51
|
Jaiswal D, Agrawal SB. Ultraviolet-B induced changes in physiology, phenylpropanoid pathway, and essential oil composition in two Curcuma species (C. caesia Roxb. and C. longa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111739. [PMID: 33396067 DOI: 10.1016/j.ecoenv.2020.111739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 05/22/2023]
Abstract
Ultraviolet-B is an important fraction of sunlight which influences the plant performance either positively or adversely in terms of growth, physiology, biochemistry, and major active compounds. The static nature of plants constrains them to be subjected to various adverse environmental conditions. Several studies performed with plants and UV-B with fewer reports are available on medicinal plants having rhizome. The present study focuses on transformation induced in two Curcuma spp. (C. caesia and C. longa) under the influence of elevated UV-B (eUV-B) (ambient ±9.6 kJ m-2 d-1) under natural field conditions to analyse the changes in physiological, biochemical and essential oil of the test plants. eUV-B significantly reduced the photosynthetic activities such as photosynthetic rate (Ps), stomatal conductance (gs), transpiration (Tr), internal CO2 (Ci), and photochemical efficiency (Fv/Fm) with higher reductions in C. longa as compared to C. caesia. The enzymatic activities of PAL, CHI, and CAD showed higher stimulation in C. caesia whereas C. longa showed increment only in CAD. The essential oil content was increased by 16% and 9% in C. caesia and C. longa, respectively. C. caesia showed increased monoterpenes than sesquiterpenes, whereas almost equal increase of both the terpenoid found in C. longa. C. caesia showed induction of aromatic compounds (epiglobulol, germacrene, 4-terpineol), whereas anticancerous compounds; aphla-terpinolene (61%), beta-caryophyllene (60%), and beta-sesquiphellandrene (32%) were increased in C. longa. C. caesia acted well in terms of both physiology and major active compound (1, 8-cineole), but overall most of the compounds increased in C. longa under eUV-B.
Collapse
Affiliation(s)
- Deepanshi Jaiswal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
52
|
Wang X, Meng J, Deng L, Wang Y, Liu H, Yao JL, Nieuwenhuizen NJ, Wang Z, Zeng W. Diverse Functions of IAA-Leucine Resistant PpILR1 Provide a Genic Basis for Auxin-Ethylene Crosstalk During Peach Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:655758. [PMID: 34054901 PMCID: PMC8149794 DOI: 10.3389/fpls.2021.655758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 05/09/2023]
Abstract
Auxin and ethylene play critical roles in the ripening of peach (Prunus persica) fruit; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a peach ILR gene, PpILR1, which encodes an indole-3-acetic acid (IAA)-amino hydrolase. Functional analyses revealed that PpILR1 acts as a transcriptional activator of 1-amino cyclopropane-1-carboxylic acid synthase (PpACS1), and hydrolyzes auxin substrates to release free auxin. When Cys137 was changed to Ser137, PpILR1 failed to show hydrolase activity but continued to function as a transcriptional activator of PpACS1 in tobacco and peach transient expression assays. Furthermore, transgenic tomato plants overexpressing PpILR1 exhibited ethylene- and strigolactone-related phenotypes, including premature pedicel abscission, leaf and petiole epinasty, and advanced fruit ripening, which are consistent with increased expression of genes involved in ethylene biosynthesis and fruit ripening, as well as suppression of branching and growth of internodes (related to strigolactone biosynthesis). Collectively, these results provide novel insights into the role of IAA-amino acid hydrolases in plants, and position the PpILR1 protein at the junction of auxin and ethylene pathways during peach fruit ripening. These results could have substantial implications on peach fruit cultivation and storage in the future.
Collapse
Affiliation(s)
- Xiaobei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhiqiang Wang
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Wenfang Zeng
| |
Collapse
|
53
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
54
|
Xu SY, Weng J. Climate change shapes the future evolution of plant metabolism. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10022. [PMID: 36619247 PMCID: PMC9744464 DOI: 10.1002/ggn2.10022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
Planet Earth has experienced many dramatic atmospheric and climatic changes throughout its 4.5-billion-year history that have profoundly impacted the evolution of life as we know it. Photosynthetic organisms, and specifically plants, have played a paramount role in shaping the Earth's atmosphere through oxygen production and carbon sequestration. In turn, the diversity of plants has been shaped by historical atmospheric and climatic changes: plants rose to this challenge by evolving new developmental and metabolic traits. These adaptive traits help plants to thrive in diverse growth conditions, while benefiting humanity through the production of food, raw materials, and medicines. However, the current rapid rate of climate change caused by human activities presents unprecedented new challenges to the future of plants. Here, we discuss the potential effects of modern climate change on plants, with specific attention to plant specialized metabolism. We explore potential avenues of future scientific investigations, powered by cutting-edge methods such as synthetic biology and genome engineering, to better understand and mitigate the consequences of rapid climate change on plant fitness and plant usage by humans.
Collapse
Affiliation(s)
- Sophia Y. Xu
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
55
|
Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Sci Rep 2020; 10:18333. [PMID: 33110132 PMCID: PMC7591569 DOI: 10.1038/s41598-020-75322-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Peaches have a short shelf life and require chilling during storage and transport. Peach aroma is important for consumer preference and determined by underlying metabolic pathways and gene expression. Differences in aroma (profiles of volatile organic compounds, VOCs) have been widely reported across cultivars and in response to cold storage. However, few studies used intact peaches, or used equilibrium sampling methods subject to saturation. We analysed VOC profiles using TD-GC × GC-ToF-MS and expression of 12 key VOC pathway genes of intact fruit from six cultivars (three peaches, three nectarines) before and after storage at 1 °C for 7 days including 36 h shelf life storage at 20 °C. Two dimensional GC (GC × GC) significantly enhances discrimination of thermal desorption gas chromatography time-of-flight mass spectrometry (TD-GC-ToF-MS) and detected a total of 115 VOCs. A subset of 15 VOCs from analysis with Random Forest discriminated between cultivars. Another 16 VOCs correlated strongly with expression profiles of eleven key genes in the lipoxygenase pathway, and both expression profiles and VOCs discriminated amongst cultivars, peach versus nectarines and between treatments. The cultivar-specific response to cold storage underlines the need to understand more fully the genetic basis for VOC changes across cultivars.
Collapse
|
56
|
Physiologic and Metabolic Changes in Crepidiastrum denticulatum According to Different Energy Levels of UV-B Radiation. Int J Mol Sci 2020; 21:ijms21197134. [PMID: 32992615 PMCID: PMC7582291 DOI: 10.3390/ijms21197134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Ultraviolet B (UV-B) light, as a physical elicitor, can promote the secondary metabolites biosynthesis in plants. We investigated effects of different energy levels of UV-B radiation on growth and bioactive compounds of Crepidiastrum denticulatum. Three-week-old seedlings were grown in a plant factory for 5 weeks. Plants were subjected to different levels of UV-B (0, 0.1, 0.25, 0.5, 1.0, and 1.25 W m−2), 6 h a day for 6 days. All UV-B treatments had no negative effect on the shoot dry weight; however, relatively high energy treatments (1.0 and 1.25 W m−2) inhibited the shoot fresh weight. UV-B light of 0.1, 0.25, and 0.5 W m−2 did not affect total chlorophyll and H2O2 contents; however, they increased total carotenoid content. On 4 days, 0.25 W m−2 treatment increased antioxidant capacity, total hydroxycinnamic acids (HCAs) content, and several sesquiterpenes. Treatments with 1.0 and 1.25 W m−2 increased total carotenoid, total HCAs, and H2O2 contents, and destroyed chlorophyll pigments, reducing maximum quantum yield of photosystem II and causing visible damage to leaves. Partial least squares discrimination analysis (PLS-DA) showed that secondary metabolites were distinguishably changed according to energy levels of UV-B. The potential of 0.25 W m−2 UV-B for the efficient production of bioactive compounds without growth inhibition in C. denticulatum was identified.
Collapse
|
57
|
Santin M, Ranieri A, Hauser MT, Miras-Moreno B, Rocchetti G, Lucini L, Strid Å, Castagna A. The outer influences the inner: Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin. Food Chem 2020; 338:127782. [PMID: 32798826 DOI: 10.1016/j.foodchem.2020.127782] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
UV-B-driven modulation of secondary metabolism in peach fruit by enhancing the biosynthesis of specific phenolic subclasses, is attracting interest among consumers. However, current literature explored the UV-B-induced metabolic changes only in peach skin subjected to direct UV-B irradiation. Accordingly, this study aimed to understand whether UV-B radiation penetrates the fruit skin and is able to induce metabolic changes also within the inner flesh. Peaches were UV-B-irradiated either 10 or 60 min, and the flesh was sampled after 24 and 36 h. Non-targeted metabolomics revealed that UV-B has a strong impact on peach flesh metabolome, determining an initial decrease after 24 h, followed by an overall increase after 36 h, particularly for terpenoids, phenylpropanoids, phytoalexins and fatty acids in the 60 min UV-B-treated samples (+150.02, +99.14, +43.79 and +25.44 log2FC, respectively). Transmittance analysis indicated that UV-B radiation does not penetrate below the skin, suggesting a possible signalling pathway between tissues.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017 Fiorenzuola d'Arda, PC, Italy.
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - Åke Strid
- School of Science and Technology and Örebro Life Science Center, Örebro University, Örebro, Sweden.
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
58
|
Liu X, Zhao C, Gong Q, Wang Y, Cao J, Li X, Grierson D, Sun C. Characterization of a caffeoyl-CoA O-methyltransferase-like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3066-3079. [PMID: 32182355 PMCID: PMC7475179 DOI: 10.1093/jxb/eraa083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Polymethoxylated flavones (PMFs), which accumulate exclusively in fruit peel of citrus, play important physiological and pharmacological roles but the genetic basis for the methylation of flavonoids has not been fully elucidated in citrus. Here we characterize a caffeoyl-CoA O-methyltransferase-like enzyme, designated CrOMT1. The expression pattern of CrOMT1 was highly correlated with the concentration of the three major PMFs in two different citrus fruit tissues during fruit maturation. Exposure of fruit to UV-B radiation sharply increased the level of CrOMT1 transcripts and also led to the accumulation of three PMFs. The potential role of CrOMT1 was studied by testing the catalytic activity of recombinant CrOMT1 with numerous possible substrates in vitro. The enzyme could most efficiently methylate flavones with neighboring hydroxy moieties, with high catalytic efficiencies found with 6-OH- and 8-OH-containing compounds, preferences that correspond precisely with the essential methylation sites involved in the synthesis of the three naturally occurring PMFs in Citrus reticulata. This indicates that CrOMT1 is capable of in vitro methylation reactions required to synthesize PMFs in vivo. Furthermore, transient overexpression of CrOMT1 increased levels of the three major PMFs in fruit, indicating that CrOMT1 is likely to play an essential role in the biosynthesis of PMFs in citrus.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chenning Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qin Gong
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinping Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, People’s Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, People’s Republic of China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Chongde Sun
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, People’s Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
59
|
Shamala LF, Zhou HC, Han ZX, Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:234. [PMID: 32194607 PMCID: PMC7062797 DOI: 10.3389/fpls.2020.00234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants are known to respond to Ultraviolet-B radiation (UV-B: 280-320 nm) by generating phenolic metabolites which absorbs UV-B light. Phenolics are extraordinarily abundant in Camellia sinensis leaves and are considered, together with pleasant volatile terpenoids, as primary flavor determinants in tea beverages. In this study, we focused on the effects of UV-B exposure (at 35 μW cm-2 for 0, 0.5, 2, and 8 h) on tea transcriptional and metabolic alterations, specifically related to tea flavor metabolite production. Out of 34,737 unigenes, a total of 18,081 differentially expressed genes (DEGs) due to UV-B treatments were identified. Additionally, the phenylpropanoid pathway was found as one of the most significantly UV-B affected top 20 KEGG pathways while flavonoid and monoterpenoid pathway-related genes were enhanced at 0.5 h. In the UVR8-signal transduction pathway, UVR8 was suppressed at both short and long exposure of UV-B with genes downstream differentially expressed. Divergent expression of MYB4 at different treatments could have differentially altered structural and regulatory genes upstream of flavonoid biosynthesis pathways. Suppression of MYB4-1&3 at 0.5 h could have led to the up-regulation of structural CCOAOMT-1&2, HST-1&2, DFR-4, ANR-2, and LAR-1&3 genes resulting in accumulation of specialized metabolites at a shorter duration of UV-B exposure. Specialized metabolite profiling revealed the correlated alterations in the abundances of catechins and some volatile terpenoids in all the treatments with significant accumulation of specialized metabolites at 0.5 h treatment. A significant increase in specialized metabolites at 0.5 h treatment and no significant alteration observed at longer UVB treatment suggested that shorter exposure to UV-B led to different display in gene expression and accumulation of specialized metabolites in tea shoots in response to UV-B stress. Taken together, our results indicated that the UV-B treatment applied in this study differentially altered the UVR8-signal transduction, flavonoid and terpenoid pathways at transcriptional and metabolic levels in tea plants. Our results show strong potential for UV-B application in flavor improvement in tea at the industrial level.
Collapse
Affiliation(s)
- Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han-Chen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Zhuo-Xiao Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Shu Wei, ;
| |
Collapse
|
60
|
Cao X, Duan W, Wei C, Chen K, Grierson D, Zhang B. Genome-Wide Identification and Functional Analysis of Carboxylesterase and Methylesterase Gene Families in Peach ( Prunus persica L. Batsch). FRONTIERS IN PLANT SCIENCE 2019; 10:1511. [PMID: 31824538 PMCID: PMC6884059 DOI: 10.3389/fpls.2019.01511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/30/2019] [Indexed: 05/24/2023]
Abstract
Carboxylesterases (CXE) and methylesterases (MES) are hydrolytic enzymes that act on carboxylic esters and are involved in plant metabolic processes and defense responses. A few functions of plant CXE and MES genes have been identified but very little information is available about the role of most members. We made a comprehensive study of this gene family in a commercially important species, peach (Prunus persica L. Batsch). A total of 33 peach CXE genes and 18 MES genes were identified and shown to be distributed unevenly between the chromosomes. Based on phylogenetic analysis, CXEs and MESs clustered into two different branches. Comparison of the positions of intron and differences in motifs revealed the evolutionary relationships between CXE and MES genes. RNA-seq revealed differential expression patterns of CXE/MESs in peach flower, leaf, and ripening fruit and in response to methyl jasmonate (MeJA) and ultraviolet B treatment. Transcript levels of candidate genes were verified by real-time quantitative PCR. Heterologous expression in Escherichia coli identified three CXEs that were involved in the hydrolysis of volatile esters in vitro. Furthermore, two recombinant MES proteins were identified that could hydrolyze MeJA and methyl salicylate. Our results provide an important resource for the identification of functional CXE and MES genes involved in the catabolism of volatile esters, responses to biotic and abiotic stresses and activation of signaling molecules such as MeJA and methyl salicylate.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Don Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
61
|
Wu C, Shan W, Liang S, Zhu L, Guo Y, Chen J, Lu W, Li Q, Su X, Kuang J. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. PLANT MOLECULAR BIOLOGY 2019; 101:113-127. [PMID: 31300998 DOI: 10.1007/s11103-019-00895-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Transcriptional regulation is an essential molecular machinery in controlling gene expression in diverse plant developmental processes including fruit ripening. This involves the interaction of transcription factors (TFs) and promoters of target genes. In banana, although a number of fruit ripening-associated TFs have been characterized, their number is relatively small. Here we identified a nuclear-localized basic leucine zipper (bZIP) TF, MabZIP93, associated with banana ripening. MabZIP93 activated cell wall modifying genes MaPL2, MaPE1, MaXTH23 and MaXGT1 by directly binding to their promoters. Transient over-expression of MabZIP93 in banana fruit resulted in the increased expression of MaPL2, MaPE1, MaXTH23 and MaXGT1. Moreover, a mitogen-activated protein kinase MaMPK2 and MabZIP93 were found to interact with MabZIP93. The interaction of MabZIP93 with MaMPK2 enhanced MabZIP93 activation of cell wall modifying genes, which was likely due to the phosphorylation of MabZIP93 mediated by MaMPK2. Overall, this study shows that MaMPK2 interacts with and phosphorylates MabZIP93 to promote MabZIP93-mediated transcriptional activation of cell wall modifying genes, thereby expanding our understanding of gene networks associated with banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shumin Liang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lisha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yufan Guo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou, 510520, People's Republic of China.
| | - Jianfei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
62
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Cao X, Xie K, Duan W, Zhu Y, Liu M, Chen K, Klee H, Zhang B. Peach Carboxylesterase PpCXE1 Is Associated with Catabolism of Volatile Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5189-5196. [PMID: 30997798 DOI: 10.1021/acs.jafc.9b01166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peach fruit volatile acetate esters impact consumer sensory preference and contribute to defense against biotic stresses. Previous studies showed that alcohol acyltransferase (AAT) family PpAAT1 is correlated with volatile ester formation in peach fruits. However, fruits also contain carboxylesterase (CXE) enzymes that hydrolyze esters. The functions of this family with regard to volatile ester content has not been explored. Here, we observed that content of acetate ester was negatively correlated with expression of PpCXE1. Recombinant PpCXE1 protein exhibited hydrolytic activity toward acetate esters present in peach fruit. Kinetic analysis showed that PpCXE1 showed the highest catalytic activity toward E-2-hexenyl acetate. Subcellular localization demonstrated that PpCXE1 is present in the cytoplasm. Transient expression in peach fruit and stable overexpression in tomato fruit resulted in significant reduction of volatile esters in vivo. Taken together, the results indicate that PpCXE1 expression is associated with catabolism of volatile acetate esters in peach fruit.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Kaili Xie
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences , Sichuan University , Chengdu 610065 , China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences , Sichuan University , Chengdu 610065 , China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
- Horticultural Sciences, Plant Innovation Center, Genetic Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| |
Collapse
|
64
|
Wilson SR, Madronich S, Longstreth JD, Solomon KR. Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochem Photobiol Sci 2019; 18:775-803. [PMID: 30810564 DOI: 10.1039/c8pp90064g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O3) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA).
Collapse
Affiliation(s)
- S R Wilson
- Centre for Atmospheric Chemistry, School of Earth, Atmosphere and Life Sciences, University of Wollongong, NSW, Australia.
| | - S Madronich
- National Center for Atmospheric Research, Boulder, CO, USA
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA and Emergent BioSolutions, Gaithersburg, MD, USA
| | - K R Solomon
- Centre for Toxicology and School of Environmental Sciences, University of Guelph, ON, Canada
| |
Collapse
|
65
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
66
|
Wu B, Cao X, Liu H, Zhu C, Klee H, Zhang B, Chen K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:925-936. [PMID: 30481327 PMCID: PMC6363097 DOI: 10.1093/jxb/ery419] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/18/2018] [Indexed: 05/18/2023]
Abstract
The monoterpene linalool is a major contributor to aroma and flavor in peach (Prunus persica) fruit. It accumulates during fruit ripening, where up to ~40% of the compound is present in a non-volatile glycosylated form, which affects flavor quality and consumer perception by retronasal perception during tasting. Despite the importance of this sequestration to flavor, the UDP-glycosyltransferase (UGT) responsible for linalool glycosylation has not been identified in peach. UGT gene expression during peach fruit ripening and among different peach cultivars was analyzed using RNA sequencing, and transcripts correlated with linalyl-β-d-glucoside were selected as candidates for functional analysis. Kinetic resolution of a racemic mixture of R,S-linalool was shown for PpUGT85A2, with a slight preference for S-(+)-linalool. PpUGT85A2 was shown to catalyze synthesis of linalyl-β-d-glucoside in vitro, although it did not exhibit the highest enzyme activity between tested substrates. Subcellular localization of PpUGT85A2 in the cytoplasm and nucleus was detected. Application of linalool to peach leaf disks promoted PpUGT85A2 expression and linalyl-β-d-glucoside generation. Transient expression in peach fruit and stable overexpression in tobacco and Arabidopsis resulted in significant accumulation of linalyl-β-d-glucoside in vivo. Taken together, the results indicate that PpUGT85A2 expression is a major control point predicting linalyl-β-d-glucoside content.
Collapse
Affiliation(s)
- Boping Wu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Hongru Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Changqing Zhu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Horticultural Sciences, Plant Innovation Center, Genetic Institute, University of Florida, Gainesville, FL, USA
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Correspondence:
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
67
|
Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao JL, Pan L, Lu Z, Cui G, Li G, Wang Z. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. HORTICULTURE RESEARCH 2019; 6:19. [PMID: 30729009 PMCID: PMC6355789 DOI: 10.1038/s41438-018-0094-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 05/21/2023]
Abstract
The plant hormone ethylene regulates ripening in climacteric fruits. The phytohormone abscisic acid (ABA) affects ethylene biosynthesis, but whether ethylene influences ABA biosynthesis is unknown. To explore this possibility, we investigated the interactions between the ABA biosynthesis genes PpNCED2/3 and the ethylene response transcription factor PpERF3 in peach fruit. The ABA content increased during fruit maturation and reached a peak at stage S4 III. The increase was greatly inhibited by the ethylene inhibitor 1-MCP, which also suppressed PpERF3 expression. PpERF3 shared a similar expression profile with PpNCED2/3, encoding a rate-limiting enzyme involved in ABA biosynthesis, during fruit ripening. A yeast one-hybrid assay suggested that the nuclear-localized PpERF3 might bind to the promoters of PpNCED2/3. PpERF3 increased the expression of PpNCED2/3 as shown by dual-luciferase reporters, promoter-GUS assays and transient expression analyses in peach fruit. Collectively, these results suggest that ethylene promotes ABA biosynthesis through PpERF3's regulation of the expression of ABA biosynthesis genes PpNCED2/3.
Collapse
Affiliation(s)
- Xiaobei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Yifeng Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| |
Collapse
|
68
|
Zhang Q, Feng C, Li W, Qu Z, Zeng M, Xi W. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC Genomics 2019; 20:45. [PMID: 30646841 PMCID: PMC6332858 DOI: 10.1186/s12864-019-5424-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Taste and aroma, which are important organoleptic qualities of apricot (Prunus armeniaca L.) fruit, undergo rapid and substantial changes during ripening. However, the associated molecular mechanisms remain unclear. The goal of this study was to identify candidate genes for flavor compound metabolism and to construct a regulatory transcriptional network. RESULTS We characterized the transcriptome of the 'Jianali' apricot cultivar, which exhibits substantial changes in flavor during ripening, at 50 (turning), 73 (commercial maturation) and 91 (full ripe) days post anthesis (DPA) using RNA sequencing (RNA-Seq). A weighted gene co-expression network analysis (WGCNA) revealed that four of 19 modules correlated highly with flavor compound metabolism (P < 0.001). From them, we identified 1237 differentially expressed genes, with 16 intramodular hubs. A proposed pathway model for flavor compound biosynthesis is presented based on these genes. Two SUS1 genes, as well as SPS2 and INV1 were correlated with sugar biosynthesis, while NADP-ME4, two PK-like and mitochondrial energy metabolism exerted a noticeable effect on organic acid metabolism. CCD1 and FAD2 were identified as being involved in apocarotenoid aroma volatiles and lactone biosynthesis, respectively. Five sugar transporters (Sweet10, STP13, EDR6, STP5.1, STP5.2), one aluminum-activated malate transporter (ALMT9) and one ABCG transporter (ABCG11) were associated with the transport of sugars, organic acids and volatiles, respectively. Sixteen transcription factors were also highlighted that may also play regulatory roles in flavor quality development. CONCLUSIONS Apricot RNA-Seq data were obtained and used to generate an annotated set of predicted expressed genes, providing a platform for functional genomic research. Using network analysis and pathway mapping, putative molecular mechanisms for changes in apricot fruit taste and aroma during ripening were elucidated.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People’s Republic of China
| | - Wenhui Li
- Agriculture National Fruit Tree Germplasm Repository, Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang, 841600 People’s Republic of China
| | - Zehui Qu
- College of Computer and Information Sciences, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
69
|
Coffey A, Jansen MAK. Effects of natural solar UV-B radiation on three Arabidopsis accessions are strongly affected by seasonal weather conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:64-72. [PMID: 29958807 DOI: 10.1016/j.plaphy.2018.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
Large numbers of studies have reported on the responses of plants that are exposed to a specific dose of ultraviolet-B (UV-B) radiation. However, in the natural environment UV-B is a highly dynamic variable with UV-B intensities depending on, amongst others, geographic, temporal, weather and climatic factors. Furthermore, UV-B effects on plants can potentially be modulated by other environmental variables, and vice versa. This study aimed to characterize UV-B effects on plant morphology and accumulation of UV-screening pigments within the context of an oceanic climate and to assess the potential seasonality of plant UV-B responses. Arabidopsis thaliana was grown outdoors under UV-blocking or transmitting filters. Genotypic differences in the adaptive response to UV-B were assessed at seven time-points over a 12 month period and involved the Arabidopsis accessions Ler, Col-0, and Bur-0. Strong seasonal effects were found on rosette morphology and total UV-screening pigment concentrations across the three accessions. Low temperatures were the main determinant of accumulation of UV-absorbing pigments, with no clear UV-B effect observed at any time throughout the year. There was a significant UV effect on morphology during the summer months, and this was most likely associated with stress. This study shows that UV-effects need to be analysed in the context of weather, and other co-occurring natural factors, and emphasizes the importance of a holistic, multifactorial approach for the investigation of environmentally relevant UV-effects.
Collapse
Affiliation(s)
- Aoife Coffey
- School of Biological, Earth and Environmental Sciences, University College Cork, College Road, Cork, Ireland; Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, College Road, Cork, Ireland; Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland.
| |
Collapse
|
70
|
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 2019; 18:681-716. [DOI: 10.1039/c8pp90061b] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linkages between stratospheric ozone, UV radiation and climate change: terrestrial ecosystems.
Collapse
Affiliation(s)
- Janet F. Bornman
- College of Science
- Health
- Engineering and Education
- Murdoch University
- Perth
| | - Paul W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University
- USA
| | - T. Matthew Robson
- Research Programme in Organismal and Evolutionary Biology
- Viikki Plant Science Centre
- University of Helsinki
- Finland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Wollongong
| | - Marcel A. K. Jansen
- Plant Ecophysiology Group
- School of Biological
- Earth and Environmental Sciences
- UCC
- Cork
| | - Carlos L. Ballaré
- University of Buenos Aires
- Faculty of Agronomy and IFEVA-CONICET, and IIB
- National University of San Martin
- Buenos Aires
- Argentina
| | - Stephan D. Flint
- Department of Forest
- Rangeland and Fire Sciences
- University of Idaho
- Moscow
- USA
| |
Collapse
|
71
|
Kanagendran A, Pazouki L, Bichele R, Külheim C, Niinemets Ü. Temporal regulation of terpene synthase gene expression in Eucalyptus globulus leaves upon ozone and wounding stresses: relationships with stomatal ozone uptake and emission responses. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 155:552-565. [PMID: 30686846 PMCID: PMC6345374 DOI: 10.1016/j.envexpbot.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ozone and wounding are key abiotic factors but, their interactive effects on temporal changes in terpene synthase gene expression and emission responses are poorly understood. Here, we applied combined acute ozone and wounding stresses to the constitutive isoprenoid-emitter Eucalyptus globulus and studied how isoprene, 1,8-cineole, and isoledene synthase genes were regulated, and how the gene expression was associated with temporal changes in photosynthetic characteristics, product emission rates, and stomatal ozone uptake through recovery phase. Photosynthetic characteristics and emission rate of isoprene, 1,8-cineole, and isoledene were synergistically altered, while three TPS gene expressions were antagonistically altered by combined stress applications. A time-delay analysis indicated that the best correspondences between gene expression and product emission rates were observed for 0 h time-shift for wounding and 0-2 h time-shifts for separate ozone, and combined ozone and wounding treatments. The best correspondence between ozone uptake and gene expression was observed for 0-4 h time-shifts for separate ozone and combined ozone and wounding treatments. Overall, this study demonstrated that expression profiles of isoprene, the monoterpene 1,8-cineole, and the sesquiterpene isoledene synthase genes differentially influenced their corresponding product emissions for separate and combined ozone and wounding treatments through recovery.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Corresponding author: Arooran Kanagendran, . Tel: +372 584 984 74
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Rudolf Bichele
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carsten Külheim
- School of Forest Resources and Environmental Science; Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
72
|
Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Molecules 2018; 23:molecules23061480. [PMID: 29921765 PMCID: PMC6100618 DOI: 10.3390/molecules23061480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
Despite abundant published research on the volatile characterization of mango germplasm, the aroma differentiation of Chinese cultivars remains unclear. Using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS), the composition and relative content of volatiles in 37 cultivars representing the diversity of Chinese mango germplasm were investigated. Results indicated that there are distinct differences in the components and content of volatile compounds among and within cultivars. In total, 114 volatile compounds, including 23 monoterpenes, 16 sesquiterpenes, 29 non-terpene hydrocarbons, 25 esters, 11 aldehydes, five alcohols and five ketones, were identified. The total volatile content among cultivars ranged from 211 to 26,022 μg/kg fresh weight (FW), with 123-fold variation. Terpene compounds were the basic background volatiles, and 34 cultivars exhibited abundant monoterpenes. On the basis of hierarchical cluster analysis (HCA) and principal component analysis (PCA), terpinolene and α-pinene were important components constituting the aroma of Chinese mango cultivars. Most obviously, a number of mango cultivars with high content of various aroma components were observed, and they can serve as potential germplasms for both breeding and direct use.
Collapse
|
73
|
Xin R, Liu X, Wei C, Yang C, Liu H, Cao X, Wu D, Zhang B, Chen K. E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit. SENSORS 2018; 18:s18030765. [PMID: 29498705 PMCID: PMC5876536 DOI: 10.3390/s18030765] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 01/05/2023]
Abstract
First purchases of fruit are mainly dependent on aspects of appearance such as color. However, repeat buys of fruit are determined by internal quality traits such as flavor-related volatiles. Differences in volatile profiles in white- and red-fleshed peach fruit are not well understood. In the present study, peach cultivars with white- and red-fleshed fruit were subjected to sensory analysis using electronic nose (e-nose) to evaluate overview volatile profiles. Approximately 97.3% of the total variation in peach color-volatiles was explained by the first principle component 1 (PC1) and PC2. After analyzing sensory differences between peach fruit samples, 50 volatile compounds were characterized based on GC-MS. Multivariate analysis such as partial least squares discriminant analysis (PLS-DA) was applied to identify volatile compounds that contribute to difference in white- and red-fleshed peach fruit cultivars. A total of 18 volatiles that could separate peach fruit cultivars with different colors in flesh during ripening were identified based on variable importance in projection (VIP) score. Fruity note latone γ-hexalactone had higher contents in red-fleshed cultivars, while grassy note C6 compounds such as hexanal, 2-hexenal, (E)-2-hexenal, 1-hexanol, and (Z)-2-hexen-1-ol showed great accumulation in white-fleshed peach fruit.
Collapse
Affiliation(s)
- Rui Xin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Xiaohong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Chunyan Wei
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Chong Yang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Hongru Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Xiangmei Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Di Wu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Bo Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Laboratory of Fruit Quality Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|