51
|
Identification of long non-coding RNAs in Verticillium dahliae following inoculation of cotton. Microbiol Res 2022; 257:126962. [PMID: 35042052 DOI: 10.1016/j.micres.2022.126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, these functions have not been assessed in Verticillium dahliae, a soil-borne fungal pathogen that causes devastating wilt diseases in many crops. The discovery and identity of novel lncRNAs and their association with virulence may contribute to an increased understanding of the regulation of virulence in V. dahliae. Here, we identified a total of 352 lncRNAs in V. dahliae. The lncRNAs were transcribed from all V. dahliae chromosomes, typically with shorter open reading frames, lower GC content, and fewer exons than protein-coding genes. In addition, 308 protein-coding genes located within 10 kb upstream and 10 kb downstream of lncRNAs were identified as neighboring genes, and which were considered as potential targets of lncRNA. These neighboring genes encode products involved in development, stress responses, and pathogenicity of V. dahliae, such as transcription factors (TF), kinase, and members of the secretome. Furthermore, 47 lncRNAs were significantly differentially expressed in V. dahliae following inoculation of susceptible cotton (Gossyoiumhisutum) cultivar Junmian No.1, suggesting that lncRNAs may be involved in the regulation of virulence in V. dahliae. Moreover, correlations in expression patterns between lncRNA and their neighboring genes were detected. Expression of lncRNA012077 and its neighboring gene was up-regulated 6 h following inoculation of cotton, while the expression of lncRNA007722 was down-regulated at 6 h but up-regulated at 24 h, in a pattern opposite to that of its neighboring gene. Overexpression of lncRNA012077 in wild-type strain (Vd991) enhanced its virulence on cotton while overexpression of lncRNA009491 reduced virulence. Identification of novel lncRNAs and their association with virulence may provide new targets for disease control.
Collapse
|
52
|
Wu N, Yang J, Wang G, Ke H, Zhang Y, Liu Z, Ma Z, Wang X. Novel insights into water-deficit-responsive mRNAs and lncRNAs during fiber development in Gossypium hirsutum. BMC PLANT BIOLOGY 2022; 22:6. [PMID: 34979912 PMCID: PMC8722198 DOI: 10.1186/s12870-021-03382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. RESULTS In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. CONCLUSIONS This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
53
|
Liu N, Wang P, Li X, Pei Y, Sun Y, Ma X, Ge X, Zhu Y, Li F, Hou Y. Long Non-Coding RNAs profiling in pathogenesis of Verticillium dahliae: New insights in the host-pathogen interaction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111098. [PMID: 34895536 DOI: 10.1016/j.plantsci.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Yutao Zhu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
54
|
Zhang J, Li J, Saeed S, Batchelor WD, Alariqi M, Meng Q, Zhu F, Zou J, Xu Z, Si H, Wang Q, Zhang X, Zhu H, Jin S, Yuan D. Identification and Functional Analysis of lncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:784511. [PMID: 35283887 PMCID: PMC8905227 DOI: 10.3389/fpls.2022.784511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
Sap-sucking insects cause severe damage to cotton production. Long non-coding RNAs (lncRNAs) play vital regulatory roles in various development processes and stress response, however, the function of lncRNAs during sap-sucking insect infection in cotton is largely unknown. In this study, the transcriptome profiles between resistant (HR) and susceptible (ZS) cotton cultivars under whitefly infestation at different time points (0, 4, 12, 24, and 48 h) were compared. A total of 6,651 lncRNAs transcript and 606 differentially expressed lncRNAs were identified from the RNA-seq data. A co-expression network indicated that lncA07 and lncD09 were potential hub genes that play a regulatory role in cotton defense against aphid infestation. Furthermore, CRISPR/Cas9 knock-out mutant of lncD09 and lncA07 showed a decrease of jasmonic acid (JA) content, which potentially lead to increased susceptibility toward insect infestation. Differentially expressed genes between wild type and lncRNA knock-out plants are enriched in modulating development and resistance to stimulus. Additionally, some candidate genes such as Ghir_A01G022270, Ghir_D04G014430, and Ghir_A01G022270 are involved in the regulation of the JA-mediated signaling pathway. This result provides a novel insight of the lncRNA role in the cotton defense system against pests.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuhui Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shuangxia Jin,
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Daojun Yuan,
| |
Collapse
|
55
|
Zhang YY, Hong YH, Liu YR, Cui J, Luan YS. Function identification of miR394 in tomato resistance to Phytophthora infestans. PLANT CELL REPORTS 2021; 40:1831-1844. [PMID: 34230985 DOI: 10.1007/s00299-021-02746-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
MiR394 plays a negative role in tomato resistance to late blight. The lncRNA40787 severing as an eTM for miR394 to regulate LCR and exerting functions in tomato resistance. Tomato (Solanum lycopersicum), which was used as model species for studying the mechanism of plant disease defense, is susceptible to multiple pathogens. Non-coding RNA (ncRNA) has a pivotal role in plants response to biological stresses. It has previously been observed that the expression level of miR394 changed significantly after the infection of various pathogens. However, there has been no detailed investigation of the accumulated or suppressed mechanism of miR394. Our previous study predicted three lncRNAs (lncRNA40787, lncRNA27177, and lncRNA42566) that contain miR394 endogenous target mimics (eTM), which may exist as the competitive endogenous RNAs (ceRNAs) of miR394. In our study, the transcription levels of these three lncRNAs were strongly up-regulated in tomato upon infection with P. infestans. In contrast with the three lncRNAs, the accumulation of miR394 was significantly suppressed. Based on the expression pattern, and value of minimum free energy (mfes) that represents the binding ability between lncRNA and miRNA, lncRNA40787 was chosen for further investigation. Results showed that overexpression of lncRNA40787 reduced the expression of miR394 along with decreased lesion area and enhanced disease resistance. Overexpression of miR394, however, decreased the expression of its target gene Leaf Curling Responsiveness (LCR), and suppressed the synthesis components genes of jasmonic acid (JA), depressing the resistance of tomato to P. infestans infection. Taken together, our findings indicated that miR394 can be decoyed by lncRNA40787, and negatively regulated the expression of LCR to enhance tomato susceptibility under P. infestans infection. Our study provided detailed information on the lncRNA40787-miR394-LCR regulatory network and serves as a reference for future research.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Hui Hong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Rong Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Shi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
56
|
Zhang X, Shen J, Xu Q, Dong J, Song L, Wang W, Shen F. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. PLANT, CELL & ENVIRONMENT 2021; 44:3302-3321. [PMID: 34164822 DOI: 10.1111/pce.14133] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in response to biotic and abiotic stress through acting as competing endogenous RNAs (ceRNAs) to decoy mature miRNAs. However, whether this mechanism is involved in cotton salt stress response remains unknown. We report the characterization of an endogenous lncRNA, lncRNA354, whose expression was reduced in salt-treated cotton and was localized at the nucleus and cytoplasm. Using endogenous target mimic (eTM) analysis, we predicted that lncRNA354 had a potential binding site for miR160b. Transient expression in tobacco demonstrated that lncRNA354 was a miR160b eTM and attenuated miR160b suppression of its target genes, including auxin response factors (ARFs). Silencing or overexpressing lncRNA354 affected the expression of miR160b and target ARFs. Silencing lncRNA354 and targets GhARF17/18 resulted in taller cotton plants and enhanced the resistant to salt stress. Overexpression of lncRNA354 and targets GhARF17/18 in Arabidopsis led to dwarf plants, decreased root dry weight and reduced salt tolerance. Our results show that the lncRNA354-miR160b effect on GhARF17/18 expression may modulate auxin signalling and thus affect growth. These results also shed new light on a mechanism of lncRNA-associated responses to salt stress.
Collapse
Affiliation(s)
- Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
57
|
Nie J, Wang H, Zhang W, Teng X, Yu C, Cai R, Wu G. Characterization of lncRNAs and mRNAs Involved in Powdery Mildew Resistance in Cucumber. PHYTOPATHOLOGY 2021; 111:1613-1624. [PMID: 33522835 DOI: 10.1094/phyto-11-20-0521-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew (PM) is a severe fungal disease of cucumber worldwide. Identification of genetic factors resistant to PM is of great importance for marker-assisted breeding to ensure cucumber production. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to play important roles in plant development and immunity; however, whether they have a role in PM response in cucurbit crops remains unknown. We performed strand-specific RNA sequencing and miRNA sequencing using RNA from cucumber leaves of two near-isogenic lines (NILs), S1003 and NIL (Pm5.1) infected with PM, and systematically characterized the profiles of cucumber lncRNAs and messenger RNA (mRNAs) responsive to PM. In total, we identified 12,903 lncRNAs and 25,598 mRNAs responsive to PM. Differential expression (DE) analysis showed that 119 lncRNAs and 136 mRNAs correlated with PM resistance. Functional analysis of these DE lncRNAs and DE mRNAs revealed that they are significantly associated with phenylpropanoid biosynthesis, phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and endocytosis. Particularly, two lncRNAs, LNC_006805 and LNC_012667, might play important roles in PM resistance. In addition, we also predicted mature miRNAs and competing endogenous RNA (ceRNA) networks of lncRNA-miRNA-mRNA involved in PM resistance. A total of 49 DE lncRNAs could potentially act as target mimics for 106 miRNAs. Taken together, our results provide an abundant resource for further exploration of cucumber lncRNAs, mRNAs, miRNAs, and ceRNAs in PM resistance, and will facilitate the molecular breeding for PM-resistant varieties to control this severe disease in cucumber.
Collapse
Affiliation(s)
- Jingtao Nie
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wanlu Zhang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xue Teng
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
58
|
Cheng C, Liu F, Tian N, Mensah RA, Sun X, Liu J, Wu J, Wang B, Li D, Lai Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci Rep 2021; 11:16363. [PMID: 34381122 PMCID: PMC8358008 DOI: 10.1038/s41598-021-95832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Fan Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raphael Anue Mensah
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueli Sun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiapeng Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junwei Wu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
59
|
Tao X, Li M, Zhao T, Feng S, Zhang H, Wang L, Han J, Gao M, Lu K, Chen Q, Zhou B, Guan X. Neofunctionalization of a polyploidization-activated cotton long intergenic non-coding RNA DAN1 during drought stress regulation. PLANT PHYSIOLOGY 2021; 186:2152-2168. [PMID: 33871645 PMCID: PMC8331171 DOI: 10.1093/plphys/kiab179] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
The genomic shock of whole-genome duplication (WGD) and hybridization introduces great variation into transcriptomes, for both coding and noncoding genes. An altered transcriptome provides a molecular basis for improving adaptation during the evolution of new species. The allotetraploid cotton, together with the putative diploid ancestor species compose a fine model for study the rapid gene neofunctionalization over the genome shock. Here we report on Drought-Associated Non-coding gene 1 (DAN1), a long intergenic noncoding RNA (lincRNA) that arose from the cotton progenitor A-diploid genome after hybridization and WGD events during cotton evolution. DAN1 in allotetraploid upland cotton (Gossypium hirsutum) is a drought-responsive lincRNA predominantly expressed in the nucleoplasm. Chromatin isolation by RNA purification profiling and electrophoretic mobility shift assay analysis demonstrated that GhDAN1 RNA can bind with DNA fragments containing AAAG motifs, similar to DNA binding with one zinc finger transcription factor binding sequences. The suppression of GhDAN1 mainly regulates genes with AAAG motifs in auxin-response pathways, which are associated with drought stress regulation. As a result, GhDAN1-silenced plants exhibit improved tolerance to drought stress. This phenotype resembles the drought-tolerant phenotype of the A-diploid cotton ancestor species, which has an undetectable expression of DAN1. The role of DAN1 in cotton evolution and drought tolerance regulation suggests that the genomic shock of interspecific hybridization and WGD stimulated neofunctionalization of non-coding genes during the natural evolutionary process.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shouli Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hailin Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luyao Wang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Center of Ministry of Cotton Education, Urumqi 830052, China
| | - Jin Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kening Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Center of Ministry of Cotton Education, Urumqi 830052, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
60
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
61
|
Wang L, Wu S, Jin J, Li R. Identification of herbivore-elicited long non-coding RNAs in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1916702. [PMID: 33896377 PMCID: PMC8205062 DOI: 10.1080/15592324.2021.1916702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 05/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) in plants are emerging as new players in biotic stress responses. Pathogen-associated lncRNAs have been broadly identified and functionally characterized in multiple species. However, herbivore-responsive lncRNAs in plants are poorly investigated. Our recent study revealed that lncRNAs also play roles in plant defense against herbivores in wild tobacco. Here, we identified armyworm (AW)-elicited lncRNAs in monocot rice by employing a similar approach. A total of 238 lncRNAs were found to be differentially expressed (DE) in AW-treated plants relative to control plants. The cis effect of these DE lncRNAs was predicted. Interestingly, one DE lncRNA was identified from the antisense transcripts of the jasmonate ZIM-domain gene JAZ10.
Collapse
Affiliation(s)
- Lanlan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Siwen Wu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ran Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
62
|
Ma Y, Min L, Wang J, Li Y, Wu Y, Hu Q, Ding Y, Wang M, Liang Y, Gong Z, Xie S, Su X, Wang C, Zhao Y, Fang Q, Li Y, Chi H, Chen M, Khan AH, Lindsey K, Zhu L, Li X, Zhang X. A combination of genome-wide and transcriptome-wide association studies reveals genetic elements leading to male sterility during high temperature stress in cotton. THE NEW PHYTOLOGIST 2021; 231:165-181. [PMID: 33665819 PMCID: PMC8252431 DOI: 10.1111/nph.17325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 05/23/2023]
Abstract
Global warming has reduced the productivity of many field-grown crops, as the effects of high temperatures can lead to male sterility in such plants. Genetic regulation of the high temperature (HT) response in the major crop cotton is poorly understood. We determined the functionality and transcriptomes of the anthers of 218 cotton accessions grown under HT stress. By analyzing transcriptome divergence and implementing a genome-wide association study (GWAS), we identified three thermal tolerance associated loci which contained 75 protein coding genes and 27 long noncoding RNAs, and provided expression quantitative trait loci (eQTLs) for 13 132 transcripts. A transcriptome-wide association study (TWAS) confirmed six causal elements for the HT response (three genes overlapped with the GWAS results) which are involved in protein kinase activity. The most susceptible gene, GhHRK1, was confirmed to be a previously uncharacterized negative regulator of the HT response in both cotton and Arabidopsis. These functional variants provide a new understanding of the genetic basis for HT tolerance in male reproductive organs.
Collapse
Affiliation(s)
- Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Ling Min
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Junduo Wang
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yuanhao Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yajun Liang
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Sai Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojun Su
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chaozhi Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yunlong Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qidi Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Huabin Chi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Miao Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xueyuan Li
- Xinjiang Academy of Agricultural ScienceXinjiang830000China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
63
|
Wang L, Han J, Lu K, Li M, Gao M, Cao Z, Zhao T, Chen X, Tao X, Chen Q, Guan X. Functional examination of lncRNAs in allotetraploid Gossypium hirsutum. BMC Genomics 2021; 22:443. [PMID: 34120591 PMCID: PMC8201905 DOI: 10.1186/s12864-021-07771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND An evolutionary model using diploid and allotetraploid cotton species identified 80 % of non-coding transcripts in allotetraploid cotton as being uniquely activated in comparison with its diploid ancestors. The function of the lncRNAs activated in allotetraploid cotton remain largely unknown. RESULTS We employed transcriptome analysis to examine the relationship between the lncRNAs and mRNAs of protein coding genes (PCGs) in cotton leaf tissue under abiotic stresses. LncRNA expression was preferentially associated with that of the flanking PCGs. Selected highly-expressed lncRNA candidates (n = 111) were subjected to a functional screening pilot test in which virus-induced gene silencing was integrated with abiotic stress treatment. From this low-throughput screen, we obtained candidate lncRNAs relating to plant height and tolerance to drought and other abiotic stresses. CONCLUSIONS Low-throughput screen is an effective method to find functional lncRNA for further study. LncRNAs were more active in abiotic stresses than PCG expression, especially temperature stress. LncRNA XLOC107738 may take a cis-regulatory role in response to environmental stimuli. The degree to which lncRNAs are constitutively expressed may impact expression patterns and functions on the individual gene level rather than in genome-wide aggregate.
Collapse
Affiliation(s)
- Luyao Wang
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China
| | - Jin Han
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China
| | - Kening Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Zeyi Cao
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China
| | - Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China
| | - Xue Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China.
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, 210058, Hangzhou, Zhejiang, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Building 11, Yonyou Industrial Park, Yazhou District, Hainan Province, 572025, Sanya, China.
| |
Collapse
|
64
|
Nath VS, Mishra AK, Awasthi P, Shrestha A, Matoušek J, Jakse J, Kocábek T, Khan A. Identification and characterization of long non-coding RNA and their response against citrus bark cracking viroid infection in Humulus lupulus. Genomics 2021; 113:2350-2364. [PMID: 34051324 DOI: 10.1016/j.ygeno.2021.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a highly heterogeneous class of non-protein-encoding transcripts that play an essential regulatory role in diverse biological processes, including stress responses. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) poses a major threat to the production of Humulus lupulus (hop) plants. In this study, we systematically investigate the characteristics of the lncRNAs in hop and their role in CBCVd-infection using RNA-sequencing data. Following a stringent filtration criterion, a total of 3598 putative lncRNAs were identified with a high degree of certainty, of which 19% (684) of the lncRNAs were significantly differentially expressed (DE) in CBCVd-infected hop, which were predicted to be mainly involved in plant-pathogen interactions, kinase cascades, secondary metabolism and phytohormone signal transduction. Besides, several lncRNAs and CBCVd-responsive lncRNAs were identified as the precursor of microRNAs and predicted as endogenous target mimics (eTMs) for hop microRNAs involved in CBCVd-infection.
Collapse
Affiliation(s)
- Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ahamed Khan
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
65
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|
66
|
Tong S, Yuan M, Liu Y, Li X, Jin D, Cheng X, Lin D, Ling H, Yang D, Wang Y, Mao A, Pei Y, Fan Y. Ergosterol-targeting fusion antifungal peptide significantly increases the Verticillium wilt resistance of cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:926-936. [PMID: 33217142 PMCID: PMC8131044 DOI: 10.1111/pbi.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/31/2023]
Abstract
Increasing the targeting ability of antifungal proteins towards specific components of fungal cells has the potential to improve their antifungal activity and reduce harmful effects to nontarget cells. To obtain effective disease resistance genes against cotton Verticillium wilt, we constructed several fusion genes, in which binding domains targeting chitin, sphingolipid or ergosterol in the fungal cell wall or cell membrane were individually fused to the antifungal peptide BbAFP1 from entomopathogenic fungus Beauveria bassiana. Transient expression of fusion genes in cotton cotyledons indicated that the BbAFP1::ErBD fusion peptide with an ergosterol binding domain exhibited better disease resistance against V. dahliae than wild-type BbAFP1 and other fusion genes. BbAFP1::ErBD and BbAFP1 transgenic cotton were obtained and verified by Southern and Western blotting. Compared with BbAFP1-expressing cotton, BbAFP1::ErBD-expressing cotton showed higher disease resistance against V. dahliae, with smaller lesion areas (0.07 cm2 vs. 0.16 cm2 ) on the leaves and a lower disease index (23.9 vs. 34.5). Overexpression of BbAFP1::ErBD by transgenic tobacco also showed enhanced disease resistance against V. dahliae compared with that of the wild-type gene. These results indicated that construction of fusion antifungal peptides that target fungal cells is a powerful strategy to obtain new anti-disease genes, and the obtained fusion gene BbAFP1::ErBD has the potential to defend against plant fungal diseases.
Collapse
Affiliation(s)
- Sheng Tong
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Min Yuan
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Yu Liu
- College of Sericulture, Textile and Biomass SciencesSouthwest UniversityChongqingChina
| | - Xianbi Li
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Dan Jin
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Xi Cheng
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Dongmei Lin
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Haichun Ling
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Danni Yang
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Yang Wang
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Ajing Mao
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Yan Pei
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| | - Yanhua Fan
- Biotechnology Research CenterChongqing Key Laboratory of Plant Resource Conservation and Germplasm InnovationSouthwest UniversityChongqingChina
| |
Collapse
|
67
|
Transcriptome and MiRNAomics Analyses Identify Genes Associated with Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2021; 22:ijms22094684. [PMID: 33925234 PMCID: PMC8124215 DOI: 10.3390/ijms22094684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is important for large-scale hybrid seed production. Rearrangements in the mitochondrial DNA (mtDNA) for the cotton (Gossypium hirsutum L.) CMS line J4A were responsible for pollen abortion. However, the expression patterns of nuclear genes associated with pollen abortion and the molecular basis of CMS for J4A are unknown, and were the objectives of this study by comparing J4A with the J4B maintainer line. Cytological evaluation of J4A anthers showed that microspore abortion occurs during meiosis preventing pollen development. Changes in enzyme activity of mitochondrial respiratory chain complex IV and mitochondrial respiratory chain complex V and the content of ribosomal protein and ATP during anther abortion were observed for J4A suggesting insufficient synthesis of ATP hindered pollen production. Additionally, levels of sucrose, starch, soluble sugar, and fructose were significantly altered in J4A during the meiosis stage, suggesting reduced sugar metabolism contributed to sterility. Transcriptome and miRNAomics analyses identified 4461 differentially expressed mRNAs (DEGs) and 26 differentially expressed microRNAs (DEMIs). Pathway enrichment analysis indicated that the DEMIs were associated with starch and sugar metabolism. Six deduced target gene regulatory pairs that may participate in CMS were identified, ghi-MIR7484-10/mitogen-activated protein kinase kinase 6 (MAPKK6), ghi-undef-156/agamous-like MADS-box protein AGL19 (AGL19), ghi-MIR171-1-22/SNF1-related protein kinase regulatory subunit gamma-1 and protein trichome birefringence-like 38, and ghi-MIR156-(8/36)/WRKY transcription factor 28 (WRKY28). Overall, a putative CMS mechanism involving mitochondrial dysfunction, the ghi-MIR7484-10/MAPKK6 network, and reduced glucose metabolism was suggested, and ghi-MIR7484-10/MAPKK6 may be related to abnormal microspore meiosis and induction of excessive sucrose accumulation in anthers.
Collapse
|
68
|
Li J, Li N, Zhu L, Zhang Z, Li X, Wang J, Xun H, Zhao J, Wang X, Wang T, Wang H, Liu B, Li Y, Gong L. Mutation of a major CG methylase alters genome-wide lncRNA expression in rice. G3-GENES GENOMES GENETICS 2021; 11:6146525. [PMID: 33617633 PMCID: PMC8049413 DOI: 10.1093/g3journal/jkab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022]
Abstract
Plant long non-coding RNAs (lncRNAs) function in diverse biological processes, and lncRNA expression is under epigenetic regulation, including by cytosine DNA methylation. However, it remains unclear whether 5-methylcytosine (5mC) plays a similar role in different sequence contexts (CG, CHG, and CHH). In this study, we characterized and compared the profiles of genome-wide lncRNA profiles (including long intergenic non-coding RNAs [lincRNAs] and long noncoding natural antisense transcripts [lncNATs]) of a null mutant of the rice DNA methyltransferase 1, OsMET1-2 (designated OsMET1-2-/-) and its isogenic wild type (OsMET1-2+/+). The En/Spm transposable element (TE) family, which was heavily methylated in OsMET1-2+/+, was transcriptionally de-repressed in OsMET1-2-/- due to genome-wide erasure of CG methylation, and this led to abundant production of specific lncRNAs. In addition, RdDM-mediated CHH hypermethylation was increased in the 5'-upstream genomic regions of lncRNAs in OsMET1-2-/-. The positive correlation between the expression of lincRNAs and that of their proximal protein-coding genes was also analyzed. Our study shows that CG methylation negatively regulates the TE-related expression of lncRNA and demonstrates that CHH methylation is also involved in the regulation of lncRNA expression.
Collapse
Affiliation(s)
- Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ling Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yu Li
- Engineering Research Center of the Ministry of Education (MOE) for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
69
|
Babilonia K, Wang P, Liu Z, Jamieson P, Mormile B, Rodrigues O, Zhang L, Lin W, Danmaigona Clement C, Menezes de Moura S, Alves-Ferreira M, Finlayson SA, Loring Nichols R, Wheeler TA, Dever JK, Shan L, He P. A nonproteinaceous Fusarium cell wall extract triggers receptor-like protein-dependent immune responses in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2021; 230:275-289. [PMID: 33314087 DOI: 10.1111/nph.17146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Fusarium wilt caused by the ascomycete fungus Fusarium oxysporum is a devastating disease of many economically important crops. The mechanisms underlying plant responses to F. oxysporum infections remain largely unknown. We demonstrate here that a water-soluble, heat-resistant and nonproteinaceous F. oxysporum cell wall extract (FoCWE) component from multiple F. oxysporum isolates functions as a race-nonspecific elicitor, also termed pathogen-associated molecular pattern (PAMP). FoCWE triggers several demonstrated immune responses, including mitogen-activated protein (MAP) kinase phosphorylation, reactive oxygen species (ROS) burst, ethylene production, and stomatal closure, in cotton and Arabidopsis. Pretreated FoCWE protects cotton seeds against infections by virulent F. oxysporum f. sp. vasinfectum (Fov), and Arabidopsis plants against the virulent bacterium, Pseudomonas syringae, suggesting the potential application of FoCWEs in crop protection. Host-mediated responses to FoCWE do not appear to require LYKs/CERK1, BAK1 or SOBIR1, which are commonly involved in PAMP perception and/or signalling. However, FoCWE responses and Fusarium resistance in cotton partially require two receptor-like proteins, GhRLP20 and GhRLP31. Transcriptome analysis suggests that FoCWE preferentially activates cell wall-mediated defence, and Fov has evolved virulence mechanisms to suppress FoCWE-induced defence. These findings suggest that FoCWE is a classical PAMP that is potentially recognised by a novel pattern-recognition receptor to regulate cotton resistance to Fusarium infections.
Collapse
Affiliation(s)
- Kevin Babilonia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ping Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Zunyong Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Pierce Jamieson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Brendan Mormile
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Olivier Rodrigues
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wenwei Lin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Stéfanie Menezes de Moura
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, R.J. 21941, Brazil
| | - Marcio Alves-Ferreira
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, R.J. 21941, Brazil
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert Loring Nichols
- Agricultural and Environmental Sciences, Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Terry A Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, 1102 East Drew St., Lubbock, TX, 79403, USA
| | - Jane K Dever
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, 1102 East Drew St., Lubbock, TX, 79403, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
70
|
Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, Klosterman SJ, Javornik B, Zhang X, Zhu L. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. PLANT CELL REPORTS 2021; 40:735-751. [PMID: 33638657 DOI: 10.1007/s00299-021-02672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
GhMYB4 acts as a negative regulator in lignin biosynthesis, which results in alteration of cell wall integrity and activation of cotton defense response. Verticillium wilt of cotton (Gossypium hirsutum) caused by the soil-borne fungus Verticillium dahliae (V. dahliae) represents one of the most important constraints of cotton production worldwide. Mining of the genes involved in disease resistance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Defense-induced lignification in plants is necessary for innate immunity, and there are reports of a correlation between increased lignification and disease resistance. In this study, we present an example in cotton whereby plants with reduced lignin content also exhibit enhanced disease resistance. We identified a negative regulator of lignin synthesis, in cotton encoded in GhMYB4. Overexpression of GhMYB4 in cotton and Arabidopsis enhanced resistance to V. dahliae with reduced lignin deposition. Moreover, GhMYB4 could bind the promoters of several genes involved in lignin synthesis, such as GhC4H-1, GhC4H-2, Gh4CL-4, and GhCAD-3, and impair their expression. The reduction of lignin content in GhMYB4-overexpressing cotton led to alterations of cell wall integrity (CWI) and released more oligogalacturonides (OGs) which may act as damage-associated molecular patterns (DAMPs) to stimulate plant defense responses. In support of this hypothesis, exogenous application with polygalacturonic acid (PGA) in cotton activated biosynthesis of jasmonic acid (JA) and JA-mediated defense against V. dahliae, similar to that described for cotton plants overexpressing GhMYB4. This study provides a new candidate gene for cotton disease-resistant breeding and an increased understanding of the relationship between lignin synthesis, OG release, and plant immunity.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qin Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430000, Hubei, China
| | - Jili Shen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaoguang Yang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA, 93905, USA
| | - Branka Javornik
- Centre for Plant Biotechnology and Breeding, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
71
|
Zhang B, Su T, Li P, Xin X, Cao Y, Wang W, Zhao X, Zhang D, Yu Y, Li D, Yu S, Zhang F. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. HORTICULTURE RESEARCH 2021; 8:44. [PMID: 33642586 PMCID: PMC7917106 DOI: 10.1038/s41438-021-00479-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 05/07/2023]
Abstract
Brassica downy mildew, a severe disease caused by Hyaloperonospora brassicae, can cause enormous economic losses in Chinese cabbage (Brassica rapa L. ssp. pekinensis) production. Although some research has been reported recently concerning the underlying resistance to this disease, no studies have identified or characterized long noncoding RNAs involved in this defense response. In this study, using high-throughput RNA sequencing, we analyzed the disease-responding mRNAs and long noncoding RNAs in two resistant lines (T12-19 and 12-85) and one susceptible line (91-112). Clustering and Gene Ontology analysis of differentially expressed genes (DEGs) showed that more DEGs were involved in the defense response in the two resistant lines than in the susceptible line. Different expression patterns and proposed functions of differentially expressed long noncoding RNAs among T12-19, 12-85, and 91-112 indicated that each has a distinct disease response mechanism. There were significantly more cis- and trans-functional long noncoding RNAs in the resistant lines than in the susceptible line, and the genes regulated by these RNAs mostly participated in the disease defense response. Furthermore, we identified a candidate resistance-related long noncoding RNA, MSTRG.19915, which is a long noncoding natural antisense transcript of a MAPK gene, BrMAPK15. Via an agroinfiltration-mediated transient overexpression system and virus-induced gene silencing technology, BrMAPK15 was indicated to have a greater ability to defend against pathogens. MSTRG.19915-silenced seedlings showed enhanced resistance to downy mildew, probably because of the upregulated expression of BrMAPK15. This research identified and characterized long noncoding RNAs involved in resistance to downy mildew, laying a foundation for future in-depth studies of disease resistance mechanisms in Chinese cabbage.
Collapse
Affiliation(s)
- Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Yunyun Cao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China.
| |
Collapse
|
72
|
Zheng X, Chen Y, Zhou Y, Shi K, Hu X, Li D, Ye H, Zhou Y, Wang K. Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton. PLANT PHYSIOLOGY 2021; 185:179-195. [PMID: 33631798 PMCID: PMC8133545 DOI: 10.1093/plphys/kiaa003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial factors during plant development and environmental responses. To build an accurate atlas of lncRNAs in the diploid cotton Gossypium arboreum, we combined Isoform-sequencing, strand-specific RNA-seq (ssRNA-seq), and cap analysis gene expression (CAGE-seq) with PolyA-seq and compiled a pipeline named plant full-length lncRNA to integrate multi-strategy RNA-seq data. In total, 9,240 lncRNAs from 21 tissue samples were identified. 4,405 and 4,805 lncRNA transcripts were supported by CAGE-seq and PolyA-seq, respectively, among which 6.7% and 7.2% had multiple transcription start sites (TSSs) and transcription termination sites (TTSs). We revealed that alternative usage of TSS and TTS of lncRNAs occurs pervasively during plant growth. Besides, we uncovered that many lncRNAs act in cis to regulate adjacent protein-coding genes (PCGs). It was especially interesting to observe 64 cases wherein the lncRNAs were involved in the TSS alternative usage of PCGs. We identified lncRNAs that are coexpressed with ovule- and fiber development-associated PCGs, or linked to GWAS single-nucleotide polymorphisms. We mapped the genome-wide binding sites of two lncRNAs with chromatin isolation by RNA purification sequencing. We also validated the transcriptional regulatory role of lnc-Ga13g0352 via virus-induced gene suppression assay, indicating that this lncRNA might act as a dual-functional regulator that either activates or inhibits the transcription of target genes.
Collapse
Affiliation(s)
- Xiaomin Zheng
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yanjun Chen
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yifan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Keke Shi
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Xiao Hu
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Danyang Li
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Hanzhe Ye
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Author for communication:
| |
Collapse
|
73
|
Tang J, Chen X, Yan Y, Huang J, Luo C, Tom H, Zheng L. Comprehensive transcriptome profiling reveals abundant long non-coding RNAs associated with development of the rice false smut fungus, Ustilaginoidea virens. Environ Microbiol 2021; 23:4998-5013. [PMID: 33587785 DOI: 10.1111/1462-2920.15432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in biological processes but regulation and function of lncRNAs remain largely unelucidated, especially in fungi. Ustilaginoidea virens is an economically important fungus causing a devastating disease of rice. By combining microscopic and RNA-seq analyses, we comprehensively characterized lncRNAs of this fungus in infection and developmental processes and defined four serial typical stages. RNA-seq analyses revealed 1724 lncRNAs in U. virens, including 1084 long intergenic non-coding RNAs (lincRNAs), 51 intronic RNAs (incRNAs), 566 natural antisense transcripts (lncNATs) and 23 sense transcripts. Gene Ontology enrichment of differentially expressed lincRNAs and lncNATs demonstrated that these were mainly involved in transport-related regulation. Functional studies of transport-related lncRNAs revealed that UvlncNAT-MFS, a cytoplasm localized lncNAT of a putative MFS transporter gene, UvMFS, could form an RNA duplex with UvMFS and was required for regulation of growth, conidiation and various stress responses. Our results were the first to elucidate the lncRNA profiles during infection and development of this important phytopathogen U. virens. The functional discovery of the novel lncRNA, UvlncNAT-MFS, revealed the potential of lncRNAs in regulation of life processes in fungi.
Collapse
Affiliation(s)
- Jintian Tang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoyang Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hsiang Tom
- School of Environmental Sciences, University of Guelph, Guelph, N1G 2W1, Canada
| | - Lu Zheng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
74
|
Cao W, Gan L, Wang C, Zhao X, Zhang M, Du J, Zhou S, Zhu C. Genome-Wide Identification and Characterization of Potato Long Non-coding RNAs Associated With Phytophthora infestans Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:619062. [PMID: 33643350 PMCID: PMC7902931 DOI: 10.3389/fpls.2021.619062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/06/2021] [Indexed: 05/26/2023]
Abstract
Long non-coding RNA (lncRNA) is a crucial regulatory mechanism in the plant response to biotic and abiotic stress. However, their roles in potato (Solanum tuberosum L.) resistance to Phytophthora infestans (P. infestans) largely remain unknown. In this study, we identify 2857 lncRNAs and 33,150 mRNAs of the potato from large-scale published RNA sequencing data. Characteristic analysis indicates a similar distribution pattern of lncRNAs and mRNAs on the potato chromosomes, and the mRNAs were longer and had more exons than lncRNAs. Identification of alternative splicing (AS) shows that there were a total of 2491 lncRNAs generated from AS and the highest frequency (46.49%) of alternative acceptors (AA). We performed R package TCseq to cluster 133 specific differentially expressed lncRNAs from resistance lines and found that the lncRNAs of cluster 2 were upregulated. The lncRNA targets were subject to KEGG pathway enrichment analysis, and the interactive network between lncRNAs and mRNAs was constructed by using GENIE3, a random forest machine learning algorithm. Transient overexpression of StLNC0004 in Nicotiana benthamiana significantly suppresses P. infestans growth compared with a control, and the expression of extensin (NbEXT), the ortholog of the StLNC0004 target gene, was significantly upregulated in the overexpression line. Together, these results suggest that lncRNAs play potential functional roles in the potato response to P. infestans infection.
Collapse
|
75
|
Wang G, Wang X, Zhang Y, Yang J, Li Z, Wu L, Wu J, Wu N, Liu L, Liu Z, Zhang M, Wu L, Zhang G, Ma Z. Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC PLANT BIOLOGY 2021; 21:68. [PMID: 33526028 PMCID: PMC7852192 DOI: 10.1186/s12870-021-02835-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. RESULTS Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. CONCLUSION This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.
Collapse
Affiliation(s)
- Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
76
|
Liu X, Li X, Wen X, Zhang Y, Ding Y, Zhang Y, Gao B, Zhang D. PacBio full-length transcriptome of wild apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genomics 2021; 22:52. [PMID: 33446096 PMCID: PMC7809858 DOI: 10.1186/s12864-021-07366-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/01/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. RESULTS Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. CONCLUSIONS The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.
Collapse
Affiliation(s)
- Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China.
| |
Collapse
|
77
|
Feng S, Fang H, Liu X, Dong Y, Wang Q, Yang KQ. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). BMC Genomics 2021; 22:15. [PMID: 33407106 PMCID: PMC7789297 DOI: 10.1186/s12864-020-07310-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance, the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood. RESULTS The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14,525 DELs were identified, including 10,645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data. CONCLUSIONS The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.
Collapse
Affiliation(s)
- Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China
| | - Xia Liu
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qingpeng Wang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
78
|
Billah M, Li F, Yang Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases ( Verticillium and Fusarium): Progress and Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:759245. [PMID: 34912357 PMCID: PMC8666531 DOI: 10.3389/fpls.2021.759245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
In environmental conditions, crop plants are extremely affected by multiple abiotic stresses including salinity, drought, heat, and cold, as well as several biotic stresses such as pests and pathogens. However, salinity, drought, and wilt diseases (e.g., Fusarium and Verticillium) are considered the most destructive environmental stresses to cotton plants. These cause severe growth interruption and yield loss of cotton. Since cotton crops are central contributors to total worldwide fiber production, and also important for oilseed crops, it is essential to improve stress tolerant cultivars to secure future sustainable crop production under adverse environments. Plants have evolved complex mechanisms to respond and acclimate to adverse stress conditions at both physiological and molecular levels. Recent progresses in molecular genetics have delivered new insights into the regulatory network system of plant genes, which generally includes defense of cell membranes and proteins, signaling cascades and transcriptional control, and ion uptake and transport and their relevant biochemical pathways and signal factors. In this review, we mainly summarize recent progress concerning several resistance-related genes of cotton plants in response to abiotic (salt and drought) and biotic (Fusarium and Verticillium wilt) stresses and classify them according to their molecular functions to better understand the genetic network. Moreover, this review proposes that studies of stress related genes will advance the security of cotton yield and production under a changing climate and that these genes should be incorporated in the development of cotton tolerant to salt, drought, and fungal wilt diseases (Verticillium and Fusarium).
Collapse
Affiliation(s)
- Masum Billah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li,
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Zhaoen Yang,
| |
Collapse
|
79
|
Wang P, Zhou L, Jamieson P, Zhang L, Zhao Z, Babilonia K, Shao W, Wu L, Mustafa R, Amin I, Diomaiuti A, Pontiggia D, Ferrari S, Hou Y, He P, Shan L. The Cotton Wall-Associated Kinase GhWAK7A Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory Receptors. THE PLANT CELL 2020; 32:3978-4001. [PMID: 33037150 PMCID: PMC7721343 DOI: 10.1105/tpc.19.00950] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/13/2020] [Accepted: 09/30/2020] [Indexed: 05/06/2023]
Abstract
Plant receptor-like kinases (RLKs) are important players in response to pathogen infections. Verticillium and Fusarium wilts, caused by Verticillium dahliae (Vd) and Fusarium oxysporum f. sp vasinfectum (Fov), respectively, are among the most devastating diseases in cotton (Gossypium spp). To understand the cotton response to these soil-borne fungal pathogens, we performed a genome-wide in silico characterization and functional screen of diverse RLKs for their involvement in cotton wilt diseases. We identified Gossypium hirsutum GhWAK7A, a wall-associated kinase, that positively regulates cotton response to both Vd and Fov infections. Chitin, the major constituent of the fungal cell wall, is perceived by lysin-motif-containing RLKs (LYKs/CERK1), leading to the activation of plant defense against fungal pathogens. A conserved chitin sensing and signaling system is present in cotton, including chitin-induced GhLYK5-GhCERK1 dimerization and phosphorylation, and contributes to cotton defense against Vd and Fov Importantly, GhWAK7A directly interacts with both GhLYK5 and GhCERK1 and promotes chitin-induced GhLYK5-GhCERK1 dimerization. GhWAK7A phosphorylates GhLYK5, which itself does not have kinase activity, but requires phosphorylation for its function. Consequently, GhWAK7A plays a crucial role in chitin-induced responses. Thus, our data reveal GhWAK7A as an important component in cotton response to fungal wilt pathogens by complexing with the chitin receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lin Zhou
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Pierce Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Lin Zhang
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Zhixue Zhao
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Kevin Babilonia
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Wenyong Shao
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lizhu Wu
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Roma Mustafa
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, 44000 Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, 44000 Pakistan
| | - Alessandra Diomaiuti
- Università di Roma Sapienza, Dipartimento di Biologia e Biotecnologie "Charles Darwin," 00185 Roma, Italy
| | - Daniela Pontiggia
- Università di Roma Sapienza, Dipartimento di Biologia e Biotecnologie "Charles Darwin," 00185 Roma, Italy
| | - Simone Ferrari
- Università di Roma Sapienza, Dipartimento di Biologia e Biotecnologie "Charles Darwin," 00185 Roma, Italy
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
80
|
Feng H, Li C, Zhou J, Yuan Y, Feng Z, Shi Y, Zhao L, Zhang Y, Wei F, Zhu H. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae. Int J Biol Macromol 2020; 167:633-643. [PMID: 33275973 DOI: 10.1016/j.ijbiomac.2020.11.191] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that plant cell wall-associated receptor-like kinases (WAKs) involve in defense against pathogen attack, but their related signaling processes and regulatory mechanism remain largely unknown. We identified a WAK-like kinase (GhWAKL) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhWAKL in cotton plants was induced by Verticillium dahliae infection and responded to the application of salicylic acid (SA). Knockdown of GhWAKL expression results in the reduction of SA content and suppresses the SA-mediated defense response, enhancing cotton plants susceptibility to V. dahliae. And, ecotopic overexpression of GhWAKL in Arabidopsis thaliana conferred plant resistance to the pathogen. Further analysis demonstrated that GhWAKL interacted with a cotton DnaJ protein (GhDNAJ1) on the cell membrane. Silencing GhDNAJ1 also enhanced cotton susceptibility to V. dahliae. Moreover, the mutation of GhWAKL at site Ser628 with the phosphorylation decreased the interaction with GhDNAJ1 and compromised the plant resistance to V. dahliae. We propose that GhWAKL is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cheng Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yuan Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongqiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
81
|
Wang LL, Jin JJ, Li LH, Qu SH. Long Non-coding RNAs Responsive to Blast Fungus Infection in Rice. RICE (NEW YORK, N.Y.) 2020; 13:77. [PMID: 33180206 PMCID: PMC7661613 DOI: 10.1186/s12284-020-00437-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have emerged as important regulators in many physiological processes in plant. By high-throughput RNA-sequencing, many pathogen-associated LncRNAs were mapped in various plants, and some of them were proved to be involved in plant defense responses. The rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases in rice. However, M. oryzae-induced LncRNAs in rice is yet to be studied. FINDINGS We investigated rice LncRNAs that were associated with the rice blast fungus. Totally 83 LncRNAs were up-regulated after blast fungus infection and 78 were down-regulated. Of them, the natural antisense transcripts (NATs) were the most abundant. The expression of some LncRNAs has similar pattern with their host genes or neighboring genes, suggesting a cis function of them in regulating gene transcription level. The deferentially expressed (DE) LncRNAs and genes co-expression analysis revealed some LncRNAs were associated with genes known to be involved in pathogen resistance, and these genes were enriched in terpenoid biosynthesis and defense response by Gene Ontology (GO) enrichment analysis. Interestingly, one of up-regulated DE-intronic RNA was derived from a jasmonate (JA) biosynthetic gene, lipoxygenase RLL (LOX-RLL). Levels of JAs were significantly increased after blast fungus infection. Given that JA is known to regulate blast resistance in rice, we suggested that LncRNA may be involved in JA-mediated rice resistance to blast fungus. CONCLUSIONS This study identified blast fungus-responsive LncRNAs in rice, which provides another layer of candidates that regulate rice and blast fungus interactions.
Collapse
Affiliation(s)
- Lan-Lan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jing-Jing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Li-Hua Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- School of Plant Protection, Hunan Agriculture University, Changsha, 410128, China
| | - Shao-Hong Qu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
82
|
Summanwar A, Basu U, Kav NNV, Rahman H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2020; 64:547-566. [PMID: 33170735 DOI: 10.1139/gen-2020-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clubroot resistance in spring canola has been introgressed from different Brassica sources; however, molecular mechanism underlying this resistance, especially the involvement of long non-coding RNAs (lncRNAs), is yet to be understood. We identified 464 differentially expressed (DE) lncRNAs from the roots of clubroot-resistant canola, carrying resistance on chromosome BnaA03, and susceptible canola lines challenged with Plasmodiophora brassicae pathotype 3. Pathway enrichment analysis showed that most of the target genes regulated by these DE lncRNAs belonged to plant-pathogen interaction and hormone signaling, as well as primary and secondary metabolic pathways. Comparative analysis of these lncRNAs with 530 previously reported DE lncRNAs, identified using resistance located on BnaA08, detected 12 lncRNAs that showed a similar trend of upregulation in both types of resistant lines; these lncRNAs probably play a fundamental role in clubroot resistance. We identified SSR markers within 196 DE lncRNAs. Genotyping of two DH populations carrying resistance on BnaA03 identified a marker capable of detecting the resistance in 98% of the DH lines. To our knowledge, this is the first report of the identification of SSRs within lncRNAs responsive to P. brassicae infection, demonstrating the potential use of lncRNAs in the breeding of Brassica crops.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
83
|
Genome-Wide Identification and Characterization of Fusarium graminearum-Responsive lncRNAs in Triticum aestivum. Genes (Basel) 2020; 11:genes11101135. [PMID: 32992604 PMCID: PMC7601646 DOI: 10.3390/genes11101135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/24/2023] Open
Abstract
Although the war between wheat and Fusarium has been widely investigated for years, long noncoding RNAs (lncRNAs), which have been proven to regulate important processes in the development and stress responses of plants, are still poorly known in wheat against Fusarium. Herein, we systematically reveal the roles of wheat lncRNAs in the process of Fusarium graminearum infection by high-throughput RNA sequencing. Well over 4130 of the total 4276 differentially expressed lncRNAs were already specifically expressed at 12 h postinoculation (hpi), but only 89 of these were specifically expressed at 24 hpi, indicating that the initial stage was the crucial stage for lncRNA-mediated gene regulation of wheat defense against F. graminearum. Target analysis showed the lncRNAs participated in various biological stress processes and had exclusive regulation models at different infection stages. Further H2O2 accumulation and protein ubiquitination assays supported this idea. Moreover, two lncRNAs (XLOC_302848 and XLOC_321638) were identified as Fusarium seedling blight resistance candidates by lncRNA-target expression pattern validation, and two lncRNAs (XLOC_113815, XLOC_123624) were Fusarium head blight resistance potential regulators by cross-validating the RNAseq data with the refined meta-QTL of wheat FHB resistance. These findings extend our knowledge on wheat lncRNAs response to F. graminearum attack and provide new insights for the functional and molecular research of future interactions between wheat and Fusarium.
Collapse
|
84
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
85
|
Wang Y, Liang C, Wu S, Jian G, Zhang X, Zhang H, Tang J, Li J, Jiao G, Li F, Chu C. Vascular-specific expression of Gastrodia antifungal protein gene significantly enhanced cotton Verticillium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1498-1500. [PMID: 31808275 PMCID: PMC7292534 DOI: 10.1111/pbi.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Chengzhen Liang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Shenjie Wu
- Research Center of BiotechnologyShanxi Academy of Agricultural SciencesTaiyuanShanxi provinceChina
| | - Guiliang Jian
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyan Zhang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan provinceChina
| | - Huanyang Zhang
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Jiuyou Tang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jing Li
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Gaili Jiao
- Cotton Research InstituteShanxi Academy of Agricultural SciencesYunchengShanxi provinceChina
| | - Fuguang Li
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan provinceChina
| | - Chengcai Chu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
86
|
Ma X, Zhang X, Traore SM, Xin Z, Ning L, Li K, Zhao K, Li Z, He G, Yin D. Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2020; 20:192. [PMID: 32375650 PMCID: PMC7203998 DOI: 10.1186/s12870-020-02405-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/27/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have several known functions involving various biological regulatory processes in plant. However, the possible roles of lncRNAs during peanut seed development have not been fully explored. RESULTS In this study, two peanut recombinant inbred lines (RIL8) that differ in seed size were used to investigate comprehensive lncRNA profiles derived from the seed development at 15 and 35 days after flowering (DAF). We identified a total of 9388 known and 4037 novel lncRNAs, from which 1437 were differentially expressed lncRNAs. Interestingly, the expression patterns of a number of lncRNAs can be very different between two closely related inbred lines and these lncRNAs were expressed predominantly in only one RIL at 35 DAF. Some differentially expressed lncRNAs were found related to putative cis-acting target genes and predicted to be involved in transcription, transport, cell division, and plant hormone biosynthesis. The expression patterns of several representative lncRNAs and 12 protein-coding genes were validated by qPCR. Same expression pattern was observed between most lncRNAs and their target genes. 11 lncRNAs, XR_001593099.1, MSTRG.18462.1, MSTRG.34915.1, MSTRG.41848.1, MSTRG.22884.1, MSTRG.12404.1, MSTRG.26719.1, MSTRG.35761.1, MSTRG.20033.1, MSTRG.13500.1, and MSTRG.9304.1 and their cis-acting target genes may play key roles in peanut seed development. CONCLUSIONS These results provided new information on lncRNA-mediated regulatory roles in peanut seed development, contributing to the comprehensive understanding of the molecular mechanisms involved in peanut seed development.
Collapse
Affiliation(s)
- Xingli Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sy Mamadou Traore
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, 36088, AL, USA
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Longlong Ning
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ke Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kunkun Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongfeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guohao He
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, 36088, AL, USA
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
87
|
Tong S, Li M, Keyhani NO, Liu Y, Yuan M, Lin D, Jin D, Li X, Pei Y, Fan Y. Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. PLoS Pathog 2020; 16:e1008518. [PMID: 32324832 PMCID: PMC7200012 DOI: 10.1371/journal.ppat.1008518] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023] Open
Abstract
Competition is one of the fundamental driving forces of natural selection. Beauveria bassiana is a soil and plant phylloplane/root fungus capable of parasitizing insect hosts. Soil and plant environments are often enriched with other fungi against which B. bassiana competes for survival. Here, we report an antifungal peptide (BbAFP1), specifically expressed and localized to the conidial cell wall and is released into the surrounding microenvironment inhibiting growth of competing fungi. B. bassiana strains expressing BbAFP1, including overexpression strains, inhibited growth of Alternaria brassicae in co-cultured experiments, whereas targeted gene deletion of BbAFP1 significantly decreased (25%) this inhibitory effect. Recombinant BbAFP1 showed chitin and glucan binding abilities, and growth inhibition of a wide range of phytopathogenic fungi by disrupting membrane integrity and eliciting reactive oxygen species (ROS) production. A phenylalanine residue (F50) contributes to chitin binding and antifungal activity, but was not required for the latter. Expression of BbAFP1 in tomato resulted in transgenic plants with enhanced resistance to plant fungal pathogens. These results highlight the importance of fungal competition in shaping primitive competition strategies, with antimicrobial compounds that can be embedded in the spore cell wall to be released into the environment during the critical initial phases of germination for successful growth in its environmental niche. Furthermore, these peptides can be exploited to increase plant resistance to fungal pathogens. Microbial competition exerts powerful selective pressures for the development of defensive and offensive methods of suppressing potential competitors. One of the most vulnerable stages for any fungi is the initial germination of resting spores in potentially hostile environments. Currently, we know little about how fungi defend other microbial competitors during the beginning stage of conidial germination. Here, we report on an antifungal peptide from B. bassiana (BbAFP1) that is specifically expressed in mature aerial conidia, with the protein localized exclusively to the conidial cell wall. The “pre-loaded” BbAFP1 is released into the surrounding microenvironment where it can act to inhibit the growth of competing fungi during the initial stages of fungal germination, i.e. largely before actual germ tubes are apparent, thus conferring an advantage to B. bassiana in out-competing susceptible competitors in the microenvironment surrounding the spore. The effects of BbAFP1 on membrane integrity were characterized and a key amino acid (F50) was shown to function in chitin binding and antifungal activity. Transgenic tomato overexpressing BbAFP1 were shown to exhibit enhanced resistance to plant fungal pathogens. Our study provides new insights into the microbial competition and genes involved in this process that can be exploited to increase plant disease resistance.
Collapse
Affiliation(s)
- Sheng Tong
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Maolian Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Yu Liu
- College of Biotechnology, Southwest University, Chongqing, P. R. China
| | - Min Yuan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dongmei Lin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P.R. China
- * E-mail:
| |
Collapse
|
88
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
89
|
Hou X, Cui J, Liu W, Jiang N, Zhou X, Qi H, Meng J, Luan Y. LncRNA39026 Enhances Tomato Resistance to Phytophthora infestans by Decoying miR168a and Inducing PR Gene Expression. PHYTOPATHOLOGY 2020; 110:873-880. [PMID: 31876247 DOI: 10.1094/phyto-12-19-0445-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our previous study has indicated that a long noncoding RNA (lncRNA), lncRNA39026, can be responsive to Phytophthora infestans infection. However, the function and regulation mechanism of lncRNA39026 during tomato resistance to P. infestans are unknown. In this study, an lncRNA39026 sequence was cloned from tomato Zaofen No. 2, and this sequence contained an endogenous target mimicry for miR168a, which might suppress the expression of miR168a. LncRNA39026 was strongly downregulated at 3 h in the tomato plants infected with P. infestans, and its expression level displayed a negative correlation with the expression level of miR168a and a positive correlation with the expression levels of SlAGO1 genes (target gene of miR168a) upon P. infestans infection. Tomato plants in which lncRNA39026 was overexpressed displayed enhanced resistance to P. infestans, decreased level of miR168a, and increased level of SlAGO1, whereas the resistance was impaired, level of miR168a was increased, and level of SlAGO1 was decreased after lncRNA39026 silencing. In addition, lncRNA39026 could also induce the expression of pathogenesis-related (PR) genes, as shown by increased and decreased expression levels of PR genes in tomato plants with overexpressed and silenced lncRNA39026, respectively. The result demonstrated that lncRNA39026 might function to decoy miR168a and affect the expression of PR genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
90
|
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress. Genes (Basel) 2020; 11:E366. [PMID: 32231066 PMCID: PMC7230406 DOI: 10.3390/genes11040366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the regulation of complex cellular processes, including transcriptional and post-transcriptional regulation of gene expression relevant for development and stress response, among others. Compared to other important crops, there is limited knowledge of cassava lncRNAs and their roles in abiotic stress adaptation. In this study, we performed a genome-wide study of ncRNAs in cassava, integrating genomics- and transcriptomics-based approaches. In total, 56,840 putative ncRNAs were identified, and approximately half the number were verified using expression data or previously known ncRNAs. Among these were 2229 potential novel lncRNA transcripts with unmatched sequences, 250 of which were differentially expressed in cold or drought conditions, relative to controls. We showed that lncRNAs might be involved in post-transcriptional regulation of stress-induced transcription factors (TFs) such as zinc-finger, WRKY, and nuclear factor Y gene families. These findings deepened our knowledge of cassava lncRNAs and shed light on their stress-responsive roles.
Collapse
Affiliation(s)
- Rungaroon Suksamran
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology at King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| |
Collapse
|
91
|
Wu L, Liu S, Qi H, Cai H, Xu M. Research Progress on Plant Long Non-Coding RNA. PLANTS 2020; 9:plants9040408. [PMID: 32218186 PMCID: PMC7237992 DOI: 10.3390/plants9040408] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Non-coding RNAs (ncRNAs) that were once considered “dark matter” or “transcriptional noise” in genomes are research hotspots in the field of epigenetics. The most well-known microRNAs (miRNAs) are a class of short non-coding, small molecular weight RNAs with lengths of 20–24 nucleotides that are highly conserved throughout evolution. Through complementary pairing with the bases of target sites, target gene transcripts are cleaved and degraded, or translation is inhibited, thus regulating the growth and development of organisms. Unlike miRNAs, which have been studied thoroughly, long non-coding RNAs (lncRNAs) are a group of poorly conserved RNA molecules with a sequence length of more than 200 nucleotides and no protein encoding capability; they interact with large molecules, such as DNA, RNA, and proteins, and regulate protein modification, chromatin remodeling, protein functional activity, and RNA metabolism in vivo through cis- or trans-activation at the transcriptional, post-transcriptional, and epigenetic levels. Research on plant lncRNAs is just beginning and has gradually emerged in the field of plant molecular biology. Currently, some studies have revealed that lncRNAs are extensively involved in plant growth and development and stress response processes by mediating the transmission and expression of genetic information. This paper systematically introduces lncRNA and its regulatory mechanisms, reviews the current status and progress of lncRNA research in plants, summarizes the main techniques and strategies of lncRNA research in recent years, and discusses existing problems and prospects, in order to provide ideas for further exploration and verification of the specific evolution of plant lncRNAs and their biological functions.
Collapse
Affiliation(s)
- Ling Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (L.W.); (S.L.); (H.C.)
- Correspondence: ; Tel.: +86-15094307586
| |
Collapse
|
92
|
Long L, Xu FC, Zhao JR, Li B, Xu L, Gao W. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110374. [PMID: 32005380 DOI: 10.1016/j.plantsci.2019.110374] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 05/16/2023]
Abstract
The soil-born vascular disease Verticillium wilt, which is caused by fungal pathogen Verticillium dahliae, is a devastating disease of cotton worldwide. In the last decade, a large number of genes have been found to participate in cotton-V. dahliae interactions, but the detailed mechanisms of cotton resistance to V. dahliae remain unclear. Here, we functionally characterized MPK3, a MAPK gene from cotton. MPK3 was induced in the roots of both resistant and susceptible cotton cultivars by V. dahliae inoculation. Transgenic cotton and tobacco with constitutively higher GbMPK3 expression conferred higher V. dahliae susceptibility, while MPK3 knockdown in cotton has limited effect on cotton resistance to V. dahliae. Expression profiling revealed that SA-mediated defense pathway genes (WRKY70, PR1, and PR5) accumulated after V. dahliae inoculation in roots of both wild-type and transgenic cotton, and the expression levels of these genes were higher in GbMPK3-overexpressing plants than in wild-type plants, indicating that GbMPK3 upregulation may reduce plant resistance to V. dahliae through regulating salicylic acid signaling transduction.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, PR China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Bing Li
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Li Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, PR China.
| |
Collapse
|
93
|
Yu Y, Zhou Y, Feng Y, He H, Lian J, Yang Y, Lei M, Zhang Y, Chen Y. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:679-690. [PMID: 31419052 PMCID: PMC7004900 DOI: 10.1111/pbi.13234] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 05/16/2023]
Abstract
Plant defence is multilayered and is essential for surviving in a changing environment. The discovery of long noncoding RNAs (lncRNAs) has dramatically extended our understanding of post-transcriptional gene regulation in diverse biological processes. However, the expression profile and function of lncRNAs in disease resistance are still largely unknown, especially in monocots. Here, we performed strand-specific RNA sequencing of rice leaves infected by Xanthomonas oryzae pv. Oryzae (Xoo) in different time courses and systematically identified 567 disease-responsive rice lncRNAs. Target analyses of these lncRNAs showed that jasmonate (JA) pathway was significantly enriched. To reveal the interaction between lncRNAs and JA-related genes, we studied the coexpression of them and found 39 JA-related protein-coding genes to be interplayed with 73 lncRNAs, highlighting the potential modulation of lncRNAs in JA pathway. We subsequently identified an lncRNA, ALEX1, whose expression is highly induced by Xoo infection. A T-DNA insertion line constructed using enhancer trap system showed a higher expression of ALEX1 and exerted a significant resistance to rice bacterial blight. Functional study revealed that JA signalling is activated and the endogenous content of JA and JA-Ile is increased. Overexpressing ALEX1 in rice further confirmed the activation of JA pathway and resistance to bacterial blight. Our findings reveal the expression of pathogen-responsive lncRNAs in rice and provide novel insights into the connection between lncRNAs and JA pathway in the regulation of plant disease resistance.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yan‐Fei Zhou
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yan‐Zhao Feng
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Huang He
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Jian‐Ping Lian
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yu‐Wei Yang
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Meng‐Qi Lei
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yu‐Chan Zhang
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yue‐Qin Chen
- Guangdong Provincial Key Laboratory of Plant ResourcesState Key Laboratory for BiocontrolSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
94
|
Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C, Geng S, Li B, Dong Q, Hou Y, Wang H, Ai P, Liu Z, Yi F, Sun M, An G, Cheng J, Zhang Y, Shi Q, Xie Y, Shi X, Chang Y, Huang F, Chen Y, Hong S, Mi L, Sun Q, Zhang L, Zhou B, Peng R, Zhang X, Liu F. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:814-828. [PMID: 31479566 PMCID: PMC7004908 DOI: 10.1111/pbi.13249] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.
Collapse
Affiliation(s)
- Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xiaoyan Cai
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Qinglian Wang
- School of Life Science and TechnologyHenan Institute of Science and TechnologyCollaborative Innovation Center of Modern Biological Breeding of Henan ProvinceHenan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and WheatXinxiangChina
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yu Zhang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yanchao Xu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Kunbo Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhongli Zhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Shuaipeng Geng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Bo Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qi Dong
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yuqing Hou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Heng Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Peng Ai
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Zhen Liu
- Anyang Institute of TechnologyAnyangChina
| | - Feifei Yi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Minshan Sun
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Guoyong An
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanyuan Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qian Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanhui Xie
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xinying Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Feifei Huang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Yun Chen
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Shimiao Hong
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Lingyu Mi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Quan Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | | | | | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Fang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
95
|
Song R, Li J, Xie C, Jian W, Yang X. An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae. Int J Mol Sci 2020; 21:ijms21031120. [PMID: 32046212 PMCID: PMC7037454 DOI: 10.3390/ijms21031120] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungus that can lead to plant vascular disease and significant economic loss worldwide. Its hosts include over 400 dicotyledon plant species, such as annual herbs, perennials, and woody plants. The average yield loss of cotton crop caused by Verticillium wilt is approximately 10–35%. As the control of this disease is an urgent task for many countries, further understanding of the interaction between plants and V. dahliae is essential. Fungi can promote or inhibit plant growth, which is important; however, the most important relationship between plants and fungi is the host–pathogen relationship. Plants can become resistant to V. dahliae through diverse mechanisms such as cell wall modifications, extracellular enzymes, pattern recognition receptors, transcription factors, and salicylic acid (SA)/jasmonic acid (JA)/ethylene (ET)-related signal transduction pathways. Over the last decade, several studies on the physiological and molecular mechanisms of plant resistance to V. dahliae have been undertaken. In this review, many resistance-related genes are summarised to provide a theoretical basis for better understanding of the molecular genetic mechanisms of plant resistance to V. dahliae. Moreover, it is intended to serve as a resource for research focused on the development of genetic resistance mechanisms to combat Verticillium wilt.
Collapse
Affiliation(s)
| | | | - Chenjian Xie
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| | | | - Xingyong Yang
- Correspondence: (C.X.); (X.Y.); Tel.: +86-23-6591-0315 (C.X. & X.Y.)
| |
Collapse
|
96
|
Gao C, Sun J, Dong Y, Wang C, Xiao S, Mo L, Jiao Z. Comparative transcriptome analysis uncovers regulatory roles of long non-coding RNAs involved in resistance to powdery mildew in melon. BMC Genomics 2020; 21:125. [PMID: 32024461 PMCID: PMC7003419 DOI: 10.1186/s12864-020-6546-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with more than 200 nucleotides in length, which play vital roles in a wide range of biological processes. Powdery mildew disease (PM) has become a major threat to the production of melon. To investigate the potential roles of lncRNAs in resisting to PM in melon, it is necessary to identify lncRNAs and uncover their molecular functions. In this study, we compared the lncRNAs between a resistant and a susceptible melon in response to PM infection. Results It is reported that 11,612 lncRNAs were discovered, which were distributed across all 12 melon chromosomes, and > 85% were from intergenic regions. The melon lncRNAs have shorter transcript lengths and fewer exon numbers than protein-coding genes. In addition, a total of 407 and 611 lncRNAs were found to be differentially expressed after PM infection in PM-susceptible and PM-resistant melons, respectively. Furthermore, 1232 putative targets of differently expressed lncRNAs (DELs) were discovered and gene ontology enrichment (GO) analysis showed that these target genes were mainly enriched in stress-related terms. Consequently, co-expression patterns between LNC_018800 and CmWRKY21, LNC_018062 and MELO3C015771 (glutathione reductase coding gene), LNC_014937 and CmMLO5 were confirmed by qRT-PCR. Moreover, we also identified 24 lncRNAs that act as microRNA (miRNA) precursors, 43 lncRNAs as potential targets of 22 miRNA families and 13 lncRNAs as endogenous target mimics (eTMs) for 11 miRNAs. Conclusion This study shows the first characterization of lncRNAs involved in PM resistance in melon and provides a starting point for further investigation into the functions and regulatory mechanisms of lncRNAs in the resistance to PM.
Collapse
Affiliation(s)
- Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Longfei Mo
- College of horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
97
|
Cui J, Jiang N, Hou X, Wu S, Zhang Q, Meng J, Luan Y. Genome-Wide Identification of lncRNAs and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:456-464. [PMID: 31448997 DOI: 10.1094/phyto-04-19-0137-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our previous studies have revealed the function of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in tomato in response to Phytophthora infestans infection. However, the interaction relationships between lncRNAs and miRNAs during tomato resistance to P. infestans infection are unknown. In this study, 9,011 lncRNAs were identified from tomato plants, including 115 upregulated and 81 downregulated lncRNAs. Among these, 148 were found to be differentially expressed and might affect the expression of 771 genes, which are composed of 887 matched lncRNA-mRNA pairs. In total, 88 lncRNAs were identified as endogenous RNAs (ceRNAs) and predicted to decoy 46 miRNAs. Degradome sequencing revealed that 11 miRNAs that were decoyed by 20 lncRNAs could target 30 genes. These lncRNAs, miRNAs, and target genes were predicted to form 10 regulatory modules. Among them, lncRNA42705/lncRNA08711, lncRNA39896, and lncRNA11265/lncRNA15816 might modulate MYB, HD-Zip, and NAC transcription factors by decoying miR159, miR166b, and miR164a-5p, respectively. Upon P. infestans infection, the expression levels of lncRNA42705 and lncRNA08711 displayed a negative correlation with the expression level of miR159 and a positive correlation with the expression levels of MYB genes. Tomato plants in which lncRNA42705 and lncRNA08711 were silenced displayed increased levels of miR159 and decreased levels of MYB, respectively. The result demonstrated that lncRNAs might function as ceRNAs to decoy miRNAs and affect their target genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Sihan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
98
|
Zhang J, Hu HL, Wang XN, Yang YH, Zhang CJ, Zhu HQ, Shi L, Tang CM, Zhao MW. Dynamic infection of Verticillium dahliae in upland cotton. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:90-105. [PMID: 31419841 DOI: 10.1111/plb.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
Verticillium wilt, an infection caused by the soilborne fungus Verticillium dahliae, is one of the most serious diseases in cotton. No effective control method against V. dahliae has been established, and the infection mechanism of V. dahliae in upland cotton remains unknown. GFP-tagged V. dahliae isolates with different pathogenic abilities were used to analyse the colonisation and infection of V. dahliae in the roots and leaves of different upland cotton cultivars, the relationships among infection processes, the immune responses and the resistance ability of different cultivars against V. dahliae. Here, we report a new infection model for V. dahliae in upland cotton plants. V. dahliae can colonise and infect any organ of upland cotton plants and then spread to the entire plant from the infected organ through the surface and interior of the organ. Vascular tissue was found to not be the sole transmission route of V. dahliae in cotton plants. In addition, the rate of infection of a V. dahliae isolate with strong pathogenicity was notably faster than that of an isolate with weak pathogenicity. The resistance of upland cotton to Verticillium wilt was related to the degree of the immune response induced in plants infected with V. dahliae. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-L Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-N Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y-H Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-J Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - H-Q Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - L Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-M Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - M-W Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
99
|
Integrative Analysis of the lncRNA and mRNA Transcriptome Revealed Genes and Pathways Potentially Involved in the Anther Abortion of Cotton ( Gossypium hirsutum L.). Genes (Basel) 2019; 10:genes10120947. [PMID: 31756984 PMCID: PMC6947465 DOI: 10.3390/genes10120947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.
Collapse
|
100
|
Zhang B, Zhang X, Zhang M, Guo L, Qi T, Wang H, Tang H, Qiao X, Shahzad K, Xing C, Wu J. Transcriptome Analysis Implicates Involvement of Long Noncoding RNAs in Cytoplasmic Male Sterility and Fertility Restoration in Cotton. Int J Mol Sci 2019; 20:ijms20225530. [PMID: 31698756 PMCID: PMC6888562 DOI: 10.3390/ijms20225530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis during commercially hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, but few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported. Here, we performed transcriptome sequencing during anther development in three-line hybrid cotton. A total of 80,695 lncRNAs were identified, in which 43,347 and 44,739 lncRNAs were differentially expressed in A–B and A–R comparisons, respectively. These lncRNAs represent functional candidates involved in CMS and fertility restoration. GO analysis indicated that cellular hormone metabolic processes and oxidation–reduction reaction processes might be involved in CMS, and cellular component morphogenesis and small molecular biosynthetic processes might participate in fertility restoration. Additionally, 63 lncRNAs were identified as putative precursors of 35 miRNAs, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed a similar expression pattern to RNA-seq data. Furthermore, construction of lncRNA regulatory networks indicated that several miRNA–lncRNA–mRNA networks might be involved in CMS and fertility restoration. Our findings provide systematic identification of lncRNAs during anther development and lays a solid foundation for the regulatory mechanisms and utilization in hybrid cotton breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chaozhu Xing
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| | - Jianyong Wu
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| |
Collapse
|