimer's. During the multistep process of amyloid formation, monomeric subunits form oligomers, protofibrils, and finally mature fibrils. Amyloid β oligomers are more cytotoxic to cells than the mature amyloid fibrils. Oligomeric intermediates of curli had not been previously detected. We determined that turbulence inhibited biofilm formation and that, intriguingly, curli aggregates purified from cultures grown under high-turbulence conditions were structurally smaller and contained less DNA than curli preparations from cultures grown with less turbulence. Using flow cytometry analysis, we demonstrated that CsgA was expressed in cultures exposed to higher turbulence but that these cultures had lower levels of cell death than less-turbulent cultures. Our data suggest that the DNA released during cell death drives the formation of larger fibrillar structures. Consistent with this idea, addition of exogenous genomic DNA increased the size of the curli intermediates and led to binding to thioflavin T at levels observed with mature aggregates. Similar to the intermediate oligomers of amyloid β, intermediate curli aggregates were more cytotoxic than the mature curli fibrils when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.IMPORTANCE Amyloid proteins are the major proteinaceous components of biofilms, which are associated with up to 65% of human bacterial infections. Amyloids produced by human cells are also associated with diseases such as Alzheimer's. The amyloid monomeric subunits self-associate to form oligomers, protofibrils, and finally mature fibrils. Amyloid β oligomers are more cytotoxic to cells than the mature amyloid fibrils. Here we detected oligomeric intermediates of curli for the first time. Like the oligomers of amyloid β, intermediate curli fibrils were more cytotoxic than the mature curli fibrillar aggregates when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.
Collapse
|
68
|
Rosenberg M, Azevedo NF, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 2019; 9:6483. [PMID: 31019274 PMCID: PMC6482146 DOI: 10.1038/s41598-019-42906-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Combining membrane impermeable DNA-binding stain propidium iodide (PI) with membrane-permeable DNA-binding counterstains is a widely used approach for bacterial viability staining. In this paper we show that PI staining of adherent cells in biofilms may significantly underestimate bacterial viability due to the presence of extracellular nucleic acids (eNA). We demonstrate that gram-positive Staphylococcus epidermidis and gram-negative Escherichia coli 24-hour initial biofilms on glass consist of 76 and 96% PI-positive red cells in situ, respectively, even though 68% the cells of either species in these aggregates are metabolically active. Furthermore, 82% of E. coli and 89% S. epidermidis are cultivable after harvesting. Confocal laser scanning microscopy (CLSM) revealed that this false dead layer of red cells is due to a subpopulation of double-stained cells that have green interiors under red coating layer which hints at eNA being stained outside intact membranes. Therefore, viability staining results of adherent cells should always be validated by an alternative method for estimating viability, preferably by cultivation.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia. .,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy; Department of Chemical Engineering; Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| |
Collapse
|
69
|
Smalheiser NR. Mining Clinical Case Reports to Identify New Lines of Investigation in Alzheimer's Disease: The Curious Case of DNase I. J Alzheimers Dis Rep 2019; 3:71-76. [PMID: 31025031 PMCID: PMC6481472 DOI: 10.3233/adr-190100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mining the case report literature identified an intriguing, yet neglected finding: Deoxyribonuclease I (DNase I) as a possible treatment for Alzheimer’s disease. This finding is speculative, both because it is based on one patient, and because the underlying mechanism(s) of action remain obscure. However, further literature review revealed that there are several plausible mechanisms by which DNase I might affect the course of Alzheimer’s disease. Given that DNase I is an FDA-approved drug, with extensive studies in both animals and man in the context of other diseases, I suggest that investigation of DNAse I in Alzheimer’s disease is worthwhile.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
70
|
Hart JW, Waigh TA, Lu JR, Roberts IS. Microrheology and Spatial Heterogeneity of Staphylococcus aureus Biofilms Modulated by Hydrodynamic Shear and Biofilm-Degrading Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3553-3561. [PMID: 30707032 PMCID: PMC7005943 DOI: 10.1021/acs.langmuir.8b04252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Particle tracking microrheology was used to investigate the viscoelasticity of Staphylococcus aureus biofilms grown in microfluidic cells at various flow rates and when subjected to biofilm-degrading enzymes. Biofilm viscoelasticity was found to harden as a function of shear rate but soften with increasing height away from the attachment surface in good agreement with previous bulk results. Ripley's K-function was used to quantify the spatial distribution of the bacteria within the biofilm. For all conditions, biofilms would cluster as a function of height during growth. The effects of proteinase K and DNase-1 on the viscoelasticity of biofilms were also investigated. Proteinase K caused an order of magnitude change in the compliances, softening the biofilms. However, DNase-1 was found to have no significant effects over the first 6 h of development, indicating that DNA is less important in biofilm maintenance during the initial stages of growth. Our results demonstrate that during the preliminary stages of Staphylococcus aureus biofilm development, column-like structures with a vertical gradient of viscoelasticity are established and modulated by the hydrodynamic shear caused by fluid flow in the surrounding environment. An understanding of these mechanical properties will provide more accurate insights for removal strategies of early-stage biofilms.
Collapse
Affiliation(s)
- J. W. Hart
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - T. A. Waigh
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - J. R. Lu
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - I. S. Roberts
- Faculty
of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Dover Street, Manchester M13 9PL, U.K.
| |
Collapse
|
71
|
Chen D, Cao Y, Yu L, Tao Y, Zhou Y, Zhi Q, Lin H. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express 2019; 9:31. [PMID: 30820691 PMCID: PMC6395465 DOI: 10.1186/s13568-019-0753-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
There are signs that amyloid fibers exist in Streptococcus mutans biofilm recently. However, the characteristics of amyloid fibers and fibrillation influencing factors are unknown. In this study, we firstly used transmission electron microscopy (TEM) and atomic force microscopy (AFM) to observe the morphology of amyloid fibers in S. mutans. Then the extracted amyloid fibers from biofilm were studied for their characteristics. Further, the influencing factors, PH, temperature and eDNA, were investigated. Results showed there were mainly two morphologies of amyloid fibers in S. mutans, different in width. Amyloid fibers inhibitor-EGCG obviously destroyed biofilm at different stages, which is dose-dependent. The amount of amyloid fibers positively correlated with biofilm biomass in clinical isolates. Acidic pH and high temperature obviously accelerated amyloid fibrillation. During amyloid fibrillation, amyloid growth morphologies were observed by TEM and results showed two growth morphologies. Amyloid fibers formed complex with eDNA, which we call (a)eDNA. The molecular weight of (a)eDNA was similar to genomic DNA, greatly larger than that of eDNA in matrix. Combined use of DNase I and EGCG was more efficiently in inhibiting amyloid fibers and biofilm biomass. In conclusion, amyloid fibers are the crucial structures for S. mutans biofilm formation, showing two types of morphology. Acidic pH and temperature can obviously accelerate amyloid fibrillation. Amyloid fibers form complex with (a)eDNA and combined use of DNase and amyloid fiber inhibitor is more efficiently in inhibiting S. mutans biofilm formation.
Collapse
|
72
|
Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol 2019; 85:AEM.02247-18. [PMID: 30578260 DOI: 10.1128/aem.02247-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a key cariogenic bacterium responsible for the initiation of tooth decay. Biofilm formation is a crucial virulence property. We discovered a putative glycosyltransferase, SMU_833, in S. mutans capable of modulating dynamic interactions between two key biofilm matrix components, glucan and extracellular DNA (eDNA). The deletion of smu_833 decreases glucan and increases eDNA but maintains the overall biofilm biomass. The decrease in glucan is caused by a reduction in GtfB and GtfC, two key enzymes responsible for the synthesis of glucan. The increase in eDNA was accompanied by an elevated production of membrane vesicles, suggesting that SMU_833 modulates the release of eDNA via the membrane vesicles, thereby altering biofilm matrix constituents. Furthermore, glucan and eDNA were colocalized. The complete deletion of gtfBC from the smu_833 mutant significantly reduced the biofilm biomass despite the elevated eDNA, suggesting the requirement of minimal glucans as a binding substrate for eDNA within the biofilm. Despite no changes in overall biofilm biomass, the mutant biofilm was altered in biofilm architecture and was less acidic in vitro Concurrently, the mutant was less virulent in an in vivo rat model of dental caries, demonstrating that SMU_833 is a new virulence factor. Taken together, we conclude that SMU_833 is required for optimal biofilm development and virulence of S. mutans by modulating extracellular matrix components. Our study of SMU_833-modulated biofilm matrix dynamics uncovered a new target that can be used to develop potential therapeutics that prevent and treat dental caries.IMPORTANCE Tooth decay, a costly and painful disease affecting the vast majority of people worldwide, is caused by the bacterium Streptococcus mutans The bacteria utilize dietary sugars to build and strengthen biofilms, trapping acids onto the tooth's surface and causing demineralization and decay of teeth. As knowledge of our body's microbiomes increases, the need for developing therapeutics targeted to disease-causing bacteria has arisen. The significance of our research is in studying and identifying a novel therapeutic target, a dynamic biofilm matrix that is mediated by a new virulence factor and membrane vesicles. The study increases our understanding of S. mutans virulence and also offers a new opportunity to develop effective therapeutics targeting S. mutans In addition, the mechanisms of membrane vesicle-mediated biofilm matrix dynamics are also applicable to other biofilm-driven infectious diseases.
Collapse
|
73
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
74
|
Moshynets O, Bardeau JF, Tarasyuk O, Makhno S, Cherniavska T, Dzhuzha O, Potters G, Rogalsky S. Antibiofilm Activity of Polyamide 11 Modified with Thermally Stable Polymeric Biocide Polyhexamethylene Guanidine 2-Naphtalenesulfonate. Int J Mol Sci 2019; 20:E348. [PMID: 30654458 PMCID: PMC6358945 DOI: 10.3390/ijms20020348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
The choice of efficient antimicrobial additives for polyamide resins is very difficult because of their high processing temperatures of up to 300 °C. In this study, a new, thermally stable polymeric biocide, polyhexamethylene guanidine 2-naphtalenesulfonate (PHMG-NS), was synthesised. According to thermogravimetric analysis, PHMG-NS has a thermal degradation point of 357 °C, confirming its potential use in joint melt processing with polyamide resins. Polyamide 11 (PA-11) films containing 5, 7 and 10 wt% of PHMG-NS were prepared by compression molding and subsequently characterised by FTIR spectroscopy. The surface properties were evaluated both by contact angle, and contactless induction. The incorporation of 10 wt% of PHMG-NS into PA-11 films was found to increase the positive surface charge density by almost two orders of magnitude. PA-11/PHMG-NS composites were found to have a thermal decomposition point at about 400 °C. Mechanical testing showed no change of the tensile strength of polyamide films containing PHMG-NS up to 7 wt%. Antibiofilm activity against the opportunistic bacteria Staphylococcus aureus and Escherichia coli was demonstrated for films containing 7 or 10 wt% of PHMG-NS, through a local biocide effect possibly based on an influence on the bacterial eDNA. The biocide hardly leached from the PA-11 matrix into water, at a rate of less than 1% from its total content for 21 days.
Collapse
Affiliation(s)
- Olena Moshynets
- Institute of Molecular Biology and Genetics of NAS of Ukraine, 03143 Kyiv, Ukraine.
| | - Jean-François Bardeau
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Mans, 72085 Le Mans, France.
| | - Oksana Tarasyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, 02160 Kyiv, Ukraine.
| | - Stanislav Makhno
- Chuiko Institute of Surface Chemistry of NAS of Ukraine, 03680 Kyiv, Ukraine.
| | - Tetiana Cherniavska
- Chuiko Institute of Surface Chemistry of NAS of Ukraine, 03680 Kyiv, Ukraine.
| | - Oleg Dzhuzha
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, 02160 Kyiv, Ukraine.
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium.
- University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Sergiy Rogalsky
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, 02160 Kyiv, Ukraine.
| |
Collapse
|
75
|
Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 2019; 309:1-12. [DOI: 10.1016/j.ijmm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
|
76
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
77
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
78
|
Sajeevan SE, Chatterjee M, Paul V, Baranwal G, Kumar VA, Bose C, Banerji A, Nair BG, Prasanth BP, Biswas R. Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol 2018; 125:1286-1295. [PMID: 29972893 DOI: 10.1111/jam.14040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
Abstract
AIM The effect of anacardic acid impregnation on catheter surfaces for the prevention of Staphylococcus aureus attachments and biofilm formations were evaluated. METHODS AND RESULTS Silicon catheter tubes were impregnated using different concentrations of anacardic acids (0·002-0·25%). Anacardic acids are antibacterial phenolic lipids from cashew nut (Anacardium occidentale) shell oil. Anacardic acid-impregnated silicon catheters revealed no significant haemolytic activity and were cytocompatible against fibroblast cell line (L929). Sustained release of anacardic acids was observed for 4 days. Anacardic acid-impregnated silicon catheters efficiently inhibited S. aureus colonization and the biofilm formation on its surface. The in vivo antibiofilm activity of anacardic acid-impregnated catheters was tested in an intraperitoneal catheter-associated medaka fish infection model. Significant reduction in S. aureus colonization on anacardic acid-impregnated catheter tubes was observed. CONCLUSIONS Our data suggest that anacardic acid-impregnated silicon catheters may help in preventing catheter-related staphylococcal infections. SIGNIFICANCE AND IMPACT OF THE STUDY This study opens new directions for designing antimicrobial phytochemical-coated surfaces with ideal antibiofilm properties and could be of great interest for biomedical research scientists.
Collapse
Affiliation(s)
- S E Sajeevan
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - M Chatterjee
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V Paul
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - G Baranwal
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V A Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - C Bose
- Amrita School of Biotechnology (ASBT), Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - A Banerji
- Amrita School of Biotechnology (ASBT), Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - B G Nair
- Amrita School of Biotechnology (ASBT), Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - B P Prasanth
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
79
|
Cámara-Almirón J, Caro-Astorga J, de Vicente A, Romero D. Beyond the expected: the structural and functional diversity of bacterial amyloids. Crit Rev Microbiol 2018; 44:653-666. [PMID: 30354913 DOI: 10.1080/1040841x.2018.1491527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intense research has confirmed the formerly theoretical distribution of amyloids in nature, and studies on different systems have illustrated the role of these proteins in microbial adaptation and in interactions with the environment. Two lines of research are expanding our knowledge on functional amyloids: (i) structural studies providing insights into the molecular machineries responsible for the transition from monomer to fibers and (ii) studies showing the way in which these proteins might participate in the microbial fitness in natural settings. Much is known about how amyloids play a role in the social behavior of bacteria, or biofilm formation, and in the adhesion of bacteria to surfaces; however, we are still in the initial stages of understanding a complementary involvement of amyloids in bacteria-host interactions. This review will cover the following two topics: first, the key aspects of the microbial platforms dedicated to the assembly of the fibers, and second, the mechanisms by which bacteria utilize the morphological and biochemical variability of amyloids to modulate the immunological response of the host, plants and humans, contributing to (i) infection, in the case of pathogenic bacteria or (ii) promotion of the health of the host, in the case of beneficial bacteria.
Collapse
Affiliation(s)
- Jesús Cámara-Almirón
- a Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' - Departamento de Microbiología , Universidad de Málaga , Málaga , Spain
| | - Joaquin Caro-Astorga
- a Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' - Departamento de Microbiología , Universidad de Málaga , Málaga , Spain
| | - Antonio de Vicente
- a Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' - Departamento de Microbiología , Universidad de Málaga , Málaga , Spain
| | - Diego Romero
- a Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' - Departamento de Microbiología , Universidad de Málaga , Málaga , Spain
| |
Collapse
|
80
|
Erskine E, MacPhee CE, Stanley-Wall NR. Functional Amyloid and Other Protein Fibers in the Biofilm Matrix. J Mol Biol 2018; 430:3642-3656. [PMID: 30098341 PMCID: PMC6173796 DOI: 10.1016/j.jmb.2018.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elliot Erskine
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cait E MacPhee
- James Clerk Maxwell Building, School of Physics, University of Edinburgh, The Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK.
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
81
|
Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol Mol Biol Rev 2018; 82:82/4/e00028-18. [PMID: 30305312 DOI: 10.1128/mmbr.00028-18] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.
Collapse
|
82
|
Yoo WK, Ryu BH, Kim KR, Wang Y, Le LTHL, Lee JH, Kim KK, Toth G, Ahn DR, Doohun Kim T. Modulating α-synuclein fibril formation using DNA tetrahedron nanostructures. Biochim Biophys Acta Gen Subj 2018; 1863:73-81. [PMID: 30278239 DOI: 10.1016/j.bbagen.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/16/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Abstract
The small presynaptic protein α-synuclein (α-syn) is involved in the etiology of Parkinson's disease owing to its abnormal misfolding. To date, little information is known on the role of DNA nanostructures in the formation of α-syn amyloid fibrils. Here, the effects of DNA tetrahedrons on the formation of α-syn amyloid fibrils were investigated using various biochemical and biophysical methods such as thioflavin T fluorescence assay, atomic force microscopy, light scattering, transmission electron microscopy, and cell-based cytotoxicity assay. It has been shown that DNA tetrahedrons decreased the level of oligomers and increased the level of amyloid fibrils, which corresponded to decreased cellular toxicity. The ability of DNA tetrahedron to facilitate the formation of α-syn amyloid fibrils demonstrated that structured nucleic acids such as DNA tetrahedrons could modulate the process of amyloid fibril formation. Our study suggests that DNA tetrahedrons could be used as an important facilitator toward amyloid fibril formation of α-synuclein, which may be of significance in finding therapeutic approaches to Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Wan Ki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Gergely Toth
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
83
|
Nahar S, Mizan MFR, Ha AJW, Ha SD. Advances and Future Prospects of Enzyme-Based Biofilm Prevention Approaches in the Food Industry. Compr Rev Food Sci Food Saf 2018; 17:1484-1502. [DOI: 10.1111/1541-4337.12382] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shamsun Nahar
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | | | - Angela Jie-won Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | - Sang-Do Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|
84
|
MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus. Appl Environ Microbiol 2018. [PMID: 29884758 DOI: 10.1128/aem01008-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are amphipathic peptides that are produced by staphylococci and play important roles in Staphylococcus aureus biofilm formation and dissemination. Although the multiple functions of PSMs have been recognized, the regulatory mechanisms controlling the expression of psm operons remain largely unknown. In this study, we identified MgrA in a DNA pulldown assay and further demonstrated, by electrophoretic mobility shift assays and DNase I footprinting assays, that MgrA could bind specifically to the promoter regions of psm operons. We then constructed an isogenic mgrA deletion strain and compared biofilm formation and detachment in the wild-type and isogenic mgrA deletion strains. Our results indicated that biofilm formation and detachment were significantly increased in the mgrA mutant strain. Real-time quantitative reverse transcription-PCR data indicated that MgrA repressed the transcription of psm operons in cultures and biofilms, suggesting that MgrA is a negative regulator of psm expression. Furthermore, we analyzed biofilm formation by the psm mutant strains, and we found that PSMs promoted biofilm structuring and development in the mgrA mutant strain. These findings reveal that MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons through direct binding to the psm promoter regions.IMPORTANCEStaphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis.
Collapse
|
85
|
Zheng Y, Joo HS, Nair V, Le KY, Otto M. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int J Med Microbiol 2018; 308:675-682. [PMID: 28867522 PMCID: PMC5832552 DOI: 10.1016/j.ijmm.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are alpha-helical, amphipathic peptides that have multiple functions in staphylococcal physiology and virulence. Recent research has suggested that PSMs form amyloid fibrils and amyloids are involved in PSM-mediated phenotypes such as cytolysis and biofilm stability. While we observed PSM amyloid formation using electron microscopy and dye assays, there were no apparent differences in the production of extracellular fibrous material between a PSM-deficient strain and the isogenic wild-type strain. Furthermore, we detected no correlation between cytolytic or pro-inflammatory activities with the propensity of PSM derivatives to form amyloids. In addition, we propose a model based on our finding of non-specific attachment of PSMs to DNA, which we here report results in resistance to DNase digestion, explaining previous findings on PSM-mediated biofilm stability without the necessity to assume amyloid involvement. Collectively, our results indicate that PSM amyloid formation may not be of major relevance for known key biological functions of PSMs. Intriguingly, however, we found that amyloid-forming capacity of PSMalpha3 allows almost no amino acid exchanges, suggesting importance of amyloid formation in possibly yet unknown functions of PSMs.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Hwang-Soo Joo
- Department of Prepharm-Med, College of Natural Sciences, Duksung Women's University, 33 Samyang-ro 144-gil, Seoul 01369, South Korea
| | - Vinod Nair
- Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Katherine Y Le
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA.
| |
Collapse
|
86
|
MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus. Appl Environ Microbiol 2018; 84:AEM.01008-18. [PMID: 29884758 PMCID: PMC6070752 DOI: 10.1128/aem.01008-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus. Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis. Phenol-soluble modulins (PSMs) are amphipathic peptides that are produced by staphylococci and play important roles in Staphylococcus aureus biofilm formation and dissemination. Although the multiple functions of PSMs have been recognized, the regulatory mechanisms controlling the expression of psm operons remain largely unknown. In this study, we identified MgrA in a DNA pulldown assay and further demonstrated, by electrophoretic mobility shift assays and DNase I footprinting assays, that MgrA could bind specifically to the promoter regions of psm operons. We then constructed an isogenic mgrA deletion strain and compared biofilm formation and detachment in the wild-type and isogenic mgrA deletion strains. Our results indicated that biofilm formation and detachment were significantly increased in the mgrA mutant strain. Real-time quantitative reverse transcription-PCR data indicated that MgrA repressed the transcription of psm operons in cultures and biofilms, suggesting that MgrA is a negative regulator of psm expression. Furthermore, we analyzed biofilm formation by the psm mutant strains, and we found that PSMs promoted biofilm structuring and development in the mgrA mutant strain. These findings reveal that MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons through direct binding to the psm promoter regions. IMPORTANCEStaphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus. Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis.
Collapse
|
87
|
Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol 2018; 102:6343-6356. [PMID: 29858957 PMCID: PMC6061472 DOI: 10.1007/s00253-018-9120-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/13/2023]
Abstract
Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and indicates common pitfalls that should be avoided whilst working with exDNA.
Collapse
Affiliation(s)
- Magdalena Nagler
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria.
| | - Heribert Insam
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
| | - Giacomo Pietramellara
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Judith Ascher-Jenull
- Universität Innsbruck, Institute of Microbiology, Technikerstr. 25d, 6020, Innsbruck, Austria
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144, Florence, Italy
| |
Collapse
|
88
|
Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. J Mol Biol 2018; 430:3631-3641. [PMID: 30017921 DOI: 10.1016/j.jmb.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of "functional amyloids" expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.
Collapse
|
89
|
Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 2018; 4:274-288. [PMID: 31294215 PMCID: PMC6604936 DOI: 10.3934/microbiol.2018.2.274] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
One of the key elements in the establishment and maintenance of the biofilm structure and properties is the extracellular matrix. The extracellular matrix is composed of water and extracellular polymeric substances (EPS): primarily polysaccharides, proteins and DNA. Characterization of the matrix requires component identification, as well as determination of the relative concentration of EPS constituents, including their physicochemical properties and descriptions of their interactions. Several types of experimental approaches with varying degrees of destructiveness can be utilized for this characterization. The analysis of biofilm by infrared spectroscopy gives information about the chemical content of the matrix and the proportions of different EPS. The sensitivity of a biofilm to hydrolytic enzymes targeting different EPS gives insight into the composition of the matrix and the involvement of matrix components in the integrity of the structure. Using both chemical and physical treatments, extraction and purification of EPS from the biofilm also provides a means of determining matrix composition. Purified and/or artificial EPS can be used to obtain artificial matrices and to study their properties. Using examples from the literature, this review will illustrate selected technologies useful in the study of EPS that provide a better understanding of the structure-function relationships in extracellular matrix, and thus the structure-function relationships of the biofilm phenotype.
Collapse
Affiliation(s)
- Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, rue Descartes site de Neuville-sur-Oise 95031 Cergy-Pontoise, cedex France
| |
Collapse
|
90
|
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2018; 88:173-184. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
91
|
Nguyen MT, Luqman A, Bitschar K, Hertlein T, Dick J, Ohlsen K, Bröker B, Schittek B, Götz F. Staphylococcal (phospho)lipases promote biofilm formation and host cell invasion. Int J Med Microbiol 2017; 308:653-663. [PMID: 29203111 DOI: 10.1016/j.ijmm.2017.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Most Staphylococcus aureus strains secrete two lipases SAL1 and SAL2 encoded by gehA and gehB. These two lipases differ with respect to their substrate specificity. Staphylococcus hyicus secretes another lipase, SHL, which is in contrast to S. aureus lipases Ca2+-dependent and has a broad-spectrum lipase and phospholipase activity. The aim of this study was to investigate the role of staphylococcal (phospho) lipases in virulence. For this we constructed a gehA-gehB double deletion mutant in S. aureus USA300 and expressed SHL in agr-positive (accessory gene regulator) and agr-negative S. aureus strains. The lipases themselves have no hemolytic or cytotoxic activity. However, in agr-negative strains SHL-expression caused an upregulation of hemolytic activity. We further show that SHL-expression significantly enhanced biofilm formation probably due to an increase of extracellular DNA release. SHL-expression also increased host cell invasion 4-6-fold. Trioleate, a main triacylglycerol component of mammalian skin, induced lipase production. Finally, in the mouse sepsis and skin colonization models the lipase producing and mutant strain showed no significant difference compared to the WT strain. In conclusion, we show that staphylococcal lipases promote biofilm formation and host cell invasion and thereby contribute to S. aureus virulence.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Arif Luqman
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Biology Department, Institut Teknologi Sepuluh Nopember, Indonesia
| | | | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Johannes Dick
- Institue of Immunology and Transfusion Medicine, University of Medicine Greifswald, Greifswald, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Barbara Bröker
- Institue of Immunology and Transfusion Medicine, University of Medicine Greifswald, Greifswald, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
92
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
93
|
Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, Colletier JP, Landau M. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 2017; 355:831-833. [PMID: 28232575 DOI: 10.1126/science.aaf4901] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
Amyloids are ordered protein aggregates, found in all kingdoms of life, and are involved in aggregation diseases as well as in physiological activities. In microbes, functional amyloids are often key virulence determinants, yet the structural basis for their activity remains elusive. We determined the fibril structure and function of the highly toxic, 22-residue phenol-soluble modulin α3 (PSMα3) peptide secreted by Staphylococcus aureus PSMα3 formed elongated fibrils that shared the morphological and tinctorial characteristics of canonical cross-β eukaryotic amyloids. However, the crystal structure of full-length PSMα3, solved de novo at 1.45 angstrom resolution, revealed a distinctive "cross-α" amyloid-like architecture, in which amphipathic α helices stacked perpendicular to the fibril axis into tight self-associating sheets. The cross-α fibrillation of PSMα3 facilitated cytotoxicity, suggesting that this assembly mode underlies function in S. aureus.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Orly Tabachnikov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Moshe
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Orit Goldshmidt-Tran
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michael R Sawaya
- Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Coquelle
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS UMR 5075, Grenoble 38044, France
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS UMR 5075, Grenoble 38044, France
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
94
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
95
|
Pollitt EJG, Diggle SP. Defining motility in the Staphylococci. Cell Mol Life Sci 2017; 74:2943-2958. [PMID: 28378043 PMCID: PMC5501909 DOI: 10.1007/s00018-017-2507-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
Abstract
The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions.
Collapse
Affiliation(s)
- Eric J G Pollitt
- Department of Biomedical Science, Western Bank, University of Sheffield, Sheffield, UK
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
96
|
O'Gara JP. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ Microbiol 2017. [PMID: 28631399 DOI: 10.1111/1462-2920.13833] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine.
Collapse
Affiliation(s)
- James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
97
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
98
|
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol 2017; 7:318. [PMID: 28744452 PMCID: PMC5504724 DOI: 10.3389/fcimb.2017.00318] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS). For the first time here we report the presence of bacterial lipopolysaccharide (LPS) in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD) brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| |
Collapse
|
99
|
Bleem A, Francisco R, Bryers JD, Daggett V. Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms. NPJ Biofilms Microbiomes 2017; 3:16. [PMID: 28685098 PMCID: PMC5495782 DOI: 10.1038/s41522-017-0025-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Nosocomial infections affect hundreds of millions of patients worldwide each year, and ~60% of these infections are associated with biofilm formation on an implanted medical device. Biofilms are dense communities of microorganisms in which cells associate with surfaces and each other using a self-produced extracellular matrix composed of proteins, polysaccharides, and genetic material. Proteins in the extracellular matrix take on a variety of forms, but here we focus on functional amyloid structures. Amyloids have long been associated with protein misfolding and neurodegenerative diseases, but recent research has demonstrated that numerous bacterial species utilize the amyloid fold to fortify the biofilm matrix and resist disassembly. Consequently, these functional amyloids, in particular the soluble oligomeric intermediates formed during amyloidogenesis, represent targets to destabilize the extracellular matrix and interrupt biofilm formation. Our previous studies suggested that these amyloidogenic intermediates adopt a non-standard structure, termed "α-sheet", as they aggregate into soluble oligomeric species. This led to the design of complementary α-sheet peptides as anti-α-sheet inhibitors; these designs inhibit amyloidogenesis in three unrelated mammalian disease-associated systems through preferential binding of soluble oligomers. Here we show that these anti-α-sheet peptides inhibit amyloid formation in Staphylococcus aureus biofilms. Furthermore, they inhibit aggregation of pure, synthetic phenol soluble modulin α1, a major component of Staphylococcus aureus functional amyloids. As it aggregates phenol soluble modulin α1 adopts α-helix then α-sheet and finally forms β-sheet fibrils. The binding of the designed peptide inhibitors coincides with the formation of α-sheet.
Collapse
Affiliation(s)
- Alissa Bleem
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Robyn Francisco
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - James D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| |
Collapse
|
100
|
Besingi RN, Wenderska IB, Senadheera DB, Cvitkovitch DG, Long JR, Wen ZT, Brady LJ. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. MICROBIOLOGY-SGM 2017; 163:488-501. [PMID: 28141493 DOI: 10.1099/mic.0.000443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|