51
|
Michelakis D, Lasithiotakis K, Messaritakis I, Ioannou C, Perisynakis K, Souglakos I, Stamatiou D, Chlouverakis G, de Bree E, Romanos I, Zoras O. A feasibility study of circulating melanoma cells in the perioperative context of hyperthermic isolated limb perfusion (HILP) in 20 patients. Int J Hyperthermia 2021; 38:70-78. [PMID: 33487077 DOI: 10.1080/02656736.2021.1874062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Hyperthermic Ιsolated Limb Perfusion using melphalan and TNFα (TM-HILP) is a regional chemotherapy method for advanced melanoma. PURPOSE To explore the feasibility of the study of Circulating Melanoma Cells (CMCs) in the context of acute physiological changes induced by TM-HILP and their association with oncological outcomes. METHODS The study included 20 patients undergoing TM-HILP for unresectable in-transit melanoma of the limbs, stage III(B/C/D). CMCs in the peripheral blood were analyzed at 5-time points from the preoperative day until day 7 from surgery using the following biomarkers: MITF, Tyrosinase mRNA, Melan-A and S100b, through quantitative RT-PCR. RESULTS No CMCs according to Tyrosinase and Melan-A biomarkers were found in any sample. Friedman test showed significant alterations perioperatively for MITF (p < .001) and S100b (p = .001). Pairwise tests showed a significant increase of MITF levels on postoperative day 7 compared with postoperative day 1, intraoperative and preoperative levels (p < .05). Pairwise tests for S100b showed a significant difference between intraoperative sample and postoperative day 7 (p < .0001). Patients who experienced a complete response to TM-HILP (n = 12) had higher mean levels of MITF and the difference was significant at the time point immediately after the operation (0.29 ± 0.27 vs. 0.06 ± 0.06, p = .014) and on postoperative day 1 (1.48 ± 2.24 vs. 0.41 ± 0.65, p = .046). There was no association of MITF or S100b levels with 4-year disease specific survival. CONCLUSION TM-HILP is associated with increased levels of CMCs, but there was no association of this increase with survival. Patients with complete response to HILP demonstrate higher values of MITF shortly after the operation.
Collapse
Affiliation(s)
| | | | | | - Christos Ioannou
- Department of Vascular Surgery, University Hospital of Heraklion, Crete, Greece
| | - Kostas Perisynakis
- Department of Nuclear Medicine, University Hospital of Heraklion, Crete, Greece
| | - Ioannis Souglakos
- Department of Clinical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Dimitrios Stamatiou
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Gregory Chlouverakis
- Biostatistics Laboratory, Department of Social Medicine, School of Medicine, University of Crete, Crete, Greece
| | - Eelco de Bree
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Ioannis Romanos
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Odysseas Zoras
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
52
|
Torre EA, Arai E, Bayatpour S, Jiang CL, Beck LE, Emert BL, Shaffer SM, Mellis IA, Fane ME, Alicea GM, Budinich KA, Weeraratna AT, Shi J, Raj A. Genetic screening for single-cell variability modulators driving therapy resistance. Nat Genet 2021; 53:76-85. [PMID: 33398196 PMCID: PMC7796998 DOI: 10.1038/s41588-020-00749-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Cellular plasticity describes the ability of cells to transition from one set of phenotypes to another. In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate. However, the biological processes governing cellular priming remain unknown. We used CRISPR-Cas9 genetic screens to identify genes that affect cell fate decisions by altering cellular plasticity. We found that many factors can independently affect cellular priming and fate decisions. We discovered a new plasticity-based mode of increasing resistance to BRAF inhibition that pushes cells towards a more differentiated state. Manipulating cellular plasticity through inhibition of DOT1L before the addition of the BRAF inhibitor resulted in more therapy resistance than concurrent administration. Our results indicate that modulating cellular plasticity can alter cell fate decisions and may prove useful for treating drug resistance in other cancers.
Collapse
Affiliation(s)
- Eduardo A Torre
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eri Arai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sareh Bayatpour
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie L Jiang
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E Beck
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Gretchen M Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Krista A Budinich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
53
|
Zhou S, Sakamoto K. Citric acid promoted melanin synthesis in B16F10 mouse melanoma cells, but inhibited it in human epidermal melanocytes and HMV-II melanoma cells via the GSK3β/β-catenin signaling pathway. PLoS One 2020; 15:e0243565. [PMID: 33332393 PMCID: PMC7746170 DOI: 10.1371/journal.pone.0243565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Melanin, a pigment synthesized by melanocytes in the skin, resists the damage caused by ultraviolet rays to cells. Citric acid, a well-known food additive, is commonly used as an antioxidant and is an important part of the tricarboxylic acid (TCA) cycle for energy production during cellular metabolism. Here, we aimed to investigate whether the addition of excess citric acid regulates melanin synthesis, and to delineate the underlying mechanism. First, we observed that citric acid exerts opposite redox effects on mouse and human cells. Interestingly, treatment with excess citric acid increased the melanin content in mouse cells but decreased it in human cells. Furthermore, the expression of factors important for melanin synthesis, such as microphthalmia-associated transcription factor (MITF), was also regulated by citric acid treatment-it was promoted in mouse cells and suppressed in human cells. Citric acid also impacted the upstream regulators of MITF, glycogen synthase kinase 3β (GSK3β), and β-catenin. Second, we determined the importance of GSK3β in the citric acid-mediated regulation of melanin synthesis, using a GSK3β inhibitor (BIO). To the best of our knowledge, this is the first study to show that citric acid regulates melanin synthesis via the GSK3β/β-catenin signaling pathway, and that equal amounts of exogenous citric acid exert opposing effects on mouse and human cells.
Collapse
Affiliation(s)
- Siqi Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
54
|
Essential Oils of Alpinia nantoensis Retard Forskolin-Induced Melanogenesis via ERK1/2-Mediated Proteasomal Degradation of MITF. PLANTS 2020; 9:plants9121672. [PMID: 33260669 PMCID: PMC7760488 DOI: 10.3390/plants9121672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023]
Abstract
The anti-melanogenic activity of essential oils of Alpinia nantoensis and their bioactive ingredients were investigated in vitro. Treatment with leaf (LEO) and rhizome (REO) essential oils of A. nantoensis, significantly reduced forskolin-induced melanin production followed by down-regulation of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1) expression at both transcriptional and translational levels. Further studies revealed that down-regulation TYR and TRP-1 were caused by LEO/REO-mediated suppression of Microphthalmia-associated transcription factor (MITF), as evidenced by reduced nuclear translocation of MITF. Also, we found that LEO/REO induce the sustained activation of ERK1/2, which facilitate subsequent proteasomal degradation of MITF, as confirmed by that LEO/REO failed to inhibits MITF activity in ERK1/2 inhibitor treated cells. In addition, a significant increase of ubiquitinated MITF was observed after treatment with LEO and REO. Furthermore, the chemical composition of LEO and REO were characterized by gas chromatography-mass spectrometry (GC-MS) resulted that camphor, camphene, α-pinene, β-pinene, isoborneol and D-limonene were the major compounds in both LEO and REO. Further studies revealed that α-pinene and D-limonene were the active components responsible for the anti-melanogenic properties of LEO and REO. Based on the results, this study provided a strong evidence that LEO and REO could be promising natural sources for the development of novel skin-whitening agents for the cosmetic purposes.
Collapse
|
55
|
Granados K, Poelchen J, Novak D, Utikal J. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity. Int J Mol Sci 2020; 21:E8274. [PMID: 33167306 PMCID: PMC7663830 DOI: 10.3390/ijms21218274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| |
Collapse
|
56
|
Matter AV, Micaletto S, Urner‐Bloch U, Dummer R, Goldinger SM. Long-Term Response to Intermittent Binimetinib in Patients with NRAS-Mutant Melanoma. Oncologist 2020; 25:e1593-e1597. [PMID: 32886824 PMCID: PMC7648363 DOI: 10.1634/theoncologist.2019-0656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Melanoma can be classified based on the detection of relevant oncogenic driver mutations. These mutations partially determine a patient's treatment options. MEK inhibitors have demonstrated little efficacy in patients with NRAS-mutated melanoma owing to primary and secondary resistance. We report two patients with NRAS-mutant metastatic melanoma with long-term response to intermittent MEK-inhibitor binimetinib therapy. Intermittent dosing schedules could play a key role in preventing resistance to targeted therapy. This article highlights the efficacy of an intermittent dosing schedule, toxicities associated with binimetinib, and possible mechanisms preventing resistance in targeted therapy. Intermittent MEK-inhibitor therapy may be considered in patients with NRAS-mutated melanoma that have failed all standard therapies. KEY POINTS: Melanomas harbor NRAS mutations in 10%-30% of the cases. These mutations promote hyperactivation of the MAPK pathway, leading to proliferation and prolonged survival of tumor cells. Currently, drugs directly targeting NRAS are not available. Downstream inhibition of the MAPK pathway can be considered as a therapeutic option after immunotherapeutic failure. Intermittent administration of kinase inhibitors might be the way to partially overcome the development of drug resistance by (a) inducing a fitness deficit for drug-resistant cells on treatment break, (b) increasing the immunogenicity, and (c) inducing apoptosis and cell cycle arrest. It also enhances expression of numerous immunomodulating molecules, and reduction of immunosuppressive factors, which suggests better access of the immune system to the tumor.
Collapse
Affiliation(s)
| | - Sara Micaletto
- Department of Dermatology, University Hospital of ZurichZurichSwitzerland
| | - Ursula Urner‐Bloch
- Department of Private Ophthalmic Practice in Cooperation with the Skin Cancer Unit, University Hospital of ZurichZurichSwitzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of ZurichZurichSwitzerland
- Faculty of Medicine, University of ZurichZurichSwitzerland
| | - Simone M. Goldinger
- Department of Dermatology, University Hospital of ZurichZurichSwitzerland
- Faculty of Medicine, University of ZurichZurichSwitzerland
| |
Collapse
|
57
|
Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12113147. [PMID: 33121001 PMCID: PMC7692067 DOI: 10.3390/cancers12113147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids. They also highlight the role of adipose tissue in tumor progression as well as the potential antitumor role of drugs targeting critical steps of lipid metabolic pathways in the context of melanoma. Abstract Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.
Collapse
|
58
|
MITF is a driver oncogene and potential therapeutic target in kidney angiomyolipoma tumors through transcriptional regulation of CYR61. Oncogene 2020; 40:112-126. [PMID: 33082558 PMCID: PMC7796905 DOI: 10.1038/s41388-020-01504-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor syndrome, characterized by tumor development in multiple organs, including renal angiomyolipoma. Biallelic loss of TSC1 or TSC2 is a known genetic driver of angiomyolipoma development, however, whether an altered transcriptional repertoire contributes to TSC-associated tumorigenesis is unknown. RNA-seq analyses showed that MITF A isoform (MITF-A) was consistently highly expressed in angiomyolipoma, immunohistochemistry showed microphthalmia-associated transcription factor nuclear localization, and Chromatin immuno-Precipitation Sequencing analysis showed that the MITF-A transcriptional start site was highly enriched with H3K27ac marks. Using the angiomyolipoma cell line 621-101, MITF knockout (MITF.KO) and MITF-A overexpressing (MITF.OE) cell lines were generated. MITF.KO cells showed markedly reduced growth and invasion in vitro, and were unable to form xenografted tumors. In contrast, MITF.OE cells grew faster in vitro and as xenografted tumors compared to control cells. RNA-Seq analysis showed that both ID2 and Cysteine-rich angiogenic inducer 61 (CYR61) expression levels were increased in the MITF.OE cells and reduced in the MITF.KO cells, and luciferase assays showed this was due to transcriptional effects. Importantly, CYR61 overexpression rescued MITF.KO cell growth in vitro and tumor growth in vivo. These findings suggest that MITF-A is a transcriptional oncogenic driver of angiomyolipoma tumor development, acting through regulation of CYR61.
Collapse
|
59
|
Tangella LP, Clark ME, Gray ES. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim Biophys Acta Gen Subj 2020; 1865:129736. [PMID: 32956754 DOI: 10.1016/j.bbagen.2020.129736] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of targeted therapies for the treatment of BRAF-mutant melanomas have improved survival rates in a significant proportion of patients. Nonetheless, the emergence of resistance to treatment remains inevitable in most patients. SCOPE OF REVIEW Here, we review known and emerging molecular mechanisms that underlay the development of resistance to MAPK inhibition in melanoma cells and the potential strategies to overcome these mechanisms. MAJOR CONCLUSIONS Multiple genetic and non-genetic mechanisms contribute to treatment failure, commonly leading to the reactivation of the MAPK pathway. A variety of resistance mechanisms are enabled by the underlying heterogeneity and plasticity of melanoma cells. Moreover, it has become apparent that resistance to targeted therapy is underpinned by early functional adaptations involving the rewiring of cell states and metabolic pathways. GENERAL SIGNIFICANCE The evidence presented suggest that the use of a combinatorial treatment approach would delay the emergence of resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lokeswari P Tangella
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia
| | - Michael E Clark
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia.
| |
Collapse
|
60
|
Phung B, Cieśla M, Sanna A, Guzzi N, Beneventi G, Cao Thi Ngoc P, Lauss M, Cabrita R, Cordero E, Bosch A, Rosengren F, Häkkinen J, Griewank K, Paschen A, Harbst K, Olsson H, Ingvar C, Carneiro A, Tsao H, Schadendorf D, Pietras K, Bellodi C, Jönsson G. The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Rep 2020; 27:3573-3586.e7. [PMID: 31216476 DOI: 10.1016/j.celrep.2019.05.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers, including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here, we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, we identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together, these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas.
Collapse
Affiliation(s)
- Bengt Phung
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Adriana Sanna
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Nicola Guzzi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin Lauss
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rita Cabrita
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eugenia Cordero
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frida Rosengren
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Klaus Griewank
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Katja Harbst
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Oncology and Hematology, Skåne University Hospital, Lund, Sweden
| | - Hensin Tsao
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Göran Jönsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
61
|
Massi D, Mihic-Probst D, Schadendorf D, Dummer R, Mandalà M. Dedifferentiated melanomas: Morpho-phenotypic profile, genetic reprogramming and clinical implications. Cancer Treat Rev 2020; 88:102060. [PMID: 32619863 DOI: 10.1016/j.ctrv.2020.102060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023]
Abstract
Phenotypic plasticity of malignant melanoma is a well-known phenomenon. Several translational studies and small case series have reported this clinical and biological entity, particularly in metastatic melanoma, showing frequent aberrant expression of non-melanocytic differentiation markers of different lineages, posing remarkable challenges due to several alternative differential diagnoses including undifferentiated carcinoma and sarcomas. When melanoma loses its typical morpho-phenotype by routinely used diagnostic immunohistochemical markers, it is defined as "dedifferentiated melanoma". Historically, this process was closely related to diagnostic interpretative difficulties. In recent years, however, dedifferentiation has been increasingly recognized as an important biological phenomenon that demonstrates the phenotypic and genetic plasticity of melanoma, and specifically the non-irreversibility of the multistep cancerogenesis. Furthermore, dedifferentiation emerged as a general hallmark of cancer evolution and a common denominator of cross-resistance to both targeted and immunotherapy. In this review, we summarize the histopathological features, the genetic and epigenetic bases underlying the dedifferentiated phenotype in melanomas and provide additional support that dedifferentiation is a mechanism of resistance to immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Italy
| | - Daniela Mihic-Probst
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Dirk Schadendorf
- Department of Dermatology ,University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Reinhard Dummer
- University Hospital Zürich Skin Cancer Center, Zürich, Switzerland
| | - Mario Mandalà
- Unit of Melanoma, Division of Medical Oncology, Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy.
| |
Collapse
|
62
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
63
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
64
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
65
|
Liu L, Yue Q, Ma J, Liu Y, Zhao T, Guo W, Zhu G, Guo S, Wang S, Gao T, Li C, Shi Q. POU4F1 promotes the resistance of melanoma to BRAF inhibitors through MEK/ERK pathway activation and MITF up-regulation. Cell Death Dis 2020; 11:451. [PMID: 32532957 PMCID: PMC7293281 DOI: 10.1038/s41419-020-2662-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/23/2022]
Abstract
BRAF inhibitors (BRAFi) have shown remarkable clinical efficacy in the treatment of melanoma with BRAF mutation. Nevertheless, most patients end up with the development of BRAFi resistance, which strongly limits the clinical application of these agents. POU4F1 is a stem cell-associated transcriptional factor that is highly expressed in melanoma cells and contributes to BRAF-activated malignant transformation. However, whether POU4F1 contributes to the resistance of melanoma to BRAFi remains poorly understood. Here, we report that over-expressed POU4F1 contributed to the acquired resistance of melanoma cells to Vemurafenib. Furthermore, POU4F1 promoted the activation of ERK signaling pathway via transcriptional regulation on MEK expression. In addition, POU4F1 could increase the expression of MITF to retain the resistance of melanoma cells to BRAFi. Collectively, our findings reveal that POU4F1 re-activates the MAPK pathway by transcriptional regulation on MEK expression and promotes MITF expression, which ultimately results in the resistance to BRAFi in melanoma. Our study supports that POU4F1 is a potential combined therapeutic target with BRAFi therapy for melanoma.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Qiao Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
66
|
Federico A, Steinfass T, Larribère L, Novak D, Morís F, Núñez LE, Umansky V, Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:83-99. [PMID: 32637583 PMCID: PMC7327877 DOI: 10.1016/j.omto.2020.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| |
Collapse
|
67
|
Uka R, Britschgi C, Krättli A, Matter C, Mihic D, Okoniewski MJ, Gualandi M, Stupp R, Cinelli P, Dummer R, Levesque MP, Shakhova O. Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene 2020; 39:4132-4154. [PMID: 32238882 PMCID: PMC8076051 DOI: 10.1038/s41388-020-1267-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Despite advances in the systemic treatment of patients with metastatic melanoma using immune checkpoint and tyrosine kinase inhibitors (TKI), the majority of stage IV melanoma patients eventually succumb to the disease. We have previously identified the transcription factor Sox10 as a crucial player in melanoma, yet the underlying molecular mechanisms mediating Sox10-dependent tumorigenesis remain largely uncharacterized. Here, we show that MEK and RAF inhibitors do not suppress levels of SOX10 protein in patient-derived cells in vitro, as well as in melanoma patients in vivo. In a search for pharmacological inhibitors of SOX10, we performed a mass spectrometry-based screen in human melanoma cells. Subsequent analysis revealed that SOX10 directly interacts with β-catenin, which is a key mediator of canonical Wnt/β-catenin signaling. We demonstrate that inhibitors of glycogen synthase kinase 3 alpha/beta (GSK3α/β) efficiently abrogate SOX10 protein in human melanoma cells in vitro and in melanoma mouse models in vivo. The mechanism of action of GSK3-mediated SOX10 suppression is transcription-independent and relies on the presence of a proteasome degradable form of β-catenin. Taken together, we provide evidence that activation of canonical Wnt signaling has a profound effect on melanoma growth and is able to counteract Sox10-dependent melanoma maintenance both in vitro and in vivo.
Collapse
Affiliation(s)
- Rexhep Uka
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Anja Krättli
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Claudia Matter
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Daniela Mihic
- Department of Surgical Pathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091, Zurich, UK
| | - Michal J Okoniewski
- Scientific IT Services ETH Zurich, ETH Zurich, Weinbergstrasse 11, 8092, Zürich, UK
| | - Marco Gualandi
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Roger Stupp
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091, Zürich, UK
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK
| | - Olga Shakhova
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, UK.
| |
Collapse
|
68
|
Rowling EJ, Miskolczi Z, Nagaraju R, Wilcock DJ, Wang P, Telfer B, Li Y, Lasheras-Otero I, Redondo-Muñoz M, Sharrocks AD, Arozarena I, Wellbrock C. Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell Melanoma Res 2020; 33:695-708. [PMID: 32145051 PMCID: PMC7496243 DOI: 10.1111/pcmr.12873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
A major challenge for managing melanoma is its tumour heterogeneity based on individual co-existing melanoma cell phenotypes. These phenotypes display variable responses to standard therapies, and they drive individual steps of melanoma progression; hence, understanding their behaviour is imperative. Melanoma phenotypes are defined by distinct transcriptional states, which relate to different melanocyte lineage development phases, ranging from a mesenchymal, neural crest-like to a proliferative, melanocytic phenotype. It is thought that adaptive phenotype plasticity based on transcriptional reprogramming drives melanoma progression, but at which stage individual phenotypes dominate and moreover, how they interact is poorly understood. We monitored melanocytic and mesenchymal phenotypes throughout melanoma progression and detected transcriptional reprogramming at different stages, with a gain in mesenchymal traits in circulating melanoma cells (CTCs) and proliferative features in metastatic tumours. Intriguingly, we found that distinct phenotype populations interact in a cooperative manner, which generates tumours of greater "fitness," supports CTCs and expands organotropic cues in metastases. Fibronectin, expressed in mesenchymal cells, acts as key player in cooperativity and promotes survival of melanocytic cells. Our data reveal an important role for inter-phenotype communications at various stages of disease progression, suggesting these communications could act as therapeutic target.
Collapse
Affiliation(s)
- Emily J Rowling
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Raghavendar Nagaraju
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel J Wilcock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ping Wang
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian Telfer
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yaoyong Li
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Lasheras-Otero
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Marta Redondo-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Andrew D Sharrocks
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
69
|
Guo W, Ma J, Yang Y, Guo S, Zhang W, Zhao T, Yi X, Wang H, Wang S, Liu Y, Dai W, Chen X, Shi Q, Wang G, Gao T, Li C. ATP-Citrate Lyase Epigenetically Potentiates Oxidative Phosphorylation to Promote Melanoma Growth and Adaptive Resistance to MAPK Inhibition. Clin Cancer Res 2020; 26:2725-2739. [PMID: 32034077 DOI: 10.1158/1078-0432.ccr-19-1359] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/12/2019] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
70
|
Olbryt M, Pigłowski W, Rajczykowski M, Pfeifer A, Student S, Fiszer-Kierzkowska A. Genetic Profiling of Advanced Melanoma: Candidate Mutations for Predicting Sensitivity and Resistance to Targeted Therapy. Target Oncol 2020; 15:101-113. [PMID: 31980996 PMCID: PMC7028806 DOI: 10.1007/s11523-020-00695-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Molecularly targeted therapy has revolutionized the treatment of advanced melanoma. However, despite its high efficiency, a majority of patients experience relapse within 1 year of treatment because of acquired resistance, and approximately 10-25% patients gain no benefit from these agents owing to intrinsic resistance. This is mainly caused by the genetic heterogeneity of melanoma cells. OBJECTIVE We aimed to validate the predictive significance of selected genes in advanced melanoma patients before treatment with BRAF/MEK inhibitors. PATIENTS AND METHODS Archival DNA derived from 37 formalin-fixed paraffin-embedded pre-treatment advanced melanoma samples of patients treated with targeted therapy was used for next-generation sequencing analysis using the Ion Torrent platform. The AmpliSeq Custom Panel comprised coding sequences or hot spots of 23 melanoma genes: ATM, BRAF, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, IDH1, KIT, KRAS, MAP3K8, MAP2K1, MAP2K2, MITF, MYC, NF1, NRAS, PAX5, PIK3R1, PTEN, RAC1, and RB1. The sequences were evaluated for genomic alterations and further validated using Sanger sequencing. RESULTS Our analysis revealed non-BRAF genetic alterations in 28 out of 37 samples (75.7%). Genetic changes were identified in PTEN, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, KIT, MAP2K1, MAP2K2, MITF, MYC, NF1, PAX5, RAC1, and RB1. Fifteen known pathogenic mutations (single nucleotide variants or indels) and 11 variants of unknown significance were detected. Statistical analysis revealed an association between the presence of pathogenic mutations and time to progression during treatment with combination therapy. CONCLUSIONS Pathogenic mutations identified by gene panel sequencing have potential predictive value for targeted therapy of melanoma and are worth further validation in a larger series of cases. The role of some known mutations (e.g. CDK4R24, PTEN c.801 + 1G > A, CTNNB1S45F) as well as variants of unknown significance identified in this study (e.g. MITFR316K, KITG498S) in the generation of resistance to BRAF/MEK inhibitors should be further investigated.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland.
| | - Wojciech Pigłowski
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
- Tumor Pathology Department, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Marcin Rajczykowski
- II Clinic of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| | - Anna Fiszer-Kierzkowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| |
Collapse
|
71
|
Di Leo L, Bodemeyer V, De Zio D. The Complex Role of Autophagy in Melanoma Evolution: New Perspectives From Mouse Models. Front Oncol 2020; 9:1506. [PMID: 31998652 PMCID: PMC6966767 DOI: 10.3389/fonc.2019.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Despite tremendous efforts in the last decade to improve treatments, melanoma still represents a major therapeutic challenge and overall survival of patients remains poor. Therefore, identifying new targets to counteract melanoma is needed. In this scenario, autophagy, the “self-eating” process of the cell, has recently arisen as new potential candidate in melanoma. Alongside its role as a recycling mechanism for dysfunctional and damaged cell components, autophagy also clearly sits at a crossroad with metabolism, thereby orchestrating cell proliferation, bioenergetics and metabolic rewiring, all hallmarks of cancer cells. In this regard, autophagy, both in tumor and host, has been flagged as an essential player in melanomagenesis and progression. To pave the way to a better understanding of such a complex interplay, the use of genetically engineered mouse models (GEMMs), as well as syngeneic mouse models, has been undoubtedly crucial. Herein, we will explore the latest discoveries in the field, with particular focus on the potential of these models in unraveling the contribution of autophagy in melanoma, along with the therapeutic advantages that may arise.
Collapse
Affiliation(s)
- Luca Di Leo
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
72
|
Santoni G, Morelli MB, Santoni M, Nabissi M, Marinelli O, Amantini C. Targeting Transient Receptor Potential Channels by MicroRNAs Drives Tumor Development and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:605-623. [PMID: 31646527 DOI: 10.1007/978-3-030-12457-1_24] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in a variety of cellular processes such polymodal cellular sensing, adhesion, polarity, proliferation, differentiation and apoptosis. The expression of TRP channels is strictly regulated and their de-regulation can stimulate cancer development and progression.In human cancers, specific miRNAs are expressed in different tissues, and changes in the regulation of gene expression mediated by specific miRNAs have been associated with carcinogenesis. Several miRNAs/TRP channel pairs have been reported to play an important role in tumor biology. Thus, the TRPM1 gene regulates melanocyte/melanoma behaviour via TRPM1 and microRNA-211 transcripts. Both miR-211 and TRPM1 proteins are regulated through microphthalmia-associated transcription factor (MIFT) and the expression of miR-211 is decreased during melanoma progression. Melanocyte phenotype and melanoma behaviour strictly depend on dual TRPM1 activity, with loss of TRPM1 protein promoting melanoma aggressiveness and miR-211 expression supporting tumour suppressor. TRPM3 plays a major role in the development and progression of human clear cell renal cell carcinoma (ccRCC) with von Hippel-Lindau (VHL) loss. TRPM3, a direct target of miR-204, is enhanced in ccRCC with inactivated or deleted VHL. Loss of VHL inhibits miR-204 expression that lead to increased oncogenic autophagy. Therefore, the understanding of specific TRP channels/miRNAs molecular pathways in distinct tumors could provide a clinical rationale for target therapy in cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinic and Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
73
|
Ferguson J, Wilcock DJ, McEntegart S, Badrock AP, Levesque M, Dummer R, Wellbrock C, Smith MP. Osteoblasts contribute to a protective niche that supports melanoma cell proliferation and survival. Pigment Cell Melanoma Res 2020; 33:74-85. [PMID: 31323160 PMCID: PMC6972519 DOI: 10.1111/pcmr.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is the deadliest form of skin cancer; a primary driver of this high level of morbidity is the propensity of melanoma cells to metastasize. When malignant tumours develop distant metastatic lesions the new local tissue niche is known to impact on the biology of the cancer cells. However, little is known about how different metastatic tissue sites impact on frontline targeted therapies. Intriguingly, melanoma bone lesions have significantly lower response to BRAF or MEK inhibitor therapies. Here, we have investigated how the cellular niche of the bone can support melanoma cells by stimulating growth and survival via paracrine signalling between osteoblasts and cancer cells. Melanoma cells can enhance the differentiation of osteoblasts leading to increased production of secreted ligands, including RANKL. Differentiated osteoblasts in turn can support melanoma cell proliferation and survival via the secretion of RANKL that elevates the levels of the transcription factor MITF, even in the presence of BRAF inhibitor. By blocking RANKL signalling, either via neutralizing antibodies, genetic alterations or the RANKL receptor inhibitor SPD304, the survival advantage provided by osteoblasts could be overcome.
Collapse
Affiliation(s)
- Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Daniel J. Wilcock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrew P. Badrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Mitch Levesque
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Michael P. Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
74
|
Chitsazan A, Lambie D, Ferguson B, Handoko HY, Gabrielli B, Walker GJ, Boyle GM. Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. J Invest Dermatol 2019; 140:1299-1302.e4. [PMID: 31881210 DOI: 10.1016/j.jid.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Arash Chitsazan
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Duncan Lambie
- IQ Pathology, West End, Brisbane, Australia and The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | - Brian Gabrielli
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Graeme J Walker
- QIMR Berghofer Medical Research Institute, Herston, Australia; Experimental Dermatology, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia.
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
75
|
Feng T, Golji J, Li A, Zhang X, Ruddy DA, Rakiec DP, Geyer FC, Gu J, Gao H, Williams JA, Stuart DD, Meyer MJ. Distinct Transcriptional Programming Drive Response to MAPK Inhibition in BRAF V600-Mutant Melanoma Patient-Derived Xenografts. Mol Cancer Ther 2019; 18:2421-2432. [PMID: 31527224 DOI: 10.1158/1535-7163.mct-19-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
Abstract
Inhibitors targeting BRAF and its downstream kinase MEK produce robust response in patients with advanced BRAF V600-mutant melanoma. However, the duration and depth of response vary significantly between patients; therefore, predicting response a priori remains a significant challenge. Here, we utilized the Novartis collection of patient-derived xenografts to characterize transcriptional alterations elicited by BRAF and MEK inhibitors in vivo, in an effort to identify mechanisms governing differential response to MAPK inhibition. We show that the expression of an MITF-high, "epithelial-like" transcriptional program is associated with reduced sensitivity and adaptive response to BRAF and MEK inhibitor treatment. On the other hand, xenograft models that express an MAPK-driven "mesenchymal-like" transcriptional program are preferentially sensitive to MAPK inhibition. These gene-expression programs are somewhat similar to the MITF-high and -low phenotypes described in cancer cell lines, but demonstrate an inverse relationship with drug response. This suggests a discrepancy between in vitro and in vivo experimental systems that warrants future investigations. Finally, BRAF V600-mutant melanoma relies on either MAPK or alternative pathways for survival under BRAF and MEK inhibition in vivo, which in turn predicts their response to further pathway suppression using a combination of BRAF, MEK, and ERK inhibitors. Our findings highlight the intertumor heterogeneity in BRAF V600-mutant melanoma, and the need for precision medicine strategies to target this aggressive cancer.
Collapse
Affiliation(s)
- Tianshu Feng
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Javad Golji
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Ailing Li
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Xiamei Zhang
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - David A Ruddy
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Daniel P Rakiec
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Felipe C Geyer
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Jane Gu
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Hui Gao
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Juliet A Williams
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts
| | - Darrin D Stuart
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts.
| | - Matthew J Meyer
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research (NIBR), Cambridge, Massachusetts.
| |
Collapse
|
76
|
Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol 2019; 16:549-562. [PMID: 30967646 PMCID: PMC7185899 DOI: 10.1038/s41571-019-0204-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted therapy and immunotherapy have greatly improved the prognosis of patients with metastatic melanoma, but resistance to these therapeutic modalities limits the percentage of patients with long-lasting responses. Accumulating evidence indicates that a persisting subpopulation of melanoma cells contributes to resistance to targeted therapy or immunotherapy, even in patients who initially have a therapeutic response; however, the root mechanism of resistance remains elusive. To address this problem, we propose a new model, in which dynamic fluctuations of protein expression at the single-cell level and longitudinal reshaping of the cellular state at the cell-population level explain the whole process of therapeutic resistance development. Conceptually, we focused on two different pivotal signalling pathways (mediated by microphthalmia-associated transcription factor (MITF) and IFNγ) to construct the evolving trajectories of melanoma and described each of the cell states. Accordingly, the development of therapeutic resistance could be divided into three main phases: early survival of cell populations, reversal of senescence, and the establishment of new homeostatic states and development of irreversible resistance. On the basis of existing data, we propose future directions in both translational research and the design of therapeutic strategies that incorporate this emerging understanding of resistance.
Collapse
Affiliation(s)
- Xue Bai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - David E Fisher
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
77
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
78
|
Li M, Liu D, Lee D, Kapoor S, Gibson-Corley KN, Quinn TP, Sagastume EA, Mott SL, Walsh SA, Acevedo MR, Johnson FL, Schultz MK. Enhancing the Efficacy of Melanocortin 1 Receptor-Targeted Radiotherapy by Pharmacologically Upregulating the Receptor in Metastatic Melanoma. Mol Pharm 2019; 16:3904-3915. [PMID: 31318566 DOI: 10.1021/acs.molpharmaceut.9b00512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanocortin 1 receptor (MC1R) is under investigation as a target for drug delivery for metastatic melanoma therapy and imaging. The purpose of this study was to determine the potential of using BRAF inhibitors (BRAFi) and histone deacetylase inhibitors (HDACi) to enhance the delivery of MC1R-targeted radiolabeled peptide ([212Pb]DOTA-MC1L) by pharmacologically upregulating the MC1R expression in metastatic melanoma cells and tumors. MC1R expression was analyzed in de-identified melanoma biopsies by immunohistochemical staining. Upregulation of MC1R expression was determined in BRAFV600E cells (A2058) and BRAF wild-type melanoma cells (MEWO) by quantitative real-time polymerase chain reaction, flow cytometry, and receptor-ligand binding assays. The role of microphthalmia-associated transcription factor (MITF) in the upregulation of MC1R was also examined in A2058 and MEWO cells. The effectiveness of [212Pb]DOTA-MC1L α-particle radiotherapy in combination with BRAFi and/or HDACi was determined in athymic nu/nu mice bearing A2058 and MEWO human melanoma xenografts. High expression of MC1R was observed in situ in clinical melanoma biopsies. BRAFi and HDACi significantly increased the MC1R expression (up to 10-fold in mRNA and 4-fold in protein levels) via MITF-dependent pathways, and this increase led to enhanced ligand binding on the cell surface. Inhibition of MITF expression antagonized the upregulation of MC1R in both BRAFV600E and BRAFWT cells. Combining [212Pb]DOTA-MC1L with BRAFi and/or HDACi improved the tumor response by increasing the delivery of 212Pb α-particle emissions to melanoma tumors via augmented MC1R expression. These data suggest that FDA-approved HDACi and BRAFi could improve the effectiveness of MC1R-targeted therapies by enhancing drug delivery via upregulated MC1R.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas P Quinn
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Edwin A Sagastume
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| | | | | | | | - Frances L Johnson
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| | - Michael K Schultz
- Viewpoint Molecular Targeting, Inc. , Coralville , Iowa 52241 , United States
| |
Collapse
|
79
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
80
|
Plasticity of Drug-Naïve and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program. JOURNAL OF ONCOLOGY 2019; 2019:1697913. [PMID: 31354817 PMCID: PMC6636509 DOI: 10.1155/2019/1697913] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Melanoma plasticity creates a plethora of opportunities for cancer cells to escape treatment. Thus, therapies must target all cancer cell subpopulations bearing the potential to contribute to disease. The role of the differentiation/pigmentation program in intrinsic and acquired drug resistance is largely uncharacterized. MITF level and expression of MITF-dependent pigmentation-related genes, MLANA, PMEL, TYR, and DCT, in drug-naïve and vemurafenib- or trametinib-treated patient-derived melanoma cell lines and their drug-resistant counterparts were analysed and referred to genomic alterations. Variability in execution of pigmentation/differentiation program was detected in patient-derived melanoma cell lines. Acute treatment with vemurafenib or trametinib enhanced expression of pigmentation-related genes in MITF-Mhigh melanoma cells, partially as the consequence of transcriptional reprograming. During development of resistance, changes in pigmentation program were not unidirectional, but also not universal as expression of different pigmentation-related genes was diversely affected. In selected resistant cell lines, differentiation/pigmentation was promoted and might be considered as one of drug-tolerant phenotypes. In other resistant lines, dedifferentiation was induced. Upon drug withdrawal ("drug holiday"), the dedifferentiation process in resistant cells either was enhanced but reversed by drug reexposure suggesting involvement of epigenetic mechanisms or was irreversible. The irreversible dedifferentiation might be connected with homozygous loss-of-function mutation in MC1R, as MC1RR151C +/+ variant was found exclusively in drug-naïve MITF-Mlow dedifferentiated cells and drug-resistant cells derived from MITFhigh/MC1RWT cells undergoing irreversible dedifferentiation. MC1RR151C +/+ variant might be further investigated as a parameter potentially impacting melanoma patient stratification and aiding in treatment decision.
Collapse
|
81
|
Pandiaraja J. Cutaneous Malignant Melanoma and Targeted Therapy Based on the Biomarkers. Indian J Med Paediatr Oncol 2019. [DOI: 10.4103/ijmpo.ijmpo_204_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractMalignant melanoma is the most aggressive form of cutaneous malignancy. It accounts for more than 75% of cancer-related deaths among cutaneous malignancies. It accounts for <5% of cutaneous malignancy. Numerous biomarkers are used in malignant melanoma with varying clinical applications, including diagnostic purposes, prognosis, therapeutic purpose, and targeted therapy against melanoma. Systemic chemotherapy in malignant melanoma has little benefit compared to immunotherapy and targeted therapy. The observed overall survival with systemic chemotherapy is much less compared with targeted therapy in advanced or metastatic melanoma. Various targeted therapies are currently used in melanoma treatment including BRAF inhibitors such as vemurafenib and dabrafenib; MEK inhibitors such as trametinib; anti-CTLA-4 antibodies such as ipilimumab; and anti-programmed cell death 1 antibodies such as nivolumab, pembrolizumab, and pidilizumab. This study discusses the role of biomarkers and targeted therapies based on the biomarker.
Collapse
Affiliation(s)
- Jayabal Pandiaraja
- Department of General Surgery, Care Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
82
|
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19:377-391. [PMID: 31209265 DOI: 10.1038/s41568-019-0154-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is notorious for its inter- and intratumour heterogeneity, based on transcriptionally distinct melanoma cell phenotypes. It is thought that these distinct phenotypes are plastic in nature and that their transcriptional reprogramming enables heterogeneous tumours both to undergo different stages of melanoma progression and to adjust to drug exposure during treatment. Recent advances in genomic technologies and the rapidly expanding availability of large gene expression datasets have allowed for a refined definition of the gene signatures that characterize these phenotypes and have revealed that phenotype plasticity plays a major role in the resistance to both targeted therapy and immunotherapy. In this Review we discuss the definition of melanoma phenotypes through particular transcriptional states and reveal the prognostic relevance of the related gene expression signatures. We review how the establishment of phenotypes is controlled and which roles phenotype plasticity plays in melanoma development and therapy. Because phenotype plasticity in melanoma bears a great resemblance to epithelial-mesenchymal transition, the lessons learned from melanoma will also benefit our understanding of other cancer types.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
83
|
Otręba M, Pajor M, Warncke JD. Antimelanoma activity of perphenazine and prochlorperazine in human COLO829 and C32 cell lines. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1257-1264. [PMID: 31172223 DOI: 10.1007/s00210-019-01668-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022]
Abstract
Cutaneous melanoma is least common (only about 1% of skin cancers) but is the deadliest malignant tumor. Moreover, amelanotic types of melanoma are very difficult for clinical diagnosis. The standard therapy can cause a lot of side effects, e.g., nausea, vomiting, and headaches, which means that novel and effective strategies are required. Interestingly, phenothiazine derivatives possess sedative, antiemetic, and anticancer activity. Our goal was to determine the effect of perphenazine and prochlorperazine on cell viability, motility, microphthalmia-associated transcription factor (MITF) and tyrosinase content in melanotic and amelanotic melanoma cells. The viability of C32 and COLO829 melanoma cells was evaluated by the WST-1 colorimetric assay; impact on motility of human melanoma was performed by wound-healing assay, while tyrosinase and MITF content were determined by Western blot. In the present study, we explore the anticancer effect of perphenazine and prochlorperazine in human melanotic (COLO829) and amelanotic (C32) melanoma cells concluding that prochlorperazine inhibits cell viability in a concentration-dependent manner, impairs motility, and decreases tyrosinase and MITF amounts. Moreover, the analyzed drugs decrease/increase MITF amount depending on the type of melanoma. We demonstrated that the decrease of MITF and tyrosinase protein induces motility inhibition of C32 cells, which suggests the ability of those drugs to restore cancer cell sensitivity to treatment. The ability of prochlorperazine to contain the spread of the amelanotic melanoma in vivo may be helpful in the development of a new and effective antimelanoma therapies.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Monika Pajor
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Jared D Warncke
- Bioanalytical Shared Resource Laboratory, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
84
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
85
|
Jiang L, Huang J, Lu J, Hu S, Pei S, Ouyang Y, Ding Y, Hu Y, Kang L, Huang L, Xiang H, Zeng Q, Liu L, Chen J, Zeng Q. Ganoderma lucidum
polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL‐6/STAT3/FGF2 pathway. J Cell Physiol 2019; 234:22799-22808. [PMID: 31115052 DOI: 10.1002/jcp.28844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Jiang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shuanghai Hu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Yujie Ouyang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Yufang Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Yibo Hu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Lihua Huang
- Central Laboratory, Third Xiangya Hospital Central South University Changsha Hunan China
| | - Hong Xiang
- Central Laboratory, Third Xiangya Hospital Central South University Changsha Hunan China
| | - Qing Zeng
- Department of Urology surgery Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei Liu
- Department of Urology surgery Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
86
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
87
|
Mancera N, Smalley KSM, Margo CE. Melanoma of the eyelid and periocular skin: Histopathologic classification and molecular pathology. Surv Ophthalmol 2019; 64:272-288. [PMID: 30578807 DOI: 10.1016/j.survophthal.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Cutaneous melanoma, a potentially lethal malignancy of the periocular skin, represents only a small proportion of the roughly 87,000 new cases of cutaneous melanoma diagnosed annually in the United States. Most of our understanding of melanoma of the eyelid skin is extrapolated from studies of cutaneous melanoma located elsewhere. Recent years have witnessed major breakthroughs in molecular biology and genomics of cutaneous melanoma, some of which have led to the development of targeted therapies. The molecular insights have also kindled interest in rethinking how cutaneous melanomas are classified and assessed for risk. We provide a synopsis of the epidemiology, histopathologic classification, and clinical experience of eyelid melanoma since 1990 and then review major advances in the molecular biology of cutaneous melanoma, exploring how this impacts our understanding of classification and predicting risk.
Collapse
Affiliation(s)
- Norberto Mancera
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Keiran S M Smalley
- Departments of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Cutaneous Oncology The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Curtis E Margo
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
88
|
Kang M, Park SH, Park SJ, Oh SW, Yoo JA, Kwon K, Kim J, Yu E, Cho JY, Lee J. p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152877. [PMID: 30849679 DOI: 10.1016/j.phymed.2019.152877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Melanin plays a crucial role in protecting human skin against exposure to ultraviolet (UV) radiation. However, its overproduction induces hyperpigmentation disorders of the skin. PURPOSE To investigate effects of phenylethyl resorcinol as one resorcinol derivative on melanogenesis and its mechanisms using B16F10 mouse melanoma cells and human epidermal melanocytes. METHODS Effects of phenylethyl resorcinol on melanogenesis and its mechanism of action were examined using several in vitro assays (i.e., cell survival, melanin content, cellular tyrosinase activity, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and ELISAs for cyclic AMP (cAMP), protein kinase A (PKA), cAMP response element binding (CREB) protein, and mitogen-activated protein kinases (MAPKs)). RESULTS Phenylethyl resorcinol reduced both melanin content and tyrosinase activity in these cells. Phenylethyl resorcinol also suppressed tyrosinase activity in cell-free tyrosinase enzyme assay. Although phenylethyl resorcinol decreased mRNA levels of tyrosinase and tyrosinase-related protein (TRP)-2, it did not affect mRNA levels of melanogenic gene microphthalmia-associated transcriptional factor (MITF) or TRP-1. Phenylethyl resorcinol had no effects on cAMP signaling or NF-κB signaling based on results of cyclic AMP response element (CRE)-luciferase reporter assay, cAMP production, protein kinase A (PKA) activity, Western blot assays for phosphorylated CRE-binding protein (CREB), NF-κB-luciferase reporter assay, and Western blot assays for phosphorylated NF-κB. However, phenylethyl resorcinol induced activation of activator protein-1 (AP-1) signaling. Specifically, phenylethyl resorcinol increased AP-1 reporter activity and increased phosphorylation of p44/42 MAPK, but not p38 MAPK or c-Jun N-terminal kinase (JNK). MEK1/2 and Src, upstream molecules of p44/42 MAPK were also phosphorylated by phenylethyl resorcinol. In addition, phenylethyl resorcinol-induced decreases in melanin content, tyrosinase activity, and MITF protein levels were attenuated by PD98059, a p44/42 MAPK inhibitor. CONCLUSION These data indicate that the anti-melanogenic activity of phenylethyl resorcinol is mediated by activation of p44/42 MAPK, indicating that phenylethyl resorcinol may be a potential therapeutic agent for treating hyperpigmentation skin disorders.
Collapse
Affiliation(s)
- Mingyeong Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, 30016 Sejong City, Republic of Korea
| | - Se Jung Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Ju Ah Yoo
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Jangsoon Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea.
| |
Collapse
|
89
|
Rabbie R, Ferguson P, Molina‐Aguilar C, Adams DJ, Robles‐Espinoza CD. Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol 2019; 247:539-551. [PMID: 30511391 PMCID: PMC6492003 DOI: 10.1002/path.5213] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Abstract
Melanoma is characterised by its ability to metastasise at early stages of tumour development. Current clinico-pathologic staging based on the American Joint Committee on Cancer criteria is used to guide surveillance and management in early-stage disease, but its ability to predict clinical outcome has limitations. Herein we review the genomics of melanoma subtypes including cutaneous, acral, uveal and mucosal, with a focus on the prognostic and predictive significance of key molecular aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Roy Rabbie
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
- Cambridge Cancer CentreCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Peter Ferguson
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred HospitalSydneyAustralia
- Melanoma Institute Australia, The University of SydneySydneyAustralia
| | - Christian Molina‐Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - David J Adams
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
| | - Carla D Robles‐Espinoza
- Experimental Cancer GeneticsThe Wellcome Sanger InstituteHinxtonUK
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| |
Collapse
|
90
|
Smith MP, Rana S, Ferguson J, Rowling EJ, Flaherty KT, Wargo JA, Marais R, Wellbrock C. A PAX3/BRN2 rheostat controls the dynamics of BRAF mediated MITF regulation in MITF high /AXL low melanoma. Pigment Cell Melanoma Res 2019; 32:280-291. [PMID: 30277012 PMCID: PMC6392120 DOI: 10.1111/pcmr.12741] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
The BRAF kinase and the MAPK pathway are targets of current melanoma therapies. However, MAPK pathway inhibition results in dynamic changes of downstream targets that can counteract inhibitor-action not only in during treatment, but also in acquired resistant tumours. One such dynamic change involves the expression of the transcription factor MITF, a crucial regulator of cell survival and proliferation in untreated as well as drug-addicted acquired resistant melanoma. Tight control over MITF expression levels is required for optimal melanoma growth, and while it is well established that the MAPK pathway regulates MITF expression, the actual mechanism is insufficiently understood. We reveal here, how BRAF through action on the transcription factors BRN2 and PAX3 executes control over the regulation of MITF expression in a manner that allows for considerable plasticity. This plasticity provides robustness to the BRAF mediated MITF regulation and explains the dynamics in MITF expression that are observed in patients in response to MAPK inhibitor therapy.
Collapse
Affiliation(s)
- Michael P. Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine & Health, Division of Cancer SciencesThe University of ManchesterManchesterUK
| | - Sareena Rana
- Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine & Health, Division of Cancer SciencesThe University of ManchesterManchesterUK
| | - Emily J. Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine & Health, Division of Cancer SciencesThe University of ManchesterManchesterUK
| | | | - Jennifer A. Wargo
- Divison of Surgical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Richard Marais
- Molecular Oncology GroupCancer Research UK Manchester Institute, The University of Manchester, Astra Zeneca Logistics CentreMacclesfieldUK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine & Health, Division of Cancer SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
91
|
Almeida FV, Douglass SM, Fane ME, Weeraratna AT. Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res 2019; 32:237-247. [PMID: 30216694 PMCID: PMC6727967 DOI: 10.1111/pcmr.12736] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
This review will focus on the role of the tumor microenvironment (TME) in the development of drug resistance in melanoma. Resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma is observed months after treatment, a phenomenon that is often attributed to the incredible plasticity of melanoma cells but may also depend on the TME. The TME is unique in its cellular composition-it contains fibroblasts, immune cells, endothelial cells, adipocytes, and among others. In addition, the TME provides "non-homeostatic" levels of oxygen, nutrients (hypoxia and metabolic stress), and extracellular matrix proteins, creating a pro-tumorigenic niche that drives resistance to MAPKi treatment. In this review, we will focus on how changes in the tumor microenvironment regulate MAPKi resistance.
Collapse
Affiliation(s)
- Filipe V Almeida
- Immunology, Microenvironment & Metastasis Program, Melanoma Research Center. Wistar Institute, 3601 Spruce Street, Philadelphia PA 19104, USA
| | - Stephen M. Douglass
- Immunology, Microenvironment & Metastasis Program, Melanoma Research Center. Wistar Institute, 3601 Spruce Street, Philadelphia PA 19104, USA
| | - Mitchell E. Fane
- Immunology, Microenvironment & Metastasis Program, Melanoma Research Center. Wistar Institute, 3601 Spruce Street, Philadelphia PA 19104, USA
| | - Ashani T. Weeraratna
- Immunology, Microenvironment & Metastasis Program, Melanoma Research Center. Wistar Institute, 3601 Spruce Street, Philadelphia PA 19104, USA
| |
Collapse
|
92
|
Ku KE, Choi N, Oh SH, Kim WS, Suh W, Sung JH. Src inhibition induces melanogenesis in human G361 cells. Mol Med Rep 2019; 19:3061-3070. [PMID: 30816523 PMCID: PMC6423603 DOI: 10.3892/mmr.2019.9958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
The Src kinase family (SKF) includes non-receptor tyrosine kinases that interact with many cellular cytosolic, nuclear and membrane proteins, and is involved in the progression of cellular transformation and oncogenic activity. However, there is little to no evidence on the effect of SKF or its inhibitors on melanogenesis. Therefore, the present study investigated whether C-terminal Src kinase inhibition can induce melanogenesis and examined the associated signaling pathways and mRNA expression of melanogenic proteins. First, whether stimulators of melanogenesis, such as ultraviolet B and α-melanocyte-stimulating hormone, can dephosphorylate Src protein was evaluated, and the results revealed that SU6656 and PP2 inhibited the phosphorylation of Src in G361 cells. Src inhibition by these chemical inhibitors induced melanogenesis in G361 cells and upregulated the mRNA expression levels of melanogenesis-associated genes encoding microphthalmia-associated transcription factor, tyrosinase-related protein 1 (TRP1), TRP2, and tyrosinase. In addition, Src inhibition by small interfering RNA induced melanogenesis and upregulated the mRNA expression levels of melanogenesis-associated genes. As the p38 mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element binding (CREB) pathways serve key roles in melanogenesis, the present study further examined whether Src mediates melanogenesis via these pathways. As expected, Src inhibition via SU6656 or PP2 administration induced the phosphorylation of p38 or CREB, as determined by western blotting analysis, and increased the levels of phosphorylated p38 or CREB, as determined by immunofluorescence staining. In addition, the induced pigmentation and melanin content of G361 cells by Src inhibitors was significantly inhibited by p38 or CREB inhibitors. Taken together, these data indicate that Src is associated with melanogenesis, and Src inhibition induces melanogenesis via the MAPK and CREB pathways in G361 cells.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang-Ho Oh
- Department of Dermatology, Severance Hospital and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Wonhee Suh
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
93
|
Seoane M, Buhs S, Iglesias P, Strauss J, Puller AC, Müller J, Gerull H, Feldhaus S, Alawi M, Brandner JM, Eggert D, Du J, Thomale J, Wild PJ, Zimmermann M, Sternsdorf T, Schumacher U, Nollau P, Fisher DE, Horstmann MA. Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene 2019; 38:3616-3635. [PMID: 30651597 PMCID: PMC6756118 DOI: 10.1038/s41388-018-0661-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/15/2022]
Abstract
The melanocytic lineage, which is prominently exposed to ultraviolet radiation (UVR) and radiation-independent oxidative damage, requires specific DNA-damage response mechanisms to maintain genomic and transcriptional homeostasis. The coordinate lineage-specific regulation of intricately intertwined DNA repair and transcription is incompletely understood. Here we demonstrate that the Microphthalmia-associated transcription factor (MITF) directly controls general transcription and UVR-induced nucleotide excision repair by transactivation of GTF2H1 as a core element of TFIIH. Thus, MITF ensures the rapid resumption of transcription after completion of strand repair and maintains transcriptional output, which is indispensable for survival of the melanocytic lineage including melanoma in vitro and in vivo. Moreover, MITF controls c-MYC implicated in general transcription by transactivation of far upstream binding protein 2 (FUBP2/KSHRP), which induces c-MYC pulse regulation through TFIIH, and experimental depletion of MITF results in consecutive loss of CDK7 in the TFIIH-CAK subcomplex. Targeted for proteasomal degradation, CDK7 is dependent on transactivation by MITF or c-MYC to maintain a steady state. The dependence of TFIIH-CAK on sequence-specific MITF and c-MYC constitutes a previously unrecognized mechanism feeding into super-enhancer-driven or other oncogenic transcriptional circuitries, which supports the concept of a transcription-directed therapeutic intervention in melanoma.
Collapse
Affiliation(s)
- Marcos Seoane
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Pablo Iglesias
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Julia Strauss
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Jürgen Müller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg, Hamburg, 20246, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Johanna M Brandner
- Department of Dermatology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Dennis Eggert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany.,Max-Planck-Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Jinyan Du
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Merrimack Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Jürgen Thomale
- Institute of Cell Biology, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, 8091, Switzerland
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, 30625, Germany
| | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany. .,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany.
| |
Collapse
|
94
|
Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer. Cell Death Dis 2018; 9:1041. [PMID: 30310055 PMCID: PMC6181952 DOI: 10.1038/s41419-018-1096-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology.
Collapse
|
95
|
Regneri J, Klotz B, Wilde B, Kottler VA, Hausmann M, Kneitz S, Regensburger M, Maurus K, Götz R, Lu Y, Walter RB, Herpin A, Schartl M. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka. Pigment Cell Melanoma Res 2018; 32:248-258. [PMID: 30117276 DOI: 10.1111/pcmr.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Brigitta Wilde
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Verena A Kottler
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Ronald B Walter
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Amaury Herpin
- INRA, Fish Physiology and Genomics Institute (INRA-LPGP), Sexual Differentiation and Oogenesis Group (SDOG), Campus de Beaulieu, Rennes Cedex, France
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
96
|
Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Sci Rep 2018; 8:11519. [PMID: 30068931 PMCID: PMC6070509 DOI: 10.1038/s41598-018-29826-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/10/2018] [Indexed: 02/03/2023] Open
Abstract
Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.
Collapse
|
97
|
Fane ME, Sturm RA. Four! Drivers of melanoma differentiation-When to use iron. Pigment Cell Melanoma Res 2018; 31:658-660. [PMID: 30015373 DOI: 10.1111/pcmr.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, Dewaele M, Karras P, Brown D, Chang YH, Debiec-Rychter M, Adriaens C, Radaelli E, Wolter P, Bechter O, Dummer R, Levesque M, Piris A, Frederick DT, Boland G, Flaherty KT, van den Oord J, Voet T, Aerts S, Lund AW, Marine JC. Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell 2018; 174:843-855.e19. [PMID: 30017245 DOI: 10.1016/j.cell.2018.06.025] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.
Collapse
Affiliation(s)
- Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Julia Femel
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michael Dewaele
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Daniel Brown
- Laboratory of reproductive genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, USA
| | - Maria Debiec-Rychter
- Laboratory for Genetics of Malignant Disorders, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Adriaens
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Enrico Radaelli
- Comparative Pathology Core, University of Pennsylvania, Department of Pathobiology, Philadelphia, PA, USA
| | - Pascal Wolter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Reinhard Dummer
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Adriano Piris
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Dennie T Frederick
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith T Flaherty
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Thierry Voet
- Laboratory of reproductive genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Amanda W Lund
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
99
|
Transdifferentiation of Melanoma Cells by the Reprogramming Factors Attenuates Malignant Nature In Vitro and In Vivo. J Invest Dermatol 2018; 139:254-257. [PMID: 29990471 DOI: 10.1016/j.jid.2018.06.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 11/23/2022]
|
100
|
Eliades P, Abraham BJ, Ji Z, Miller DM, Christensen CL, Kwiatkowski N, Kumar R, Njauw CN, Taylor M, Miao B, Zhang T, Wong KK, Gray NS, Young RA, Tsao H. High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. J Invest Dermatol 2018; 138:1582-1590. [PMID: 29408204 PMCID: PMC6019629 DOI: 10.1016/j.jid.2017.09.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma is an aggressive tumor that accounts for most skin cancer deaths. Among the physiological barriers against therapeutic success is a strong survival program driven by genes such as MITF that specify melanocyte identity, a phenomenon known in melanoma biology as lineage dependency. MITF overexpression is occasionally explained by gene amplification, but here we show that super-enhancers are also important determinants of MITF overexpression in some melanoma cell lines and tumors. Although compounds that directly inhibit MITF are unavailable, a covalent CDK7 inhibitor, THZ1, has recently been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We also show that melanoma cells are highly sensitive to CDK7 inhibition both in vitro and in vivo and that THZ1 can dismantle the super-enhancer apparatus at MITF and SOX10 in some cell lines, thereby extinguishing their intracellular levels. Our results show a dimension to MITF regulation in melanoma cells and point to CDK7 inhibition as a potential strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Collapse
Affiliation(s)
- Philip Eliades
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Weill Cornell Medical College, New York, New York, USA; Signature Healthcare Brockton Hospital, Brockton, Massachusetts, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Miller
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Camilla L Christensen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benchun Miao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|