51
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
52
|
Yamamoto M, Bagarinao E, Shimamoto M, Iidaka T, Ozaki N. Involvement of cerebellar and subcortical connector hubs in schizophrenia. NEUROIMAGE: CLINICAL 2022; 35:103140. [PMID: 36002971 PMCID: PMC9421528 DOI: 10.1016/j.nicl.2022.103140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Hubs with altered connectivity to multiple networks were identified in patients. Identified hubs were located in the cerebellum, midbrain, thalamus, and insula. In controls, these hubs were strongly connected with the basal ganglia network. Hubs’ connections to large-scale networks were associated with clinical data. Their connections were also highly predictive of patients from controls.
Background Schizophrenia is considered a brain connectivity disorder in which functional integration within the brain fails. Central to the brain’s integrative function are connector hubs, brain regions characterized by strong connections with multiple networks. Given their critical role in functional integration, we hypothesized that connector hubs, including those located in the cerebellum and subcortical regions, are severely impaired in patients with schizophrenia. Methods We identified brain voxels with significant connectivity alterations in patients with schizophrenia (n = 76; men = 43) compared to healthy controls (n = 80; men = 43) across multiple large-scale resting state networks (RSNs) using a network metric called functional connectivity overlap ratio (FCOR). From these voxels, candidate connector hubs were identified and verified using seed-based connectivity analysis. Results We found that most networks exhibited connectivity alterations in the patient group. Specifically, connectivity with the basal ganglia and high visual networks was severely affected over widespread brain areas in patients, affecting subcortical and cerebellar regions and the regions involved in visual and sensorimotor processing. Furthermore, we identified critical connector hubs in the cerebellum, midbrain, thalamus, insula, and calcarine with connectivity to multiple RSNs affected in the patients. FCOR values of these regions were also associated with clinical data and could classify patient and control groups with > 80 % accuracy. Conclusions These findings highlight the critical role of connector hubs, particularly those in the cerebellum and subcortical regions, in the pathophysiology of schizophrenia and the potential role of FCOR as a clinical biomarker for the disorder.
Collapse
|
53
|
Basal ganglia correlates of wellbeing in early adolescence. Brain Res 2022; 1774:147710. [PMID: 34762929 DOI: 10.1016/j.brainres.2021.147710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
It has been suggested that biological markers that define mental health are different to those that define mental illness. The basal ganglia changes dramatically over adolescence and has been linked to wellbeing and mental health disorders in young people. However, there remains a paucity of research on wellbeing and brain structure in early adolescence. This cross-sectional study examined relationships between grey matter volume (GMV) of basal ganglia regions (caudate, putamen, pallidum and nucleus accumbens) and self-reported wellbeing (COMPAS-W), in a sample of Australian adolescents aged 12 years (N = 49, M = 12.6, 46.9% female). Significant negative associations were found between left hemisphere caudate GMV and scores on 'total wellbeing', 'composure' and 'positivity'. The results of this study indicate that smaller caudate GMV at age 12 is linked to increased subjective wellbeing. While seemingly counter-intuitive, our finding is consistent with previous research of decreased GMV in the pons and increased COMPAS-W scores in adults. Our results suggest that protective neurobiological factors may be identifiable early in adolescence and be linked to specific types of wellbeing (such as positive affect and optimism). This has implications for interventions targeted at building resilience against mental health disorders in young people.
Collapse
|
54
|
Altered corticostriatal synchronization associated with compulsive-like behavior in APP/PS1 mice. Exp Neurol 2021; 344:113805. [PMID: 34242631 DOI: 10.1016/j.expneurol.2021.113805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Mild behavioral impairment (MBI), which can include compulsive behavior, is an early sign of Alzheimer's disease (AD), but its underlying neural mechanisms remain unclear. Here, we show that 3-5-month-old APP/PS1 mice display obsessive-compulsive disorder (OCD)-like behavior. The number of parvalbumin-positive (PV) interneurons and level of high gamma (γhigh) oscillation are significantly decreased in the striatum of AD mice. This is accompanied by enhanced β-γhigh coupling and firing rates of putative striatal projection neurons (SPNs), indicating decorrelation between PV interneurons and SPNs. Local field potentials (LFPs) simultaneously recorded in prefrontal cortex (PFC) and striatum (Str) demonstrate a decrease in γhigh-band coherent activity and spike-field coherence in corticostriatal circuits of APP/PS1 mice. Furthermore, levels of GABAB receptor (GABABR), but not GABAA receptor (GABAAR), and glutamatergic receptors, were markedly reduced, in line with presymptomatic AD-related behavioral changes. These findings suggest that MBI occurs as early as 3-5 months in APP/PS1 mice and that altered corticostriatal synchronization may play a role in mediating the behavioral phenotypes observed.
Collapse
|
55
|
Dean EA, Sola CL. Psychiatric Sequelae of Anti-Dipeptidyl Peptidase-Like Protein-6 Encephalitis: A Case Report and Review of the Literature. J Acad Consult Liaison Psychiatry 2021; 62:449-455. [PMID: 34210404 DOI: 10.1016/j.jaclp.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Erin A Dean
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH.
| | - Christopher L Sola
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
56
|
Isobe M, Vaghi M, Fineberg NA, Apergis-Schoute AM, Bullmore ET, Sahakian BJ, Robbins TW, Chamberlain SR. Set-shifting-related basal ganglia deformation as a novel familial marker of obsessive-compulsive disorder. Br J Psychiatry 2021; 220:1-4. [PMID: 35049465 PMCID: PMC7613037 DOI: 10.1192/bjp.2021.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The symptoms of obsessive-compulsive disorder (OCD) are suggestive of cognitive rigidity, and previous work identified impaired flexible responding on set-shifting tasks in such patients. The basal ganglia are central to habit learning and are thought to be abnormal in OCD, contributing to inflexible, rigid habitual patterns of behaviour. Here, we demonstrate that increased cognitive inflexibility, indexed by poor performance on the set-shifting task, correlated with putamen morphology, and that patients and their asymptomatic relatives had common curvature abnormalities within this same structure. The association between the structure of the putamen and the extradimensional errors was found to be significantly familial in OCD proband-relative pairs. The data implicate changes in basal ganglia structure linked to cognitive inflexibility as a familial marker of OCD. This may reflect a predisposing heightened propensity toward habitual response patterns and deficits in goal-directed planning.
Collapse
Affiliation(s)
- Masanori Isobe
- Department of Psychiatry, Kyoto University, Japan; Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; and The Nippon Foundation, Japan
| | - Matilde Vaghi
- Department of Psychology, University of Cambridge, UK; University College London, UK
| | - Naomi A Fineberg
- University of Hertfordshire, UK; and Hertfordshire Partnership University NHS Trust, UK
| | | | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, UK; and Cambridge and Peterborough NHS Foundation Trust, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; and Department of Psychology, University of Cambridge, UK
| | | | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; Department of Psychiatry, University of Southampton, UK; and Southern Health NHS Foundation Trust, UK
| |
Collapse
|
57
|
Franco RR, de Almeida Takata L, Chagas K, Justino AB, Saraiva AL, Goulart LR, de Melo Rodrigues Ávila V, Otoni WC, Espindola FS, da Silva CR. A 20-hydroxyecdysone-enriched fraction from Pfaffia glomerata (Spreng.) pedersen roots alleviates stress, anxiety, and depression in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113599. [PMID: 33220360 DOI: 10.1016/j.jep.2020.113599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pfaffia glomerata roots are widely used in Brazil to treat various pathological conditions, particularly psychological disorders. 20-hydroxyecdysone, a phytosteroid present in the plant, can promote greater body resistance against exogenous and endogenous stressors. The objective of this study was to evaluate the possible neuroprotective effect of a 20-hydroxyecdysone-enriched fraction (20E-EF), obtained from P. glomerata roots, in an acute murine stress model. MATERIAL AND METHODS The 20E-EF was obtained by partitioning the methanol extract from P. glomerata roots with dichloromethane. Mice were treated by gavage with three doses of 20E-EF (3, 10, and 30 mg/kg) and parameters of stress, anxiety, and depression were evaluated. Biomarkers of oxidative stress (enzymes, antioxidant profile, and oxidized molecules) were evaluated in the cortex, striatum (basal ganglia), and hippocampus of animals treated with 30 mg/kg of 20E-EF. RESULTS Mass spectrometry revealed that 20E was the main compound in the dichloromethane fraction. At a dose of 30 mg/kg, 20E-EF reduced stress, anxiety, and depression, while stimulating antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), promoting antioxidant activity (antioxidant capacity, sulfhydryl groups, and reduced glutathione), and reducing oxidative markers (lipid peroxidation). In addition, 20E increased the concentration of NO in the striatum, possibly improving memory function and antioxidant activity. CONCLUSION A 30 mg/kg dose of 20E-EF was able to reduce stress, anxiety, and depression, in addition to maintaining antioxidant defenses of the cortex and striatum. These findings open new perspectives for understanding the therapeutic properties of P. glomerata and the underlying mechanism(s).
Collapse
Affiliation(s)
- Rodrigo Rodrigues Franco
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Letícia de Almeida Takata
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Kristhiano Chagas
- Department of Plant Biology, Plant Tissue Culture Laboratory/BIOAGRO, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Allisson Benatti Justino
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | | | - Wagner Campos Otoni
- Department of Plant Biology, Plant Tissue Culture Laboratory/BIOAGRO, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Foued Salmen Espindola
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Cássia Regina da Silva
- Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| |
Collapse
|
58
|
Davidson B, Suresh H, Goubran M, Rabin JS, Meng Y, Mithani K, Pople CB, Giacobbe P, Hamani C, Lipsman N. Predicting response to psychiatric surgery: a systematic review of neuroimaging findings. J Psychiatry Neurosci 2020; 45:387-394. [PMID: 32293838 PMCID: PMC7595737 DOI: 10.1503/jpn.190208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Psychiatric surgery, including deep brain stimulation and stereotactic ablation, is an important treatment option in severe refractory psychiatric illness. Several large trials have demonstrated response rates of approximately 50%, underscoring the need to identify and select responders preoperatively. Recent advances in neuroimaging have brought this possibility into focus. We systematically reviewed the psychiatric surgery neuroimaging literature to assess the current state of evidence for preoperative imaging predictors of response. METHODS We performed this study in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) frameworks, and preregistered it using PROSPERO. We systematically searched the Medline, Embase and Cochrane databases for studies reporting preoperative neuroimaging analyses correlated with clinical outcomes in patients who underwent psychiatric surgery. We recorded and synthesized the methodological details, imaging results and clinical correlations from these studies. RESULTS After removing duplicates, the search yielded 8388 unique articles, of which 7 met the inclusion criteria. The included articles were published between 2001 and 2018 and reported on the outcomes of 101 unique patients. Of the 6 studies that reported significant findings, all identified clusters of hypermetabolism, hyperconnectivity or increased size in the frontostriatal limbic circuitry. LIMITATIONS The included studies were few and highly varied, spanning 2 decades. CONCLUSION Although few studies have analyzed preoperative imaging for predictors of response to psychiatric surgery, we found consistency among the reported results: most studies implicated overactivity in the frontostriatal limbic network as being correlated with clinical response. Larger prospective studies are needed. REGISTRATION www.crd.york.ac.uk/prospero/display_record.php?RecordID=131151.
Collapse
Affiliation(s)
- Benjamin Davidson
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Hrishikesh Suresh
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Maged Goubran
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Jennifer S Rabin
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Ying Meng
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Karim Mithani
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Christopher B Pople
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Peter Giacobbe
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Clement Hamani
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Nir Lipsman
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| |
Collapse
|
59
|
Salin P, Blondel D, Kerkerian-Le Goff L, Coulon P. Golgi staining-like retrograde labeling of brain circuits using rabies virus: Focus onto the striatonigral neurons. J Neurosci Methods 2020; 344:108872. [PMID: 32693000 DOI: 10.1016/j.jneumeth.2020.108872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of viral transneuronal tracers in the toolbox of neural tract-tracing methods has been an important addition in the field of connectomics for deciphering circuit-level architecture of the nervous system. One of the added values of viral compared to conventional retrograde tracers, in particular of rabies virus, is to provide a Golgi staining-like view of the infected neurons, revealing the thin dendritic arborizations and the spines that are major post-synaptic seats of neuronal connections. NEWMETHOD Here, we comparatively illustrate the characteristics of the labeling obtained in the same model system, the basal ganglia circuitry, by different retrograde viral tracing approaches, using the Bartha strain of pseudorabies virus, the SAD and CVS strains of rabies virus and by the conventional retrograde tracer cholera toxin B. To best contrast the differences in the capacity of these tracers to reveal the dendritic morphology in details, we focused on one population of first-order infected neurons in the striatum, which exhibit high spine density, after tracer injection in the substantia nigra. RESULTS AND CONCLUSION None of the viruses tested allowed to detect as many neurons as with cholera toxin B, but the SAD and CVS strains of rabies virus had the advantage of enabling detailed Golgi-like visualisation of the dendritic trees, the best numerical detection being offered by the transneuronal rCVS-N2c-P-mCherry while poor labeling was provided by rCVS-N2c-M-GFP. Results also suggest that, besides different viral properties, technical issues about constructs and detection methods contribute to apparently different efficiencies among the viral approaches.
Collapse
Affiliation(s)
- P Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - D Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | | | - P Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Université and CNRS, Marseille, France
| |
Collapse
|
60
|
Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry 2020; 25:1946-1957. [PMID: 32404942 DOI: 10.1038/s41380-020-0737-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Obsessive compulsive disorder (OCD) and major depressive disorder (MDD) are common, often refractory, neuropsychiatric conditions for which new treatment approaches are urgently needed. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel surgical technique permitting incisionless ablative neurosurgery. We examined the safety profile, clinical response, and imaging correlates of MRgFUS bilateral anterior capsulotomy in patients with refractory obsessive compulsive disorder (OCD, N = 6) and major depressive disorder (MDD, n = 6). There were no serious adverse events. Nonserious adverse events included headaches and pin-site swelling in 7/12 patients. The response rate was 4/6 and 2/6 in the OCD and MDD cohorts respectively. To delineate the white-matter tracts impacted by capsulotomy, a normative diffusion MRI-based structural connectome was used, revealing tracts terminating primarily in the frontal pole, medial thalamus, striatum, and medial-temporal lobe. Positron emission tomography (PET) analysis (nine subjects) revealed widespread decreases in metabolism bilaterally in the cerebral hemispheres at 6 months post treatment, as well as in the right hippocampus, amygdala, and putamen. A pretreatment seed-to-voxel resting-state functional magnetic resonance imaging (rs-fMRI) analysis (12 subjects) revealed three voxel clusters significantly associated with eventual clinical response. MRgFUS capsulotomy appears to be safe, well tolerated, and according to these initial results, may be an important treatment option for patients with refractory OCD and MDD. MRgFUS capsulotomy results in both targeted and widespread changes in neural activity, and neuroimaging may hold potential for the prediction of outcome.
Collapse
|
61
|
Hasegawa H, Selway R, Gnoni V, Beniczky S, Williams SCR, Kryger M, Ferini-Strambi L, Goadsby P, Leschziner GD, Ashkan K, Rosenzweig I. The subcortical belly of sleep: New possibilities in neuromodulation of basal ganglia? Sleep Med Rev 2020; 52:101317. [PMID: 32446196 PMCID: PMC7679363 DOI: 10.1016/j.smrv.2020.101317] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Early studies posited a relationship between sleep and the basal ganglia, but this relationship has received little attention recently. It is timely to revisit this relationship, given new insights into the functional anatomy of the basal ganglia and the physiology of sleep, which has been made possible by modern techniques such as chemogenetic and optogenetic mapping of neural circuits in rodents and intracranial recording, functional imaging, and a better understanding of human sleep disorders. We discuss the functional anatomy of the basal ganglia, and review evidence implicating their role in sleep. Whilst these studies are in their infancy, we suggest that the basal ganglia may play an integral role in the sleep-wake cycle, specifically by contributing to a thalamo-cortical-basal ganglia oscillatory network in slow-wave sleep which facilitates neural plasticity, and an active state during REM sleep which enables the enactment of cognitive and emotional networks. A better understanding of sleep mechanisms may pave the way for more effective neuromodulation strategies for sleep and basal ganglia disorders.
Collapse
Affiliation(s)
- Harutomo Hasegawa
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Department of Neurosurgery, King's College Hospital, London, UK
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Valentina Gnoni
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK
| | - Sandor Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark; Aarhus University Hospital, Aarhus, Denmark
| | | | - Meir Kryger
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Connecticut, USA
| | | | - Peter Goadsby
- NIHR-Wellcome Trust Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK; Department of Neurology, Guy's and St Thomas' Hospital (GSTT) & Clinical Neurosciences, KCL, UK
| | | | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK.
| |
Collapse
|
62
|
Alarcón JA, Velasco-Torres M, Rosas A, Galindo-Moreno P, Catena A. Relationship between vertical facial pattern and brain structure and shape. Clin Oral Investig 2020; 24:1499-1508. [PMID: 32034547 DOI: 10.1007/s00784-020-03227-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Dolichofacial (long-faced) and brachyfacial (short-faced) individuals show specific and well-differentiated craniofacial morphology. Here, we hypothesise that differences in the basicranial orientation and topology between dolicho- and brachyfacial subjects could be associated with differences in the supporting brain tissues. MATERIAL AND METHODS Brain volumes (total intracranial, grey matter, and white matter volume), cortical thickness, and the volumes and shapes of fifteen subcortical nuclei were assessed on the basis of magnetic resonance imaging in 185 subjects. Global, voxel-wise and shape analyses, as well as multiple regression models, were generated to evaluate the association between vertical facial variations (dolicho- and brachyfacial spectrum) and brain morphology. RESULTS Several differences in brain anatomy between dolicho- and brachyfacial subjects, along with relevant associations between vertical facial indices and brain structure and shape, were found. The most relevant finding of this study is related to the strong association of vertical facial indices with the volumes and shapes of subcortical nuclei, as the dolichofacial pattern increased, the bilateral hippocampus and brain stem expanded, while the left caudate, right pallidus, right amygdala, and right accumbens decreased in volume. CONCLUSIONS Long- and short-faced human subjects present differences in brain structure and shape. CLINICAL SIGNIFICANT The results of our study increase the clinician's knowledge about brain structure in dolicho- and brachyfacial patients. The findings could be of interest since the affected brain areas are involved in higher cognitive functions in humans, including language, memory, and attention.
Collapse
Affiliation(s)
- José Antonio Alarcón
- Department of Orthodontics, School of Dentistry, University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain.
| | - Miguel Velasco-Torres
- Department of Oral Radiology, School of Dentistry, University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| | - Antonio Rosas
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| | - Andrés Catena
- Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| |
Collapse
|
63
|
Interaction of emotion and cognitive control along the psychosis continuum: A critical review. Int J Psychophysiol 2020; 147:156-175. [DOI: 10.1016/j.ijpsycho.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
|
64
|
Hironaga N, Takei Y, Mitsudo T, Kimura T, Hirano Y. Prospects for Future Methodological Development and Application of Magnetoencephalography Devices in Psychiatry. Front Psychiatry 2020; 11:863. [PMID: 32973591 PMCID: PMC7472776 DOI: 10.3389/fpsyt.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a functional neuroimaging tool that can record activity from the entire cortex on the order of milliseconds. MEG has been used to investigate numerous psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, dementia, and autism spectrum disorder. Although several review papers on the subject have been published, perspectives and opinions regarding the use of MEG in psychiatric research have primarily been discussed from a psychiatric research point of view. Owing to a newly developed MEG sensor, the use of MEG devices will soon enter a critical period, and now is a good time to discuss the future of MEG use in psychiatric research. In this paper, we will discuss MEG devices from a methodological point of view. We will first introduce the utilization of MEG in psychiatric research and the development of its technology. Then, we will describe the principle theory of MEG and common algorithms, which are useful for applying MEG tools to psychiatric research. Next, we will consider three topics-child psychiatry, resting-state networks, and cortico-subcortical networks-and address the future use of MEG in psychiatry from a broader perspective. Finally, we will introduce the newly developed device, the optically-pumped magnetometer, and discuss its future use in MEG systems in psychiatric research from a methodological point of view. We believe that state-of-the-art electrophysiological tools, such as this new MEG system, will further contribute to our understanding of the core pathology in various psychiatric disorders and translational research.
Collapse
Affiliation(s)
- Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kimura
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
65
|
Affiliation(s)
- Saxby Pridmore
- Department of Psychiatry, University of Tasmania, Hobart, Australia
| |
Collapse
|