51
|
Doronin IV, Kalmykov AS, Zyablovsky AA, Andrianov ES, Khlebtsov BN, Melentiev PN, Balykin VI. Resonant Concentration-Driven Control of Dye Molecule Photodegradation via Strong Optical Coupling to Plasmonic Nanoparticles. NANO LETTERS 2022; 22:105-110. [PMID: 34910482 DOI: 10.1021/acs.nanolett.1c03277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photobleaching is one of the basic chemical processes that occur naturally in organic molecules. In this work, we investigate the quantum dynamics of Cy 7.5 dye molecules optically coupled to Au nanorod particles and experimentally demonstrate the decrease of the photobleaching rate in this hybrid system. We discover the effect of a resonance-like behavior not observed before for any type of emitter─the photobleaching rate of the dye molecules reaches a minimum for a suitable number of molecules coupled to the nanoparticle. The manifestation of the effect is the consequence of shifts in the energy levels in the hybrid system caused by the change in the number of molecules coupled to a nanoparticle. The energy shifts are the prerequisite for the effective depopulation of the triplet level, which is responsible for the photodegradation mechanism. The discovered effect paves the way for increasing the efficiency of optoelectronic and photovoltaic devices.
Collapse
Affiliation(s)
- Ilya V Doronin
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Moscow 141700, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | | | - Alexander A Zyablovsky
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Moscow 141700, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
- Kotelnikov Institute of Radioengineering and Electronics RAS, 11-7 Mokhovaya, Moscow 125009, Russia
| | - Evgeny S Andrianov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Moscow 141700, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | | |
Collapse
|
52
|
Jiang M, Xu S, Yu Y, Gao Y, Yin Z, Li J, Zhang X, Yu H, Chen B. Turn-on fluorescence ferrous ions detection based on MnO 2 nanosheets modified upconverion nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120275. [PMID: 34411769 DOI: 10.1016/j.saa.2021.120275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
A turn on upconversion fluorescence probe based on the combination of ~32 nm NaYF4: Yb/Tm nanoparticles and MnO2 nanosheets has been established for rapid, sensitive detection of Fe2+ ions levels in aqueous solutions and serum. X-ray diffraction (XRD), transmission electron microscopy (TEM), absorption and emission spectra have been used to characterize the crystal structure, morphology and optical properties of the samples. MnO2 nanosheets on the surface of UCNPs act as a fluorescence quencher, resulting in the quenching of the blue fluorescence (with excitation/emission maximum of 980/476 nm) via fluorescence resonance energy transfer from upconversion nanoparticles to MnO2 nanosheets. With the adding of Fe2+, upconversion fluorescence of the nanocomposites recovers due to the reduction of MnO2 to Mn2+. Because of the low background of the probe offered by upconversion fluorescence, this probe can be used for detecting Fe2+ in aqueous solutions in the range of 0.1-22 μM with detection limit of 0.113 μM. The developed method has also been applied to detect 10 μM Fe2+ ions in serum with recoveries ranging from 97.6 to 105.3% for the five serum samples. Significantly, the probe shows fast response and stable signal, which is beneficial for long-time dynamic sensing. Thus, the proposed strategy holds great potential for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Muhan Jiang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China.
| | - Yang Yu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Yuefeng Gao
- Marine Engineering College, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Ze Yin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Jie Li
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Xizhen Zhang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Hongquan Yu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China.
| |
Collapse
|
53
|
Jena S, Parker LL. Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity. Methods Mol Biol 2022; 2394:133-162. [PMID: 35094326 PMCID: PMC10041689 DOI: 10.1007/978-1-0716-1811-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Posttranslational modification (PTM) enzymes are important modulators of protein structure and function. They typically act by chemically modifying amino acids, often on side chain functional groups, to change the physiochemical landscape of the protein and thus its biophysical behavior. In particular, protein kinases are enzymes that transfer phosphate from ATP to serine, threonine, or tyrosine in protein substrates. They are key regulators of vital cellular pathways such as survival, proliferation, and apoptosis, and their dysregulation in the context of cancer has been widely investigated for the purpose of development of anticancer drugs. However, several critical questions pertaining to their physiology, such as heterogeneity of kinase signaling within and between cells, and other factors that may play into the mechanisms of drug resistance, remain unanswered. Many of the current strategies to measure kinase activity lack the scope, subcellular resolution, and real-time monitoring ability needed to obtain the type of information needed about their dynamics and localization in cells. While FRET-based biosensors are capable of dynamic single cell imaging, their applications can be limited by difficulties in multiplexing and the inherent inadequacies of steady state measurements. In this chapter, we describe our fluorescence lifetime imaging microscopy (FLIM) probe technology in which peptide kinase substrates, linked to cell-penetrating peptides and labeled with small molecule fluorophores, are used to report kinase activity through time-resolved fluorescence imaging to visualize and quantify changes to the probe's fluorescence lifetime. These can be multiplexed for more than one kinase at a time, and interpretation is not affected by differences in local intensity due to probe uptake and distribution or photobleaching. With careful choice of peptide substrate(s), fluorophore label, and imaging set-up, high specificity and spatiotemporal resolution can be achieved. Due to the mechanism by which the lifetime change occurs, this approach is compatible with other PTMs (such as acetylation, methylation), and so the considerations for kinase FLIM probe design described in this chapter should be broadly applicable for other PTMs as well.
Collapse
|
54
|
Malatji K, Fru PN, Mufhandu H, Alexandre K. Synthesis of fluorescence labelled aptamers for use as low-cost reagents in HIV/AIDS research and diagnostics. Biomed Rep 2021; 16:8. [PMID: 34938537 PMCID: PMC8686199 DOI: 10.3892/br.2021.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Aptamers are nucleic acids selected by systematic evolution of ligands by exponential enrichment. They have potential as alternatives to antibodies in medical research and diagnostics, with the advantages of being non-immunogenic and relatively inexpensive to produce. In the present study, gp120 aptamers conjugated with fluorescein isothiocyanate (FITC) were generated, which could interact with HIV-1 gp120. A previously isolated gp120 aptamer, CSIR 1.1, was conjugated with FITC by incubation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and imidazole. The conjugation and binding to the glycoprotein were confirmed by flow cytometry. FITC conjugated aptamers showed an increase in fluorescence emission 24-fold higher than baseline, and this difference was statistically significant (P=0.0016). Compared with a commercially available biotinylated anti-gp120 antibody, detected using FITC conjugated streptavidin, the emission of fluorescence obtained from the FITC-conjugated aptamer was 8-fold higher, suggesting a stronger interaction with gp120. In addition, the FITC conjugated aptamer neutralized HIV-1 pseudoviruses with an average IC50 of 21.3 nM, similar to the parent aptamer that had an IC50 of 19.2 nM. However, the difference in inhibition between the two aptamers was not statistically significant (P=0.784). These results indicate that the FITC-conjugated aptamer generated in the present study could potentially be used as a low-cost reagent in HIV/AIDS research and diagnostics.
Collapse
Affiliation(s)
- Kanyane Malatji
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa.,Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Hazel Mufhandu
- Department of Microbiology, North West University, School of Biological Sciences, Mmabatho, North West 2735, South Africa
| | - Kabamba Alexandre
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa
| |
Collapse
|
55
|
Zhao Y, Moritz T, Hinds MF, Gunn JR, Shell JR, Pogue BW, Davis SJ. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. JOURNAL OF BIOPHOTONICS 2021; 14:e202100088. [PMID: 34323374 DOI: 10.1002/jbio.202100088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen (1 O2 ) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect 1 O2 phosphorescence in the presence of strong luminescence background in vivo. This system provides simultaneous acquisition of multiple spectral data points, allowing for more accurate determination of luminescence baseline via spectral fitting and thus the extraction of 1 O2 phosphorescence signal based solely on spectroscopic decomposition, without the need for time-gating. Simultaneous collection of photons at different wavelengths improves the quantum efficiency of the system when compared to sequential spectral measurements such as filter-wheel or tunable-filter based systems. A prototype system was tested during in vivo PDT tumor regression experiments using benzoporphyrin derivative (BPD) photosensitizer. It was found that the treatment efficacy (tumor growth inhibition rate) correlated more strongly with 1 O2 phosphorescence than with PS fluorescence. These results indicate that this high photon-collection efficiency spectrometer instrument may offer a viable option for real-time 1 O2 dosimetry during PDT treatment using CW light.
Collapse
Affiliation(s)
- Youbo Zhao
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Tobias Moritz
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Michael F Hinds
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Steven J Davis
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| |
Collapse
|
56
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
57
|
Cremer C, Merkes JM, Bub CL, Rommel D, Patureau FW, Banala S. Leucomethylene blue probe detects a broad spectrum of reactive oxygen and nitrogen species. RSC Adv 2021; 11:32295-32299. [PMID: 35495535 PMCID: PMC9041740 DOI: 10.1039/d1ra06498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS, RNS) are ubiquitous in biology with a variety of physiological and pathological functions. Here we describe a broad spectrum ROS/RNS detecting fluorogenic probe with red fluorescence emission and up to 100-fold gain. Hence these modified probes are useful for in vivo non-invasive quantification of ROS/RNS.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen Germany
| | - Jean Michél Merkes
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen Forckenbeckstrasse 55 Germany
| | - Christina L Bub
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen Germany
| | - Dirk Rommel
- DWI-Leibnitz Institute for Interactive Materials and Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Forckenbeckstrasse 50 Aachen Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen Germany
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen Forckenbeckstrasse 55 Germany
- Fraunhofer Institute for Digital Medicine MEVIS Max-von-Laue-Str. 2 28359 Bremen Germany
| |
Collapse
|
58
|
Cho Y, An HJ, Kim T, Lee C, Lee NK. Mechanism of Cyanine5 to Cyanine3 Photoconversion and Its Application for High-Density Single-Particle Tracking in a Living Cell. J Am Chem Soc 2021; 143:14125-14135. [PMID: 34432445 DOI: 10.1021/jacs.1c04178] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanine (Cy) dyes are among the most useful organic fluorophores that have found a wide range of applications in single-molecule and super-resolution imaging as well as in other biophysical studies. However, recent observations that blueshifted derivatives of Cy dyes are formed via photoconversion have raised concerns as to the potential artifacts in multicolor imaging. Here, we report the mechanism for the photoconversion of Cy5 to Cy3 that occurs upon photoexcitation during fluorescent imaging. Our studies show that the formal C2H2 excision from Cy5 occurs mainly through an intermolecular pathway involving a combination of bond cleavage and reconstitution while unambiguously confirming the identity of the fluorescent photoproduct of Cy5 to be Cy3 using various spectroscopic tools. The carbonyl products generated from singlet oxygen-mediated photooxidation of Cy5 undergo a sequence of carbon-carbon bond-breaking and -forming events to bring about the novel dye-to-dye transformation. We also show that the deletion of a two-methine unit from the polymethine chain, which results in the formation of blueshifted products, commonly occurs in other cyanine dyes, such as Alexa Fluor 647 (AF647) and Cyanine5.5. The formation of a blueshifted congener dye can obscure the multicolor fluorescence imaging, leading to misinterpretation of the data. We demonstrate that the potentially deleterious photoconversion, however, can be exploited to develop a new photoactivation method for high-density single-particle tracking in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Yoonjung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Taehoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulbom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
59
|
Baxter AM, Jordan LR, Kullappan M, Wittenberg NJ. Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5753-5762. [PMID: 33939441 DOI: 10.1021/acs.langmuir.0c03363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We show that photosensitized phospholipid oxidation, initiated by the lipid-conjugated fluorophore TopFluor-PC, causes defects, namely, membrane tubes and vesicle-like structures, in supported lipid bilayers (SLBs). Lipid oxidation is detrimental to the integrity of the lipid molecules; when oxidized, they undergo a conformational expansion, which causes membrane tubes to protrude from the SLB. Lipid oxidation is verified by FT-IR spectroscopy, and area expansion is observed in Langmuir trough experiments. Upon growing to a critical length, the membrane tubes arising from SLBs rapidly undergo transition to vesicle-like structures. We find a correlation between the maximum tube length and the diameter of the resulting vesicle, suggesting the conservation of the surface area between these features. We use geometric modeling and the measured tube length and vesicle radius to calculate the tube radius; our calculated mean tube diameter of 243 nm is comparable to other groups' experimental findings. In the presence of fluid flow, membrane tubes can be extended to tens to hundreds of microns in length. SLBs composed of saturated lipids resist light-induced tubulation, and the inclusion of the lipophilic antioxidant α-tocopherol attenuates the tubulation process and increases the light intensity threshold for tubulation.
Collapse
Affiliation(s)
- Ashley M Baxter
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Monicka Kullappan
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
60
|
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior †. Photochem Photobiol 2021; 97:1417-1430. [PMID: 33934354 DOI: 10.1111/php.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Protein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example. One thus obtains a useful tool to study processes modulated by spatially localized ROS. One ROS of interest is singlet oxygen, O2 (a1 Δg ). We recently developed a singlet oxygen photosensitizing protein, SOPP, in which flavin mononucleotide, FMN, is encased in a re-engineered light-oxygen-voltage protein. One goal was to ascertain how a version of this system, SOPP3, which selectively makes O2 (a1 Δg ), in vitro, behaves in a cell. We now demonstrate that SOPP3 undergoes exacerbated irradiation-mediated bleaching when expressed at either the plasma membrane or mitochondria in stable cell lines. We find that the environment around the SOPP3 system affects the bleaching rate, which argues against one of the key suppositions in support of a protein-encased chromophore.
Collapse
Affiliation(s)
| | | | | | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
61
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
62
|
Jing L, Sun M, Xu P, Yao K, Yang J, Wang X, Liu H, Sun M, Sun Y, Ni R, Sun J, Huang D. Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS APPLIED BIO MATERIALS 2021; 4:3189-3202. [PMID: 35014406 DOI: 10.1021/acsabm.0c01587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significant progress has been made in fabricating porous scaffolds with ultrafine fibers for tissue regeneration. However, the lack of noninvasive tracking methods in vivo makes it impossible to track the fate of such scaffolds in situ. The development of near-infrared region II (NIR-II, 1000-1700 nm) dyes provides the possibility of performing noninvasive visualization with deep-tissue penetration and high spatial resolution in vivo. Herein, we developed a polycaprolactone (PCL) ink containing the small organic NIR-II dye SY-1030 and the fluorescently labeled macromolecular dye SY-COO-PCL and fabricated high-resolution NIR-II active scaffolds via electrohydrodynamic jet (EHDJ) printing. All printed scaffolds subcutaneously implanted in mice were clearly imaged one week after the operation. Compared with scaffolds containing SY-1030, the fluorescence intensity emitted from scaffolds containing SY-COO-PCL can be tracked for up to three weeks. Moreover, the image quality can be optimized by adjusting the dye concentration, laser power, and exposure time. The advantage of such NIR-II active scaffolds is evidenced by the lower dye concentration, longer tracking period, and better in vivo stability. We also demonstrated the biocompatibility and biodegradability of the scaffolds containing SY-COO-PCL over a 3-month period. The developed NIR-II active scaffolds have potential applications in biopolymer implant tracking, tissue reconstruction monitoring, and target-position-based drug delivery.
Collapse
Affiliation(s)
- Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Mingtai Sun
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Pingkang Xu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kai Yao
- Department of Mechatronics and Robotics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiao Yang
- Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, 88 Keling Road, Suzhou, Jiangsu 215123, China
| | - Xiang Wang
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Hang Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Minxuan Sun
- Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, 88 Keling Road, Suzhou, Jiangsu 215123, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152, Luoyu Road, Wuhan, Hubei 430079, China
| | - Runyan Ni
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Jie Sun
- Department of Mechatronics and Robotics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
63
|
Fitzek H, Wewerka K, Schmidt U, Schröttner H, Zankel A. The combination of Raman microscopy and electron microscopy - Practical considerations of the influence of vacuum on Raman microscopy. Micron 2021; 143:103029. [PMID: 33581473 DOI: 10.1016/j.micron.2021.103029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Due to the specific vacuum requirements for scanning electron microscopy (SEM), the Raman microscope has to operate in vacuum in a correlative Raman-SEM, which is a type of microscope combination that has recently increased in popularity. This works considers the implications of conducting Raman microscopy under vacuum, as opposed to operating in ambient air, the standard working regime of this technique. We show that the performance of the optics of the Raman microscope are identical in both conditions, but laser beam-sample interactions, such as fluorescent bleaching and beam damage, might be different due to the lack of oxygen in vacuum. The bleaching of the fluorescent background appears to be mostly unaffected by the lack of oxygen, except when very low laser powers are used. Regarding laser-beam damage, organic samples are more sensitive in vacuum than in air, whereas no definite verdict is possible for inorganic samples. These findings have practical implications for the application of correlative Raman-SEM, as low laser powers, or in extreme cases cryo-methods, need to be used for organic samples that appear only moderately beam sensitive under usual ambient air.
Collapse
Affiliation(s)
- Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010, Graz, Austria.
| | - Karin Wewerka
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology (TU Graz), NAWI Graz, Steyrergasse 17, 8010, Graz, Austria.
| | - Ute Schmidt
- WITec GmbH, Lise-Meitner-Straße 6, 89081, Ulm, Germany.
| | - Hartmuth Schröttner
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010, Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology (TU Graz), NAWI Graz, Steyrergasse 17, 8010, Graz, Austria.
| | - Armin Zankel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010, Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology (TU Graz), NAWI Graz, Steyrergasse 17, 8010, Graz, Austria.
| |
Collapse
|
64
|
Maliszewska I, Wanarska E, Thompson AC, Samuel IDW, Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy. Molecules 2021; 26:molecules26030623. [PMID: 33504099 PMCID: PMC7865674 DOI: 10.3390/molecules26030623] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a growing concern that is driving the exploration of alternative ways of killing bacteria. Here we show that gold nanoparticles synthesized by the mycelium of Mucor plumbeus are an effective medium for antimicrobial photodynamic therapy (PDT). These particles are spherical in shape, uniformly distributed without any significant agglomeration, and show a single plasmon band at 522–523 nm. The nanoparticle sizes range from 13 to 25 nm, and possess an average size of 17 ± 4 nm. In PDT, light (from a source consisting of nine LEDs with a peak wavelength of 640 nm and FWMH 20 nm arranged in a 3 × 3 array), a photosensitiser (methylene blue), and oxygen are used to kill undesired cells. We show that the biogenic nanoparticles enhance the effectiveness of the photosensitiser, methylene blue, and so can be used to kill both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The enhanced effectiveness means that we could kill these bacteria with a simple, small LED-based light source. We show that the biogenic gold nanoparticles prevent fast photobleaching, thereby enhancing the photoactivity of the methylene blue (MB) molecules and their bactericidal effect.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| | - Ewelina Wanarska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Alex C. Thompson
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| |
Collapse
|
65
|
Abstract
A series of free base meso-tetraarylporphyrins functionalized with substituents containing one, two, and four cyclooctatetraene (COT) moieties have been obtained and characterized by spectral and photophysical studies. Three COT-free porphyrins served as reference compounds. COT is a triplet quencher, well-known to enhance the photostability of several, but not all, fluorophores. In the case of porphyrins, substitution with COT improves photostability in zinc derivatives, but for free bases, the effect is the opposite. We show that placing the COT moiety further from the free base porphyrin core enhances the photostability when the COT group lies in the direct vicinity of the macrocycle. The quantum yields of photobleaching inversely correlate with porphyrin oxidation potentials. An improvement in photostability in both COT-containing and COT-free porphyrins can be achieved by screening the porphyrin core from oxygen by switching from tolyl to mesityl substituents. This leads to a decrease in the photobleaching quantum yield, even though triplet lifetimes are longer. The results confirm the involvement of oxygen in the photodegradation of porphyrins.
Collapse
|
66
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
67
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
68
|
Kolmakov K, Winter FR, Sednev MV, Ghosh S, Borisov SM, Nizovtsev AV. Everlasting rhodamine dyes and true deciding factors in their STED microscopy performance. Photochem Photobiol Sci 2020; 19:1677-1689. [PMID: 33179701 DOI: 10.1039/d0pp00304b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors took an independent and closer look at the family of red-emitting rhodamine dyes known for a decade due to their excellent performance in STED microscopy. After the family was further extended, the true grounds of this performance became clear. Small-molecule protective agents and/or auxiliary groups were attached at two different sites of the dye's scaffold. Thus, a rhodamine core, which is already quite photostable as it is, and an intramolecular stabilizer - a 4-nitrobenzyl or a 4-nitrobenzylthio group were combined to give potentially "everlasting dyes". The fluorescence quantum yields (Φf) and the fluorescence lifetimes (τ) of the modified dyes were thoroughly measured with comparison to those of the parent dyes. The correlation of their STED performance with photostability and fluorescence color stability under illumination in water were explored. Unexpectedly, the anaerobic GSDIM (GOC) buffer proved unhelpful with respect to STED performance. It was demonstrated that, even dyes with a Φf of only 14-17% allow STED imaging with a sufficient photon budget and good signal-to-noise ratio. For the dyes with photostabilizing groups (PSG) the Φf values are 4-5 times lower than in the reference dyes, and lifetimes τ are also strongly reduced. Noteworthy are very high fluorescence color stability and constant or even increasing fluorescence signal under photobleaching in bulk aqueous solutions, which suggests a sacrificing role of the 4-nitrobenzyl-containing moieties. Straightforward and improved recipes for "last-minute" modifications and preparations of "self-healing" red-emitting fluorescent tags are described.
Collapse
Affiliation(s)
- Kirill Kolmakov
- glyXera GmbH, Brenneckestraße 20 * ZENIT II/Haus 66, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
69
|
Shigemitsu H, Matsuda K, Mori T, Nakatsuji H, Matsusaki M, Kida T. Enhancing Photostability of a Coumarin Dye by Self‐inclusion into a Cyclodextrin Cavity in Aqueous Solution and Living Cells. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hajime Shigemitsu
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
- Frontier Research Base for Global Young Researchers Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565–0871 Japan
- Global Center for Medical Engineering and Informatics Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Keigo Matsuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Tadashi Mori
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Hirotaka Nakatsuji
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Toshiyuki Kida
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| |
Collapse
|
70
|
Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc Natl Acad Sci U S A 2020; 117:24305-24315. [PMID: 32913060 PMCID: PMC7533661 DOI: 10.1073/pnas.2006517117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Collapse
|
71
|
Oxygen- and pH-Dependent Photophysics of Fluorinated Fluorescein Derivatives: Non-Symmetrical vs. Symmetrical Fluorination. SENSORS 2020; 20:s20185172. [PMID: 32927830 PMCID: PMC7570907 DOI: 10.3390/s20185172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Fluorescein, and derivatives of fluorescein, are often used as fluorescent probes and sensors. In systems where pH is a variable, protonation/deprotonation of the molecule can influence the pertinent photophysics. Fluorination of the xanthene moiety can alter the molecule’s pKa such as to render a probe whose photophysics remains invariant over a wide pH range. Di-fluorination is often sufficient to accomplish this goal, as has been demonstrated with compounds such as Oregon Green in which the xanthene moiety is symmetrically difluorinated. In this work, we synthesized a non-symmetrical difluorinated analog of Oregon Green which we call Athens Green. We ascertained that the photophysics and photochemistry of Athens Green, including the oxygen-dependent photophysics that results in the sensitized production of singlet oxygen, O2(a1Δg), can differ appreciably from the photophysics of Oregon Green. Our data indicate that Athens Green will be a more benign fluorescent probe in systems that involve the production and removal of O2(a1Δg). These results expand the available options in the toolbox of fluorescein-based fluorophores.
Collapse
|
72
|
Wang M, Guo Z, Teng S, Huang Z, Zhang P, Chen X, Yang W. Facile Synthesis, Enhanced Photostability, and Long-term Cellular Imaging of Bright Red Luminescent Organosilica Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:5438-5445. [PMID: 35021717 DOI: 10.1021/acsabm.0c00829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We herein demonstrate a facile approach for the preparation of red luminescent organosilica nanoparticles (OSi NPs) via the addition reaction of indocyanine green (ICG) and (3-aminopropyl)trimethoxysilane (APTMS). Photoluminescent quantum yield (PLQY) of the resulting OSi NPs was tunable by simply changing the molar ratio of ICG and APTMS used in the reactions. Under the optimized molar ratio of ICG and APTMS, that is, 1:4, PLQY of the red luminescent OSi NPs was as high as 32%. The resulting OSi NPs presented greatly enhanced photostability, attributing to the promoted decay rate of the excited state and thus suppressed the generation of the reactive oxygen species in the OSi NPs. The integrated superiorities of high PLQY, enhanced photostability, low toxicity, and excellent biocompatibility endow the red luminescent OSi NPs extremely promising for long-term cellular imaging.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Shiyong Teng
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun 130021, China
| | - Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.,Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| |
Collapse
|
73
|
In vitro irradiation of doxorubicin with 18F-FDG Cerenkov radiation and its potential application as a theragnostic system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111961. [PMID: 32736225 DOI: 10.1016/j.jphotobiol.2020.111961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/12/2020] [Indexed: 01/10/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic agent, has a wide excitation band centred at 480 nm. Cerenkov radiation (CR) is considered an internal light source in photodynamic therapy (PDT). DOX could be photoactivated by CR and thus, enhancing its cytotoxicity. In this work, 18F-FDG was used to evaluate the effect of Cerenkov radiation on DOX, in comparison to irradiation with a 450-nm laser beam, in terms of ROS production. The production of 1O2 and O2⁎- reactive species during DOX irradiation was detected indirectly by ABMA and DCPIP bleaching, respectively. The cytotoxic effect of the DOX / 18F-FDG CR system was evaluated in the T47D breast cancer cell line. The irradiation of DOX produced 1O2 and O2⁎- species using both 18F-FDG CR and a 450-nm laser beam. The majority reactive species produced in both cases was 1O2; a favourable result, given the greater cytotoxicity of this species. The viability of T47D cells in presence of DOX (5 nM), 18F-FDG (37.5 μCi) and DOX (5 nM)/18F-FDG (37.5 μCi) was (86 ± 9)%, (84 ± 8)% and (64 ± 5)%, respectively; these results suggest a synergistic cytotoxic effect derived from the cytotoxic activity of DOX and its photoactivation by 18F-FDG CR. It is worth noting that the system could be optimized in terms of DOX concentration and 18F-FDG activity for better results. Due to the fact that 18F-FDG is widely used in nuclear imaging, the DOX/18F-FDG system also possesses theragnostic characteristics. Thus, in this work, it is demonstrated that DOX can be used in a dual therapy system based on chemotherapy-PDT when 18F-FDG CR is used as a DOX excitation source.
Collapse
|
74
|
Yang Z, Li L, Ling J, Liu T, Huang X, Ying Y, Zhao Y, Zhao Y, Lei K, Chen L, Chen Z. Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging. Chem Sci 2020; 11:8506-8516. [PMID: 34094186 PMCID: PMC8161535 DOI: 10.1039/d0sc02837a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/25/2020] [Indexed: 12/27/2022] Open
Abstract
Modern fluorescence-imaging methods promise to unveil organelle dynamics in live cells. Phototoxicity, however, has become a prevailing issue when boosted illumination applies. Mitochondria are representative organelles whose research heavily relies on optical imaging, yet these membranous hubs of bioenergy are exceptionally vulnerable to photodamage. We report that cyclooctatetraene-conjugated cyanine dyes (PK Mito dyes), are ideal mitochondrial probes with remarkably low photodynamic damage for general use in fluorescence cytometry. In contrast, the nitrobenzene conjugate of Cy3 exhibits enhanced photostability but unaffected phototoxicity compared to parental Cy3. PK Mito Red, in conjunction with Hessian-structural illumination microscopy, enables 2000-frame time-lapse imaging with clearly resolvable crista structures, revealing rich mitochondrial dynamics. In a rigorous stem cell sorting and transplantation assay, PK Mito Red maximally retains the stemness of planarian neoblasts, exhibiting excellent multifaceted biocompatibility. Resonating with the ongoing theme of reducing photodamage using optical approaches, this work advocates the evaluation and minimization of phototoxicity when developing imaging probes.
Collapse
Affiliation(s)
- Zhongtian Yang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing China
| | - Liuju Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- State Key Laboratory of Membrane Biology, Peking University Beijing China
| | - Jing Ling
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing China
| | - Tianyan Liu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing China
| | - Xiaoshuai Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- State Key Laboratory of Membrane Biology, Peking University Beijing China
| | - Yuqing Ying
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation, Translational Research of Zhejiang ProvinceSchool of Life Sciences, Westlake University Hangzhou Zhejiang Province China
- Institute of Biology, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yun Zhao
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation, Translational Research of Zhejiang ProvinceSchool of Life Sciences, Westlake University Hangzhou Zhejiang Province China
- Institute of Biology, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yan Zhao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing China
| | - Kai Lei
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation, Translational Research of Zhejiang ProvinceSchool of Life Sciences, Westlake University Hangzhou Zhejiang Province China
- Institute of Biology, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Liangyi Chen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- State Key Laboratory of Membrane Biology, Peking University Beijing China
- PKU-Nanjing Institute of Translational Medicine Nanjing China
| | - Zhixing Chen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing China
- PKU-Nanjing Institute of Translational Medicine Nanjing China
| |
Collapse
|
75
|
Gidi Y, Payne L, Glembockyte V, Michie MS, Schnermann MJ, Cosa G. Unifying Mechanism for Thiol-Induced Photoswitching and Photostability of Cyanine Dyes. J Am Chem Soc 2020; 142:12681-12689. [PMID: 32594743 DOI: 10.1021/jacs.0c03786] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyanines (Cy3, Cy5, Cy3B) are the most utilized dyes for single-molecule fluorescence and localization-based super-resolution imaging. These modalities exploit cyanines' versatile photochemical behavior with thiols. A mechanism reconciling seemingly divergent results and enabling control over cyanine photoreactivity is however missing. Utilizing single-molecule fluorescence on Cy5 and Cy5B, transient-absorption spectroscopy, and DFT modeling on a range of cyanine dyes, herein we show that photoinduced electron transfer (PeT) from a thiolate to Cy in their triplet excited state and then triplet-to-singlet intersystem crossing in the nascent geminate radical pair are crucial steps. Next, a bifurcation occurs, yielding either back electron transfer and regeneration of ground state Cy, required for photostabilization, or Cy-thiol adduct formation, necessary for super-resolution microscopy. Cy regeneration via photoinduced thiol elimination is favored by adduct absorption spectra broadening. Elimination is also shown to occur through an acid-catalyzed reaction. Overall, our work provides a roadmap for designing fluorophores, photoswitching agents, and triplet excited state quenchers for single-molecule and super-resolution imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Liam Payne
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Megan S Michie
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
76
|
Sobek J, Schmidt M, Grossmann J, Rehrauer H, Schmidt L, Schlapbach R. Single-molecule chemistry. Part I: monitoring oxidation of G in oligonucleotides using CY3 fluorescence. Methods Appl Fluoresc 2020; 8:035010. [PMID: 32428873 DOI: 10.1088/2050-6120/ab947d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule hybridisation of CY3 dye labelled short oligonucleotides to surface immobilised probes was investigated in zero-mode waveguide nanostructures using a modified DNA sequencer. At longer measuring times, we observed changes of the initial hybridisation fluorescence pulse pattern which we attribute to products created by chemical reactions at the nucleobases. The origin is a charge separated state created by a photoinduced electron transfer from nucleobases to the dye followed by secondary reactions with oxygen and water, respectively. The positive charge can migrate through the hybrid resulting in base modifications at distant sites. Static fluorescence spectra were recorded in order to determine the properties of CY3 stacking to different base pairs, and compared to pulse intensities. A characteristic pulse pattern change was assigned to the oxidation of G to 8-oG besides the formation of a number of secondary products that are not yet identified. Further, we present a method to visualise the degree of chemical reactions to gain an overview of ongoing processes. Our study demonstrates that CY3 is able to oxidise nucleobases in ds DNA, and also in ss overhangs. An important finding is the correlation between nucleobase oxidation potential and fluorescence quenching which explains the intensity changes observed in single molecule measurements. The analysis of fluorescence traces provides the opportunity to track complete and coherent reaction sequences enabling to follow the fate of a single molecule over a long period of time, and to observe chemical reactions in real-time. This opens up the opportunity to analyse reaction pathways, to detect new products and short-lived intermediates, and to investigate rare events due to the large number of single molecules observed in parallel.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Fast three-color single-molecule FRET using statistical inference. Nat Commun 2020; 11:3336. [PMID: 32620782 PMCID: PMC7335206 DOI: 10.1038/s41467-020-17149-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
We describe theory, experiments, and analyses of three-color Förster resonance energy transfer (FRET) spectroscopy for probing sub-millisecond conformational dynamics of protein folding and binding of disordered proteins. We devise a scheme that uses single continuous-wave laser excitation of the donor instead of alternating excitation of the donor and one of the acceptors. This scheme alleviates photophysical problems of acceptors such as rapid photobleaching, which is crucial for high time resolution experiments with elevated illumination intensity. Our method exploits the molecular species with one of the acceptors absent or photobleached, from which two-color FRET data is collected in the same experiment. We show that three FRET efficiencies and kinetic parameters can be determined without alternating excitation from a global maximum likelihood analysis of two-color and three-color photon trajectories. We implement co-parallelization of CPU-GPU processing, which leads to a significant reduction of the likelihood calculation time for efficient parameter determination.
Collapse
|
78
|
Isselstein M, Zhang L, Glembockyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. Self-Healing Dyes-Keeping the Promise? J Phys Chem Lett 2020; 11:4462-4480. [PMID: 32401520 DOI: 10.1021/acs.jpclett.9b03833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-healing dyes have emerged as a new promising class of fluorescent labels. They consist of two units, a fluorescent dye and a photostabilizer. The latter heals whenever the fluorescent dye is in danger of taking a reaction pathway toward photobleaching. We describe the underlying concepts and summarize the developmental history and state-of-the-art, including latest applications in high-resolution microscopy, live-cell, and single-molecule imaging. We further discuss remaining limitations, which are (i) lower photostabilization of most self-healing dyes when compared to solution additives, (ii) limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen on self-healing, and (iii) the lack of cheap and facile bioconjugation strategies. Finally, we provide ideas on how to further advance self-healing dyes, show new data on redox blinking caused by double-stranded DNA, and highlight forthcoming work on intramolecular photostabilization of fluorescent proteins.
Collapse
Affiliation(s)
- Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Oliver Brix
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
79
|
Oh G, Cho HJ, Suh S, Lee D, Kim K. Multicolor fluorescence imaging using a single RGB-IR CMOS sensor for cancer detection with smURFP-labeled probiotics. BIOMEDICAL OPTICS EXPRESS 2020; 11:2951-2963. [PMID: 32637234 PMCID: PMC7316003 DOI: 10.1364/boe.391417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 05/17/2023]
Abstract
A multicolor fluorescence imaging device was recently developed for image-guided surgery. However, conventional systems are typically bulky and function with two cameras. To overcome these issues, we developed an economical home-built fluorescence imaging device based on a single RGB-IR sensor that can acquire both color and fluorescence images simultaneously. The technical feasibility of RGB-IR imaging was verified ex vivo in chicken breast tissue using fluorescein isothiocyanate (FITC), cyanine 5 (Cy5), and indocyanine green (ICG) as fluorescent agents. The minimum sensitivities for FITC, Cy5, and ICG were 0.200 µM, 0.130 µM, and 0.065 µM, respectively. In addition, we validated the fluorescence imaging of this device in vitro during a minimally invasive procedure using smURFP-labeled probiotics, which emit a spectrum similar to that of Cy5. Our preliminary study of the ex vivo tissue suggests that Cy5 and ICG are good candidates for deep tissue imaging. In addition, the tumor-specific amplification process was visualized using cancer cells incubated with probiotics that had been labeled with a fluorescent protein. Our approach indicates the potential for in vivo screening of tumors in rodent tumor models.
Collapse
Affiliation(s)
- Gyungseok Oh
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - Hong Jun Cho
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- School of Mechanical Engineering, Korea University and Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - SeungBeum Suh
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
| | - Deukhee Lee
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- University of Science and Technology (UST), South Korea the Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Keri Kim
- Center for Medical Robotics, Korea Institute of Science and Technology, South Korea
- University of Science and Technology (UST), South Korea the Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
80
|
Jiao L, Liu Y, Zhang X, Hong G, Zheng J, Cui J, Peng X, Song F. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS CENTRAL SCIENCE 2020; 6:747-759. [PMID: 32490191 PMCID: PMC7256957 DOI: 10.1021/acscentsci.0c00071] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Aggregation-caused quenching (ACQ) and poor photostability in aqueous media are two common problems for organic fluorescence dyes which cause a dramatic loss of fluorescence imaging quality and photodynamic therapy (PDT) failure. Herein, a local hydrophobic cage is built up inside near-infrared (NIR) cyanine-anchored fluorescent silica nanoparticles (FSNPs) in which a hydrophobic silane coupling agent (n-octyltriethoxysilane, OTES) is doped into FSNPs for the first time to significantly inhibit the ACQ effect and inward diffusion of water molecules. Therefore, the obtained optimal FSNP-C with OTES-modification can provide hydrophobic repulsive forces to effectively inhibit the π-π stacking interaction of cyanine dyes and simultaneously reduce the formation of strong oxidizing species (•OH and H2O2) in reaction with H2O, resulting in the best photostability (fluorescent intensity remained at 90.1% of the initial value after 300 s of laser scanning) and a high PDT efficiency on two- and three-dimensional (spheroids) HeLa cell culture models. Moreover, through molecular engineering (including increasing covalent anchoring sites and steric hindrance groups of cyanine dyes), FSNP-C exhibits the highest fluorescent intensity both in water solution (12.3-fold improvement compared to free dye) and living cells due to the limitation of molecular motion. Thus, this study provides an effectively strategy by combining a local hydrophobic cage and molecular engineering for NIR FSNPs in long-term bright fluorescence imaging and a stable PDT process.
Collapse
Affiliation(s)
- Long Jiao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Yongzhuo Liu
- Shandong
Collaborative Innovation Center of Eco-Chemical Engineering, College
of Chemical Engineering, Qingdao University
of Science and Technology, No. 53 Zhengzhou Road, Shibei
District, Qingdao 266042, P. R. China
| | - Xiaoye Zhang
- Marine
Engineering College, Dalian Maritime University, No. 1 Linghai Road, High-tech District, Dalian 116026, P. R. China
| | - Gaobo Hong
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jing Zheng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
| | - Fengling Song
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, P. R. China
- Institute
of Molecular Sciences and Engineering, Shandong
University, Qingdao 266237, P. R. China
- ;
| |
Collapse
|
81
|
Wu JH, Zhang F. Rapid aerobic visible-light-driven photo-reduction of nitrobenzene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136322. [PMID: 31923680 DOI: 10.1016/j.scitotenv.2019.136322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Many strategies have been proposed to treat wastewater containing toxic contaminants, such as nitrobenzene, prior to discharge. Most of these degradation processes, especially biodegradation, undergo a limited step of nitrobenzene reduction into aniline and a subsequent fast step of aniline mineralization. The low efficiency of nitrobenzene reduction and the requirement of an anaerobic atmosphere limit the overall degradation performance. In this communication, eosin Y is reported as a potential homogeneous catalyst for the rapid photoreduction of nitrobenzene under aerobic conditions. As a result, a conversion (~10 min) of nitrobenzene (25 mg/L) into aniline driven by visible light was achieved. The reduction rate constants under aerobic conditions (0.30 min-1) were even slightly higher than those under anaerobic conditions (0.28 min-1), and the lifetime of the catalytic system was extended. Furthermore, the mechanism of nitrobenzene transformation was speculated based on the identification of intermediate products. To provide guidance for the practical application of this pretreatment strategy, the impact of pH value and widely existing heavy metal ions on photoreduction were also demonstrated. The results from this work provide a novel insight into the integrated control of organic pollutants produced in chemical industries.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
82
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
83
|
Onukwufor JO, Trewin AJ, Baran TM, Almast A, Foster TH, Wojtovich AP. Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic Biol Med 2020; 147:1-7. [PMID: 31841676 PMCID: PMC6980788 DOI: 10.1016/j.freeradbiomed.2019.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins can generate reactive oxygen species (ROS) upon absorption of photons via type I and II photosensitization mechanisms. The red fluorescent proteins KillerRed and SuperNova are phototoxic proteins engineered to generate ROS and are used in a variety of biological applications. However, their relative quantum yields and rates of ROS production are unclear, which has limited the interpretation of their effects when used in biological systems. We cloned and purified KillerRed, SuperNova, and mCherry - a related red fluorescent protein not typically considered a photosensitizer - and measured the superoxide (O2•-) and singlet oxygen (1O2) quantum yields with irradiation at 561 nm. The formation of the O2•--specific product 2-hydroxyethidium (2-OHE+) was quantified via HPLC separation with fluorescence detection. Relative to a reference photosensitizer, Rose Bengal, the O2•- quantum yield (ΦO2•-) of SuperNova was determined to be 1.5 × 10-3, KillerRed was 0.97 × 10-3, and mCherry 1.2 × 10-3. At an excitation fluence of 916.5 J/cm2 and matched absorption at 561 nm, SuperNova, KillerRed and mCherry made 3.81, 2.38 and 1.65 μM O2•-/min, respectively. Using the probe Singlet Oxygen Sensor Green (SOSG), we ascertained the 1O2 quantum yield (Φ1O2) for SuperNova to be 22.0 × 10-3, KillerRed 7.6 × 10-3, and mCherry 5.7 × 10-3. These photosensitization characteristics of SuperNova, KillerRed and mCherry improve our understanding of fluorescent proteins and are pertinent for refining their use as tools to advance our knowledge of redox biology.
Collapse
Affiliation(s)
- John O Onukwufor
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Timothy M Baran
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Anmol Almast
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States.
| |
Collapse
|
84
|
Danthanarayana AN, Finley E, Vu B, Kourentzi K, Willson RC, Brgoch J. A multicolor multiplex lateral flow assay for high-sensitivity analyte detection using persistent luminescent nanophosphors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:272-280. [PMID: 32577135 PMCID: PMC7310964 DOI: 10.1039/c9ay02247c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Incorporating two persistent luminescent nanophosphors (PLNPs), green-emitting SrAl2O4:Eu2+,Dy3+ (SAO) and blue-emitting (Sr0.625Ba0.375)2MgSi2O7:Eu2+,Dy3+ (SBMSO), in a single lateral flow assay (LFA) establishes a luminescence-based, multiplex point-of-need test capable of simultaneously detecting two different analytes in a single sample. The advantages of this system are the high sensitivity and photostability of PLNPs, while only requiring access to minimal hardware and a smartphone for signal detection. The PLNPs were obtained by first wet milling bulk synthesized phosphor powders, followed by fractionation using differential centrifugal sedimentation to obtain monodisperse nanoparticles. A modified Stöber process was then employed to encapsulate the nanoparticles in a water-stable silica shell followed by attaching antibodies to the particles' surfaces using reductive amination chemistry. The resulting PLNPs were incorporated in an LFA to concurrently detect two independent model analytes, prostate-specific antigen (PSA) and human chorionic gonadotropin (hCG). The multicolor-multiplex PLNP-based assays were finally imaged using a smartphone-based imaging system with excellent detection limits (0.1 ng mL-1 of PSA and 1 ng mL-1 of hCG) that are competitive with commercially available LFAs.
Collapse
Affiliation(s)
| | - Erin Finley
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Binh Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Richard C Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey, Nuevo León 64710, Mexico
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
85
|
Würthwein T, Irwin N, Fallnich C. Saturated Raman scattering for sub-diffraction-limited imaging. J Chem Phys 2019; 151:194201. [DOI: 10.1063/1.5128874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Würthwein
- Institute of Applied Physics, University of Münster, Münster, Germany
| | - N. Irwin
- Institute of Applied Physics, University of Münster, Münster, Germany
| | - C. Fallnich
- Institute of Applied Physics, University of Münster, Münster, Germany
- MESA+ Institute of Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), Münster, Germany
| |
Collapse
|
86
|
Messer RK, Lopez MA, Senavirathne G, Yoder KE. Expression and Purification of Nuclease-Free Oxygen Scavenger Protocatechuate 3,4-Dioxygenase. J Vis Exp 2019. [PMID: 31762446 PMCID: PMC7552998 DOI: 10.3791/59599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Single molecule (SM) microscopy is used in the study of dynamic molecular interactions of fluorophore labeled biomolecules in real time. However, fluorophores are prone to loss of signal via photobleaching by dissolved oxygen (O2). To prevent photobleaching and extend the fluorophore lifetime, oxygen scavenging systems (OSS) are employed to reduce O2. Commercially available OSS may be contaminated by nucleases that damage or degrade nucleic acids, confounding interpretation of experimental results. Here we detail a protocol for the expression and purification of highly active Pseudomonas putida protocatechuate-3,4-dioxygenase (PCD) with no detectable nuclease contamination. PCD can efficiently remove reactive O2 species by conversion of the substrate protocatechuic acid (PCA) to 3-carboxy-cis,cis-muconic acid. This method can be used in any aqueous system where O2 plays a detrimental role in data acquisition. This method is effective in producing highly active, nuclease free PCD in comparison with commercially available PCD.
Collapse
Affiliation(s)
- Ryan K Messer
- Cancer Biology and Genetics, College of Medicine, The Ohio State University
| | - Miguel A Lopez
- Cancer Biology and Genetics, College of Medicine, The Ohio State University
| | - Gayan Senavirathne
- Cancer Biology and Genetics, College of Medicine, The Ohio State University
| | - Kristine E Yoder
- Cancer Biology and Genetics, College of Medicine, The Ohio State University;
| |
Collapse
|
87
|
Karlsson JKG, Laude A, Hall MJ, Harriman A. Photo-isomerization of the Cyanine Dye Alexa-Fluor 647 (AF-647) in the Context of dSTORM Super-Resolution Microscopy. Chemistry 2019; 25:14983-14998. [PMID: 31515919 DOI: 10.1002/chem.201904117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.
Collapse
Affiliation(s)
- Joshua K G Karlsson
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alex Laude
- Bio-Imaging Unit, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Hall
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
88
|
Marvin CM, Ding S, White RE, Orlova N, Wang Q, Zywot EM, Vickerman BM, Harr L, Tarrant TK, Dayton PA, Lawrence DS. On Command Drug Delivery via Cell-Conveyed Phototherapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901442. [PMID: 31353802 PMCID: PMC6739139 DOI: 10.1002/smll.201901442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Herein, the use of red blood cells (RBCs) as carriers of cytoplasmically interned phototherapeutic agents is described. Photolysis promotes drug release from the RBC carrier thereby providing the means to target specific diseased sites. This strategy is realized with a vitamin B12-taxane conjugate (B12-TAX), in which the drug is linked to the vitamin via a photolabile CoC bond. The conjugate is introduced into mouse RBCs (mRBCs) via a pore-forming/pore-resealing procedure and is cytoplasmically retained due to the membrane impermeability of B12. Photolysis separates the taxane from the B12 cytoplasmic anchor, enabling the drug to exit the RBC carrier. A covalently appended Cy5 antenna sensitizes the conjugate (Cy5-B12-TAX) to far red light, thereby circumventing the intense light absorbing properties of hemoglobin (350-600 nm). Microscopy and imaging flow cytometry reveal that Cy5-B12-TAX-loaded mRBCs act as drug carriers. Furthermore, intravital imaging of mice furnish a real time assessment of circulating phototherapeutic-loaded mRBCs as well as evidence of the targeted photorelease of the taxane upon photolysis. Histopathology confirms that drug release occurs in a well resolved spatiotemporal fashion. Finally, acoustic angiography is employed to assess the consequences of taxane release at the tumor site in Nu/Nu-tumor-bearing mice.
Collapse
Affiliation(s)
- Christina M Marvin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Song Ding
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rachel E White
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Natalia Orlova
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qunzhao Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Emilia M Zywot
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brianna M Vickerman
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lauren Harr
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC, 27710, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - David S Lawrence
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
89
|
Bregnhøj M, Ogilby PR. Two-Photon Excitation of Neat Aerated Solvents with Visible Light Produces Singlet Oxygen. J Phys Chem A 2019; 123:7567-7575. [DOI: 10.1021/acs.jpca.9b05517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mikkel Bregnhøj
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| | - Peter R. Ogilby
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
90
|
Meng F, Bellaiche MMJ, Kim JY, Zerze GH, Best RB, Chung HS. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophys J 2019; 114:870-884. [PMID: 29490247 DOI: 10.1016/j.bpj.2017.12.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mathias M J Bellaiche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
91
|
Smit JH, van der Velde JHM, Huang J, Trauschke V, Henrikus SS, Chen S, Eleftheriadis N, Warszawik EM, Herrmann A, Cordes T. On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores. Phys Chem Chem Phys 2019; 21:3721-3733. [PMID: 30499568 DOI: 10.1039/c8cp05063e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While buffer cocktails remain the most commonly used method for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with 'self-healing' or even functional properties such as photoswitching. In this contribution, we evaluated combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other. We find that although the rate of triplet-state quenching is additive, the photostability is limited by the faster pathway. Often intramolecular processes dominate the photophysical situation for combinations of covalently-linked and solution-based photostabilizers and photoswitching agents. Furthermore we show that intramolecular photostabilizers can protect fluorophores from reversible off-switching events caused by solution-additives, which was previously misinterpreted as photobleaching. Our studies also provide practical guidance for usage of photostabilizer-dye conjugates for STORM-type super-resolution microscopy permitting the exploitation of their improved photophysics for increased spatio-temporal resolution. Finally, we provide evidence that the biochemical environment, e.g., proximity of aromatic amino-acids such as tryptophan, reduces the photostabilization efficiency of commonly used buffer cocktails. Not only have our results important implications for a deeper mechanistic understanding of self-healing dyes, but they will provide a general framework to select label positions for optimal and reproducible photostability or photoswitching kinetics in different biochemical environments.
Collapse
Affiliation(s)
- Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Amirav L, Berlin S, Olszakier S, Pahari SK, Kahn I. Multi-Modal Nano Particle Labeling of Neurons. Front Neurosci 2019; 13:12. [PMID: 30778281 PMCID: PMC6369355 DOI: 10.3389/fnins.2019.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
The development of imaging methodologies for single cell measurements over extended timescales of up to weeks, in the intact animal, will depend on signal strength, stability, validity and specificity of labeling. Whereas light-microscopy can achieve these with genetically-encoded probes or dyes, this modality does not allow mesoscale imaging of entire intact tissues. Non-invasive imaging techniques, such as magnetic resonance imaging (MRI), outperform light microscopy in field of view and depth of imaging, but do not offer cellular resolution and specificity, suffer from low signal-to-noise ratio and, in some instances, low temporal resolution. In addition, the origins of the signals measured by MRI are either indirect to the process of interest or hard to validate. It is therefore highly warranted to find means to enhance MRI signals to allow increases in resolution and cellular-specificity. To this end, cell-selective bi-functional magneto-fluorescent contrast agents can provide an elegant solution. Fluorescence provides means for identification of labeled cells and particles location after MRI acquisition, and it can be used to facilitate the design of cell-selective labeling of defined targets. Here we briefly review recent available designs of magneto-fluorescent markers and elaborate on key differences between them with respect to durability and relevant cellular highlighting approaches. We further focus on the potential of intracellular labeling and basic functional sensing MRI, with assays that enable imaging cells at microscopic and mesoscopic scales. Finally, we illustrate the qualities and limitations of the available imaging markers and discuss prospects for in vivo neural imaging and large-scale brain mapping.
Collapse
Affiliation(s)
- Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shunit Olszakier
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sandip K Pahari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
93
|
Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 2019; 55:8695-8704. [PMID: 31073568 DOI: 10.1039/c9cc02616a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies. Photostable fluorogenic probes with high extinction coefficients and quantum yields, exhibiting minimum autofluorescence and photobleaching properties, are preferred in single-molecule microscopy as they can tolerate long-term laser exposure. Therefore, the development of triplet state quenchers and/or any other suitable new strategy to ensure the photo-stability of the fluorophores during long-term live cell imaging exercises is highly anticipated. In this feature article, various strategies for stabilizing fluorophores, including the mechanisms of TSQ-induced stabilization, have been thoroughly reviewed considering contemporary literature reports and applications.
Collapse
Affiliation(s)
- Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Digby EM, Rana R, Nitz M, Beharry AA. DNA directed damage using a brominated DAPI derivative. Chem Commun (Camb) 2019; 55:9971-9974. [DOI: 10.1039/c9cc03942b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conversion of a DNA-binding fluorophore (DAPI) to a photosensitizer via bromination retains high fluorescence and high affinity DNA binding but now produces light-induced reactive oxygen species directed towards DNA resulting in rapid cancer cell death.
Collapse
Affiliation(s)
- Elyse M. Digby
- Department of Chemical and Physical Sciences
- University of Toronto Mississauga
- Mississauga
- Canada
| | - Rahul Rana
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Mark Nitz
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Andrew A. Beharry
- Department of Chemical and Physical Sciences
- University of Toronto Mississauga
- Mississauga
- Canada
| |
Collapse
|
95
|
Blumhardt P, Stein J, Mücksch J, Stehr F, Bauer J, Jungmann R, Schwille P. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules 2018; 23:molecules23123165. [PMID: 30513691 PMCID: PMC6321339 DOI: 10.3390/molecules23123165] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
The limited photon budget of fluorescent dyes is the main limitation for localization precision in localization-based super-resolution microscopy. Points accumulation for imaging in nanoscale topography (PAINT)-based techniques use the reversible binding of fluorophores and can sample a single binding site multiple times, thus elegantly circumventing the photon budget limitation. With DNA-based PAINT (DNA-PAINT), resolutions down to a few nanometers have been reached on DNA-origami nanostructures. However, for long acquisition times, we find a photo-induced depletion of binding sites in DNA-PAINT microscopy that ultimately limits the quality of the rendered images. Here we systematically investigate the loss of binding sites in DNA-PAINT imaging and support the observations with measurements of DNA hybridization kinetics via surface-integrated fluorescence correlation spectroscopy (SI-FCS). We do not only show that the depletion of binding sites is clearly photo-induced, but also provide evidence that it is mainly caused by dye-induced generation of reactive oxygen species (ROS). We evaluate two possible strategies to reduce the depletion of binding sites: By addition of oxygen scavenging reagents, and by the positioning of the fluorescent dye at a larger distance from the binding site.
Collapse
Affiliation(s)
- Philipp Blumhardt
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Johannes Stein
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Jonas Mücksch
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Stehr
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Julian Bauer
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ralf Jungmann
- Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
96
|
Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nat Commun 2018; 9:4707. [PMID: 30413699 PMCID: PMC6226484 DOI: 10.1038/s41467-018-06866-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) usually fold during binding to target proteins. In contrast to interactions between folded proteins, this additional folding step makes the binding process more complex. Understanding the mechanism of coupled binding and folding of IDPs requires analysis of binding pathways that involve formation of the transient complex (TC). However, experimental characterization of TC is challenging because it only appears for a very brief period during binding. Here, we use single-molecule fluorescence spectroscopy to investigate the mechanism of diffusion-limited association of an IDP. A large enhancement of the association rate is observed due to the stabilization of TC by non-native electrostatic interactions. Moreover, photon-by-photon analysis reveals that the lifetime of TC for IDP binding is at least two orders of magnitude longer than that for binding of two folded proteins. This result suggests the long lifetime of TC is generally required for folding of IDPs during binding processes. Intrinsically disordered proteins (IDPs) usually fold during binding to target proteins which involves the formation of a transient complex (TC). Here authors use single-molecule FRET to show that the lifetime of TC for IDP binding is very long due to the stabilization by non-native electrostatic interactions, which makes fast association possible.
Collapse
|
97
|
Yoo J, Louis JM, Gopich IV, Chung HS. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding. J Phys Chem B 2018; 122:11702-11720. [PMID: 30230835 DOI: 10.1021/acs.jpcb.8b07768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the theory, experiment, and analysis of three-color Förster resonance energy transfer (FRET) spectroscopy for probing conformational dynamics of a fast-folding protein, α3D. In three-color FRET, site-specific labeling of fluorophores is required to avoid ambiguity resulting from various species with different combinations of labeling positions. To this end, we first attached two dyes to a cysteine residue and an unnatural amino acid and then appended a cysteine residue to the C-terminus of the protein by the sortase-mediated ligation for attaching the third dye. To determine all three FRET efficiencies, we used alternating excitation of the donor and acceptor 1 with two picosecond-pulsed lasers. Since the folded and unfolded states are not distinguishable in binned fluorescence trajectories due to fast-folding on a millisecond time scale, we used a maximum likelihood method that analyzes photon trajectories without binning the data. The extracted kinetic parameters agree very well with the previously measured parameters for the same protein with two-color FRET, suggesting that the addition of the third fluorophore does not affect the folding dynamics of the protein. From the extracted fractions of acceptor photon counts, the FRET efficiencies for all three dye pairs were calculated after various corrections. They were compared with the FRET efficiencies obtained from the global analysis of two-color segments collected in the same experiment. The FRET efficiencies of the folded state from the three-color segments agree with those from the two-color segments, whereas the three-color and two-color FRET efficiencies of the unfolded state are different. This happens because fluctuations of all three interdye distances contribute to the FRET efficiency measured in three-color FRET. We show that this difference can be accounted for by using the Gaussian chain model for the unfolded state with the parameters obtained from the analysis of two-color segments. This result shows that three-color FRET provides additional information on the flexibility of molecules that cannot be obtained from a combination of two-color FRET experiments with three dye pairs. Using the delay times of photons from the laser pulse, fluorescence lifetimes were determined using the maximum likelihood analysis. The correlation between FRET efficiencies and lifetimes of the donor, acceptor 1, and acceptor 2 was visualized in two-dimensional FRET efficiency-lifetime histograms. These histograms can be used to demonstrate the presence of conformational dynamics in a protein.
Collapse
Affiliation(s)
- Janghyun Yoo
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - John M Louis
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Irina V Gopich
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
98
|
Senavirathne G, Lopez MA, Messer R, Fishel R, Yoder KE. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Anal Biochem 2018; 556:78-84. [PMID: 29932890 PMCID: PMC6076860 DOI: 10.1016/j.ab.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Miguel A. Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ryan Messer
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Kristine E. Yoder
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA,To whom correspondence should be addressed. Tel: (614) 688-2106; , Correspondence may also be addressed to. Tel: (614) 292-2484;
| |
Collapse
|
99
|
Schwechheimer C, Rönicke F, Schepers U, Wagenknecht HA. A new structure-activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chem Sci 2018; 9:6557-6563. [PMID: 30310587 PMCID: PMC6115680 DOI: 10.1039/c8sc01574k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
A new set of cyanine-indole dyes was synthesized, characterized by optical and cytotoxic properties and subsequently applied for live cell imaging. Furthermore, these dyes were postsynthetically linked covalently to the 2'-position of uridine anchors in presynthesized oligonucleotides using the copper(i)-catalyzed azide-alkyne cycloaddition in order to evaluate their photostability and imaging properties in living cells. The nucleophilicity at position C-2 of the indole part of the dyes was elucidated as key for a new structure-activity relationship that served as a rational guide to improve the photostability and optical properties of these green-emitting dyes for live cell imaging of nucleic acids. While the photostability rises exponentially with decreasing nucleophilicity, thermal bleaching experiments confirmed an opposite trend supposing that the superoxide radical anion is mainly responsible for the photobleaching of the dyes. Furthermore, the cytotoxicities of the dyes were tested in HeLa cells and moderate to low LD50 values were obtained. This interdisciplinary strategy allowed us to identify one dye with excellent optical properties and even better photostability and decreased cytotoxicity compared to a cyanine-indole dye that bears an additional cyclooctatetraene group as a triplet state quencher.
Collapse
Affiliation(s)
- Christian Schwechheimer
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Franziska Rönicke
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Ute Schepers
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen , Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| |
Collapse
|
100
|
Munkhbat B, Wersäll M, Baranov DG, Antosiewicz TJ, Shegai T. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. SCIENCE ADVANCES 2018; 4:eaas9552. [PMID: 29984306 PMCID: PMC6035039 DOI: 10.1126/sciadv.aas9552] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 05/19/2023]
Abstract
Intermixed light-matter quasi-particles-polaritons-have unique optical properties owing to their compositional nature. These intriguing hybrid states have been extensively studied over the past decades in a wide range of realizations aiming at both basic science and emerging applications. However, recently, it has been demonstrated that not only optical but also material-related properties, such as chemical reactivity and charge transport, may be significantly altered in the strong coupling regime of light-matter interactions. We show that a nanoscale system, composed of a plasmonic nanoprism strongly coupled to excitons in a J-aggregated form of organic chromophores, experiences modified excited-state dynamics and, therefore, modified photochemical reactivity. Our experimental results reveal that photobleaching, one of the most fundamental photochemical reactions, can be effectively controlled and suppressed by the degree of plasmon-exciton coupling and detuning. In particular, we observe a 100-fold stabilization of organic dyes for the red-detuned nanoparticles. Our findings contribute to understanding of photochemical properties in the strong coupling regime and may find important implications for the performance and improved stability of optical devices incorporating organic dyes.
Collapse
Affiliation(s)
- Battulga Munkhbat
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Wersäll
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Denis G. Baranov
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Timur Shegai
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Corresponding author.
| |
Collapse
|