51
|
Sellami M, Bragazzi N, Prince MS, Denham J, Elrayess M. Regular, Intense Exercise Training as a Healthy Aging Lifestyle Strategy: Preventing DNA Damage, Telomere Shortening and Adverse DNA Methylation Changes Over a Lifetime. Front Genet 2021; 12:652497. [PMID: 34421981 PMCID: PMC8379006 DOI: 10.3389/fgene.2021.652497] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. The length of telomeres, the 5'-TTAGGG n -3' tandem repeats at the ends of mammalian chromosomes, is one of the main indicators of biological age. Telomeres undergo shortening with each cellular division. This subsequently leads to alterations in the expression of several genes that encode vital proteins with critical functions in many tissues throughout the body, and ultimately impacts cardiovascular, immune and muscle physiology. The sub-telomeric DNA is comprised of heavily methylated, heterochromatin. Methylation and histone acetylation are two of the most well-studied examples of the epigenetic modifications that occur on histone proteins. DNA methylation is the type of epigenetic modification that alters gene expression without modifying gene sequence. Although diet, genetic predisposition and a healthy lifestyle seem to alter DNA methylation and telomere length (TL), recent evidence suggests that training status or physical fitness are some of the major factors that control DNA structural modifications. In fact, TL is positively associated with cardiorespiratory fitness, physical activity level (sedentary, active, moderately trained, or elite) and training intensity, but is shorter in over-trained athletes. Similarly, somatic cells are vulnerable to exercise-induced epigenetic modification, including DNA methylation. Exercise-training load, however, depends on intensity and volume (duration and frequency). Training load-dependent responses in genomic profiles could underpin the discordant physiological and physical responses to exercise. In the current review, we will discuss the role of various forms of exercise training in the regulation of DNA damage, TL and DNA methylation status in humans, to provide an update on the influence exercise training has on biological aging.
Collapse
Affiliation(s)
- Maha Sellami
- Physical Education Department (PE), College of Education (CEdu), Qatar University, Doha, Qatar
| | - Nicola Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Mohammad Shoaib Prince
- Physical Education Department (PE), College of Education (CEdu), Qatar University, Doha, Qatar
- Division of Sports and Wellness, Department of Students Affairs, College of North Atlantic Qatar (CNAQ), Doha, Qatar
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | | |
Collapse
|
52
|
Liu L, Ni YQ, Zhan JK, Liu YS. The Role of SGLT2 Inhibitors in Vascular Aging. Aging Dis 2021; 12:1323-1336. [PMID: 34341711 PMCID: PMC8279525 DOI: 10.14336/ad.2020.1229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.
Collapse
Affiliation(s)
- Le Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
53
|
Zhao J, He X, Zuo M, Li X, Sun Z. Anagliptin prevented interleukin 1β (IL-1β)-induced cellular senescence in vascular smooth muscle cells through increasing the expression of sirtuin1 (SIRT1). Bioengineered 2021; 12:3968-3977. [PMID: 34288819 PMCID: PMC8806542 DOI: 10.1080/21655979.2021.1948289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cell senescence plays a pivotal role in the pathogenesis of atherosclerosis. Anagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of hyperglycemia. Recent progress indicates that DPP-4 inhibitors show a wide range of cardiovascular benefits. We hypothesize that Anagliptin plays a role in vascular smooth muscle cell senescence and this may imply its modulation of atherosclerosis. Here, the beneficial effect of Anagliptin against interleukin 1β (IL-1β)-induced cell senescence in vascular smooth muscle cells was studied to learn the promising therapeutic capacity of Anagliptin on atherosclerosis. Firstly, we found that Anagliptin treatment ameliorated the elevated secretions of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and macrophage chemoattractant protein-1 (MCP-1). Secondly, our findings indicate that exposure to IL-1β reduced telomerase activity from 26.7 IU/L to 15.8 IU/L, which was increased to 20.3 and 24.6 IU/L by 2.5 and 5 μM Anagliptin, respectively. In contrast, IL-1β stimulation increased senescence- associated β-galactosidase (SA-β-gal) staining to 3.1- fold compared to the control group, it was then reduced to 2.3- and 1.6- fold by Anagliptin dose-dependently. Thirdly, Anagliptin dramatically reversed the upregulated p16, p21, and downregulated sirtuin1 (SIRT1) in IL-1β-treated vascular smooth muscle cells. Lastly, the protective effect of Anagliptin against cellular senescence in vascular smooth muscle cells was abolished by silencing of SIRT1. In conclusion, Anagliptin protects vascular smooth muscle cells from cytokine-induced senescence, and the action of Anagliptin in vascular smooth muscle cells requires SIRT1 expression.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Xinrong He
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Mei Zuo
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Xinguo Li
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Zhiming Sun
- Department of Cardiology, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| |
Collapse
|
54
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
55
|
Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. ACTA ACUST UNITED AC 2021; 1:598-615. [PMID: 34888528 PMCID: PMC8654267 DOI: 10.1038/s43587-021-00082-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8-96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes.
Collapse
|
56
|
Castro-Grattoni AL, Suarez-Giron M, Benitez I, Tecchia L, Torres M, Almendros I, Farre R, Targa A, Montserrat JM, Dalmases M, Barbé F, Gozal D, Sánchez-de-la-Torre M. The effect of chronic intermittent hypoxia in cardiovascular gene expression is modulated by age in a mice model of sleep apnea. Sleep 2021; 44:6071377. [PMID: 33417710 DOI: 10.1093/sleep/zsaa293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES Chronic intermittent hypoxia (CIH) is a major determinant in obstructive sleep apnea cardiovascular morbidity and this effect is influenced by age. The objective of the present study was to assess the differential molecular mechanisms at gene-level expression involved in the cardiovascular remodeling induced by CIH according to chronological age. METHODS Two- and 18-month-old mice (N = 8 each) were subjected to CIH or normoxia for 8 weeks. Total messenger RNA (mRNA) was extracted from left ventricle myocardium and aortic arch, and gene expression of 46 intermediaries of aging, oxidative stress, and inflammation was measured by quantitative real-time polymerase chain reaction. RESULTS Cardiac gene expression of Nrf2 (2.05-fold increase, p < 0.001), Sod2 (1.9-fold increase, p = 0.035), Igf1r (1.4-fold increase, p = 0.028), Mtor (1.8-fold increase, p = 0.06), Foxo3 (1.5-fold increase, p = 0.020), Sirt4, Sirt6, and Sirt7 (1.3-fold increase, p = 0.012; 1.1-fold change, p = 0.031; 1.3-fold change, p = 0.029) was increased after CIH in young mice, but not in old mice. In aortic tissue, endothelial isoform of nitric oxide synthase was reduced in young mice (p < 0.001), Nrf2 was reduced in 80% (p < 0.001) in young mice and 45% (p = 0.07) in old mice, as its downstream antioxidant target Sod2 (82% reduced, p < 0.001). IL33. CONCLUSIONS CIH effect in gene expression is organ-dependent, and is modulated by age. CIH increased transcriptional expression of genes involved in cardioprotection and cell survival in young, but not in old mice. In aortic tissue, CIH reduced gene expression related to an antioxidant response in both young and old mice, suggesting vascular oxidative stress and a proaging process.
Collapse
Affiliation(s)
- Anabel L Castro-Grattoni
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Department of Child Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | | | - Ivan Benitez
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lourdes Tecchia
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Marta Torres
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona - CIBER de Enfermedades Respiratorias - CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Farre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Josep M Montserrat
- Laboratori del son, Servei de Pneumologia, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mireia Dalmases
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Gozal
- Department of Child Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Manuel Sánchez-de-la-Torre
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Group of Precision Medicine in Chronic Diseases, Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| |
Collapse
|
57
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
58
|
Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Commun Biol 2021; 4:611. [PMID: 34021256 PMCID: PMC8140103 DOI: 10.1038/s42003-021-02123-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease. Anna Uryga and Mandy Grootaert et al. combine cell culture and animal models to examine how senescence of human vascular smooth muscle cells (VSMCs) and persistent telomere damage drive inflammation. Their results suggest that telomere injury can be the primary cause of premature senescence in VSMCs, and that DNA damage can be a major cause of persistent inflammation in vascular disease.
Collapse
|
59
|
Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J 2021; 41:2983-2996. [PMID: 31898722 PMCID: PMC7453834 DOI: 10.1093/eurheartj/ehz919] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
60
|
Yildirim A, Kucukosmanoglu M, Yavuz F, Koyunsever NY, Cekici Y, Dogdus M, Abacioğlu ÖÖ, Kilic S. Comparison of the ATRIA, CHA2DS2-VASc, and Modified Scores ATRIA-HSV, CHA2DS2-VASc-HS, for the Prediction of Coronary Artery Disease Severity. Angiology 2021; 72:664-672. [PMID: 33550837 DOI: 10.1177/0003319721991410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many parameters included in the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) and CHA2DS2-VASc (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke, vascular disease, age 65-74 years, sex category) scores also predict coronary artery disease (CAD). We modified the ATRIA score (ATRIA-HSV) by adding hyperlipidemia, smoking, and vascular disease and also male sex instead of female. We evaluated whether the CHA2DS2-VASc, CHA2DS2-VASc-HS, ATRIA, and ATRIA-HSV scores predict severe CAD. Consecutive patients with coronary angiography were prospectively included. A ≥50% stenosis in ≥1epicardial coronary artery (CA) was defined as severe CAD. Patient with normal CA (n = 210) were defined as group 1, with <50% CA stenosis (n = 178) as group 2, and with ≥50% stenosis (n = 297) as group 3. The mean ATRIA, ATRIA-HSV, CHA2DS2-VASc, and CHA2DS2VASc-HS scores increased from group 1 to group 3. A correlation was found between the Synergy between PCI with Taxus and Cardiac Surgery score and ATRIA (r = 0.570), ATRIA-HSV (r = 0.614), CHA2DS2-VASc (r = 0.428), and CHA2DS2-VASc-HS (r = 0.500) scores (Ps < .005). Pairwise comparisons of receiver operating characteristics curves showed that ATRIA-HSV (>3 area under curve [AUC]: 0.874) and ATRIA (>3, AUC: 0.854) have a better performance than CHA2DS2-VASc (>1, AUC: 0.746) and CHA2DS2-VASc-HS (>2, AUC: 0.769). In conclusion, the ATRIA and ATRIA-HSV scores are simple and may be useful to predict severe CAD.
Collapse
Affiliation(s)
- Arafat Yildirim
- Department of Cardiology, Adana Research and Training Hospital, Health Sciences University, Adana, Turkey
| | - Mehmet Kucukosmanoglu
- Department of Cardiology, Adana Research and Training Hospital, Health Sciences University, Adana, Turkey
| | - Fethi Yavuz
- Department of Cardiology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| | - Nermin Yildiz Koyunsever
- Department of Cardiology, Adana Research and Training Hospital, Health Sciences University, Adana, Turkey
| | - Yusuf Cekici
- Department of Cardiology, Mehmet Akif Inan Research and Training Hospital, Şanliurfa, Turkey
| | - Mustafa Dogdus
- Department of Cardiology, Uşak University Faculty of Medicine, Uşak, Turkey
| | - Özge Özcan Abacioğlu
- Department of Cardiology, Adana Research and Training Hospital, Health Sciences University, Adana, Turkey
| | - Salih Kilic
- Department of Cardiology, Adana Research and Training Hospital, Health Sciences University, Adana, Turkey
| |
Collapse
|
61
|
Bupleurum chinense Polysaccharide Improves LPS-Induced Senescence of RAW264.7 Cells by Regulating the NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:7060812. [PMID: 33456488 PMCID: PMC7787758 DOI: 10.1155/2020/7060812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Macrophages are important inflammatory cells that play a vital role in inflamm-aging. Bupleurum chinense polysaccharide (BCP), an effective component of the Bupleurum chinense herb, exerts multiple beneficial pharmacological effects, such as improving immunity and antioxidant activity. However, the effects of BCP on macrophage-aging and inflamm-aging are yet to be established. In this study, we examined the effects of BCP on proliferation, inflammatory cytokines, β-galactosidase (SA-β-gal), senescence-associated heterochromatin foci (SAHF), reactive oxygen species (ROS), mitochondrial membrane potential, p53, p16, and p65/NF-κB signaling proteins in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. BCP significantly inhibited production of interleukin-1α (IL-1α), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), reduced the expression of SA-β-gal and formation of SAHF, as well as ROS level, and stabilized the mitochondrial membrane potential in RAW264.7 cells stimulated with LPS. Furthermore, BCP inhibited the expression of aging-related genes, p53 and p16, suppressed phosphorylation of p65 protein, and enhanced the expression of I-κBα protein through the NF-κB signaling pathway in LPS-stimulated RAW264.7 cells. Accordingly, we conclude that BCP effectively suppresses inflamm-aging by reducing inflammatory cytokine levels and oxidative stress production following activation of the NF-κB signaling pathway in RAW264.7 cells stimulated with LPS. Our collective findings support the utility of BCP as a novel pharmaceutical agent with potential anti-inflamm-aging effects.
Collapse
|
62
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|
63
|
Nasser S, Vialichka V, Biesiekierska M, Balcerczyk A, Pirola L. Effects of ketogenic diet and ketone bodies on the cardiovascular system: Concentration matters. World J Diabetes 2020; 11:584-595. [PMID: 33384766 PMCID: PMC7754168 DOI: 10.4239/wjd.v11.i12.584] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Ketone bodies have emerged as central mediators of metabolic health, and multiple beneficial effects of a ketogenic diet, impacting metabolism, neuronal pathologies and, to a certain extent, tumorigenesis, have been reported both in animal models and clinical research. Ketone bodies, endogenously produced by the liver, act pleiotropically as metabolic intermediates, signaling molecules, and epigenetic modifiers. The endothelium and the vascular system are central regulators of the organism’s metabolic state and become dysfunctional in cardiovascular disease, atherosclerosis, and diabetic micro- and macrovascular complications. As physiological circulating ketone bodies can attain millimolar concentrations, the endothelium is the first-line cell lineage exposed to them. While in diabetic ketoacidosis high ketone body concentrations are detrimental to the vasculature, recent research revealed that ketone bodies in the low millimolar range may exert beneficial effects on endothelial cell (EC) functioning by modulating the EC inflammatory status, senescence, and metabolism. Here, we review the long-held evidence of detrimental cardiovascular effects of ketoacidosis as well as the more recent evidence for a positive impact of ketone bodies—at lower concentrations—on the ECs metabolism and vascular physiology and the subjacent cellular and molecular mechanisms. We also explore arising controversies in the field and discuss the importance of ketone body concentrations in relation to their effects. At low concentration, endogenously produced ketone bodies upon uptake of a ketogenic diet or supplemented ketone bodies (or their precursors) may prove beneficial to ameliorate endothelial function and, consequently, pathologies in which endothelial damage occurs.
Collapse
Affiliation(s)
- Souad Nasser
- Carmen Laboratory, INSERM Unit 1060—Lyon 1 University, Pierre Benite 69310, France
| | - Varvara Vialichka
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
- The University of Lodz Doctoral School of Exact and Natural Sciences, Lodz 90-237, Poland
| | - Marta Biesiekierska
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
| | - Aneta Balcerczyk
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
| | - Luciano Pirola
- Carmen Laboratory, INSERM Unit 1060—Lyon 1 University, Pierre Benite 69310, France
| |
Collapse
|
64
|
Lee OH, Woo YM, Moon S, Lee J, Park H, Jang H, Park YY, Bae SK, Park KH, Heo JH, Choi Y. Sirtuin 6 deficiency induces endothelial cell senescence via downregulation of forkhead box M1 expression. Aging (Albany NY) 2020; 12:20946-20967. [PMID: 33171439 PMCID: PMC7695388 DOI: 10.18632/aging.202176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence of endothelial cells causes vascular dysfunction, promotes atherosclerosis, and contributes to the development of age-related vascular diseases. Sirtuin 6 (SIRT6), a conserved NAD+-dependent protein deacetylase, has beneficial effects against aging, despite the fact that its functional mechanisms are largely uncharacterized. Here, we show that SIRT6 protects endothelial cells from senescence. SIRT6 expression is progressively decreased during both oxidative stress-induced senescence and replicative senescence. SIRT6 deficiency leads to endothelial dysfunction, growth arrest, and premature senescence. Using genetically engineered endothelial cell-specific SIRT6 knockout mice, we also show that down-regulation of SIRT6 expression in endothelial cells exacerbates vascular aging. Expression microarray analysis demonstrated that SIRT6 modulates the expression of multiple genes involved in cell cycle regulation. Specifically, SIRT6 appears to regulate the expression of forkhead box M1 (FOXM1), a critical transcription factor for cell cycle progression and senescence. Overexpression of FOXM1 ameliorates SIRT6 deficiency-induced endothelial cell senescence. In this work, we demonstrate the role of SIRT6 as an anti-aging factor in the vasculature. These data may provide the basis for future novel therapeutic approaches against age-related vascular disorders.
Collapse
Affiliation(s)
- Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Yun Mi Woo
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Sohyeon Moon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyun Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Haeun Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hoon Jang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.,Department of Life Science, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Ji Hoe Heo
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
65
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
66
|
Kim JR, Choi JH. CD9 expression in vascular aging and atherosclerosis. Histol Histopathol 2020; 35:1449-1454. [PMID: 33026096 DOI: 10.14670/hh-18-268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CD9 is a transmembrane glycoprotein belonging to the tetraspanin family. CD9 expression has been reported to be associated with cellular signaling, cell adhesion, cell migration, and tumor related processes. The aim of this study was to examine the immunohistochemical expression of CD9 in vascular senescence and atherosclerosis. One hundred and twenty samples of normal young arteries (obtained from individuals aged 0-60 years), 40 samples of normal old arteries (obtained from individuals aged 61-80 years), and 67 samples of atherosclerotic arteries were obtained from surgically resected specimens. Tissue microarray blocks were prepared for immunohistochemical staining. Immunohistochemical staining detected CD9 expression in 10.8% (13 of 120 samples) of normal young arteries and 30.0% (12 of 40 samples) of normal old arteries. CD9 expression was absent or mildly present in the smooth muscle cells and endothelial cells of normal arteries. Normal old arteries showed significantly higher expression of CD9 than normal young arteries (P<0.01). Atherosclerotic arteries showed moderate or strong CD9 expression (65 of 67 samples, 97.0%), which was observed in the smooth muscle cells, endothelial cells, macrophages, and atheromatous plaques. CD9 was significantly expressed in the atherosclerotic arteries compared to normal young and old arteries (P<0.01). The results suggest that CD9 expression may play an important role in the vascular senescence and pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
67
|
Sung JY, Kim SG, Kim JR, Choi HC. Prednisolone suppresses adriamycin-induced vascular smooth muscle cell senescence and inflammatory response via the SIRT1-AMPK signaling pathway. PLoS One 2020; 15:e0239976. [PMID: 32997729 PMCID: PMC7526920 DOI: 10.1371/journal.pone.0239976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is associated with inflammation and the senescence-associated secretory phenotype (SASP) of secreted proteins. Vascular smooth muscle cell (VSMC) expressing the SASP contributes to chronic vascular inflammation, loss of vascular function, and the developments of age-related diseases. Although VSMC senescence is well recognized, the mechanism of VSMC senescence and inflammation has not been established. In this study, we aimed to determine whether prednisolone (PD) attenuates adriamycin (ADR)-induced VSMC senescence and inflammation through the SIRT1-AMPK signaling pathway. We found that PD inhibited ADR-induced VSMC senescence and inflammation response by decreasing p-NF-κB expression through the SIRT1-AMPK signaling pathway. In addition, Western blotting revealed PD not only increased SIRT1 expression but also increased the phosphorylation of AMPK at Ser485 in ADR-treated VSMC. Furthermore, siRNA-mediated downregulation or pharmacological inhibitions of SIRT1 or AMPK significantly augmented ADR-induced inflammatory response and senescence in VSMC despite PD treatment. In contrast, the overexpression of SIRT1 or constitutively active AMPKα (CA-AMPKα) attenuated cellular senescence and p-NF-κB expression. Taken together, the inhibition of p-NF-κB by PD through the SIRT1 and p-AMPK (Ser485) pathway suppressed VSMC senescence and inflammation. Collectively, our results suggest that anti-aging effects of PD are caused by reduced VSMC senescence and inflammation due to reciprocal regulation of the SIRT1/p-AMPK (Ser485) signaling pathway.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
68
|
Parvizi M, Ryan ZC, Ebtehaj S, Arendt BK, Lanza IR. The secretome of senescent preadipocytes influences the phenotype and function of cells of the vascular wall. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165983. [PMID: 33002577 DOI: 10.1016/j.bbadis.2020.165983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Senescent cells accumulate in numerous tissues in several chronic conditions such as aging, obesity, and diabetes. These cells are in a state of irreversible cell-cycle arrest and secrete inflammatory cytokines, chemokines and other immune modulators that have paracrine effects on nearby tissues. Adipose tissue, in particular, harbors senescent cells, which have been linked with numerous chronic conditions and age-related comorbidities. Here we performed a series of in vitro experiments to determine the influence of senescent preadipocytes on key cell types found in vessel walls, including vascular smooth muscle cells (VSMCs), endothelial cells (ECs), macrophages (MQs), and adipose-derived stromal/stem cells (ASCs). Primary human preadipocytes were irradiated to trigger a senescence-like phenotype. VSMCs, ECs, MQs, and ASCs were exposed to conditioned media collected from irradiated preadipocytes or control preadipocytes. Additional experiments were performed where VSMCs, ECs, MQs, and ASCs were co-cultured with irradiated or control preadipocytes. The secretome of irradiated cells induced an inflammatory phenotype, decreased cell viability, disrupted proliferation and migration, and impaired metabolic function of these cell types in vitro. These maladaptive changes in response to senescent cell exposure provide early evidence in support of a hypothesis that senescent preadipocytes trigger phenotypic and functional changes in key cellular components of blood vessels that may contribute to vascular disease.
Collapse
Affiliation(s)
- Mojtaba Parvizi
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zachary C Ryan
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sanam Ebtehaj
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bonnie K Arendt
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
69
|
Hay M, Barnes C, Huentelman M, Brinton R, Ryan L. Hypertension and Age-Related Cognitive Impairment: Common Risk Factors and a Role for Precision Aging. Curr Hypertens Rep 2020; 22:80. [PMID: 32880739 PMCID: PMC7467861 DOI: 10.1007/s11906-020-01090-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of Review Precision Aging® is a novel concept that we have recently employed to describe how the model of precision medicine can be used to understand and define the multivariate risks that drive age-related cognitive impairment (ARCI). Hypertension and cardiovascular disease are key risk factors for both brain function and cognitive aging. In this review, we will discuss the common mechanisms underlying the risk factors for both hypertension and ARCI and how the convergence of these mechanisms may be amplified in an individual to drive changes in brain health and accelerate cognitive decline. Recent Findings Currently, our cognitive health span does not match our life span. Age-related cognitive impairment and preventing and treating ARCI will require an in-depth understanding of the interrelated risk factors, including individual genetic profiles, that affect brain health and brain aging. Hypertension and cardiovascular disease are important risk factors for ARCI. And, many of the risk factors for developing hypertension, such as diabetes, smoking, stress, viral infection, and age, are shared with the development of ARCI. We must first understand the mechanisms common to the converging risk factors in hypertension and ARCI and then design person-specific therapies to optimize individual brain health. Summary The understanding of the convergence of shared risk factors between hypertension and ARCI is required to develop individualized interventions to optimize brain health across the life span. We will conclude with a discussion of possible steps that may be taken to decrease ARCI and optimize an individual’s cognitive life span.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd, Room 4103, Tucson, AZ, 85724, USA.
- Psychology Department, University of Arizona, Tucson, AZ, USA.
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| | - Carol Barnes
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matt Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, TGen, Phoenix, AZ, USA
| | - Roberta Brinton
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Center for Innovative Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Lee Ryan
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
70
|
Corina A, Abrudan MB, Nikolic D, Cӑtoi AF, Chianetta R, Castellino G, Citarrella R, Stoian AP, Pérez-Martínez P, Rizzo M. Effects of Aging and Diet on Cardioprotection and Cardiometabolic Risk Markers. Curr Pharm Des 2020; 25:3704-3714. [PMID: 31692432 DOI: 10.2174/1381612825666191105111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of several diseases increases by age, including cardiovascular diseases, which are the leading cause of morbidity and mortality worldwide. Aging, as a complex process characterized by senescence, triggers various pathways, such as oxidative stress, systemic inflammation, metabolism dysfunction, telomere shortening, mitochondrial dysfunction and deregulated autophagy. A better understanding of the mechanisms underlying senescence may lead to the development of new therapeutic targets and strategies for age-related pathologies and extend the healthy lifespan. Modulating lifestyle risk factors and adopting healthy dietary patterns remain significant tools in delaying the aging process, decreasing age-associated comorbidities and mortality, increasing life expectancy and consequently, preventing the development of cardiovascular disease. Furthermore, such a strategy represents the most cost-effective approach, and the quality of life of the subjects may be significantly improved. An integrated, personalized approach targeting cardiometabolic aging and frailty is suggested in daily clinical practice. However, it should be initiated from an early age. Moreover, there is a need for further well designed and controlled studies in order to elucidate a link between the time of feeding, longevity and cardiovascular prevention. In the future, it is expected that the pharmacological treatment in cardioprotective management will be necessary, accompanied by equally important lifestyle interventions and adjunctive exercise.
Collapse
Affiliation(s)
- Andreea Corina
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria B Abrudan
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu", University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Dragana Nikolic
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Adriana F Cӑtoi
- Pathophysiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roberta Chianetta
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giuseppa Castellino
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Anca P Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Manfredi Rizzo
- PROMISE Department, University of Palermo, Palermo, Italy
| |
Collapse
|
71
|
Stojanović SD, Fuchs M, Kunz M, Xiao K, Just A, Pich A, Bauersachs J, Fiedler J, Sedding D, Thum T. Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells. Front Physiol 2020; 11:520. [PMID: 32523550 PMCID: PMC7261939 DOI: 10.3389/fphys.2020.00520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
The senescence of vascular smooth muscle cells (VSMCs) has been implicated as a causal pro-inflammatory mechanism for cardiovascular disease development and progression of atherosclerosis, the instigator of ischemic heart disease. Contemporary limitations related to studying this cellular population and senescence-related therapeutics are caused by a lack of specific markers enabling their detection. Therefore, we aimed to profile a phenotypical and molecular signature of senescent VSMCs to allow reliable identification. To achieve this goal, we have compared non-senescent and senescent VSMCs from two in vitro models of senescence, replicative senescence (RS) and DNA-damage induced senescence (DS), by analyzing the expressions of established senescence markers: cell cycle inhibitors- p16 INK4a, p14 ARF, p21 and p53; pro-inflammatory factors-Interleukin 1β (IL-1β), IL-6 and high mobility group box-1 (HMGB-1); contractile proteins-smooth muscle heavy chain- (MYH11), smoothelin and transgelin (TAGLN), as well as structural features (nuclear morphology and LMNB1 (Lamin B1) expression). The different senescence-inducing modalities resulted in a lack of the proliferative activity. Nucleomegaly was seen in senescent VSMC as compared to freshly isolated VSMC Phenotypically, senescent VSMC appeared with a significantly larger cell size and polygonal, non-spindle-shaped cell morphology. In line with the supposed switch to a pro-inflammatory phenotype known as the senescence associated secretory phenotype (SASP), we found that both RS and DS upregulated IL-1β and released HMGB-1 from the nucleus, while RS also showed IL-6 upregulation. In regard to cell cycle-regulating molecules, we detected modestly increased p16 levels in both RS and DS, but largely inconsistent p21, p14ARF, and p53 expressions in senescent VSMCs. Since these classical markers of senescence showed insufficient deregulation to warrant senescent VSMC detection, we have conducted a non-biased proteomics and in silico analysis of RS VSMC demonstrating altered RNA biology as the central molecular feature of senescence in this cell type. Therefore, key proteins involved with RNA functionality, HMGB-1 release, LMNB-1 downregulation, in junction with nuclear enlargement, can be used as markers of VSMC senescence, enabling the detection of these pathogenic pro-inflammatory cells in future therapeutic studies in ischemic heart disease and atherosclerosis.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hanover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.,Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hanover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hanover, Germany
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, Hanover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany.,REBIRTH Center of Translational Regenerative Medicine, Hannover Medical School, Hanover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hanover, Germany
| | - Daniel Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hanover, Germany.,REBIRTH Center of Translational Regenerative Medicine, Hannover Medical School, Hanover, Germany
| |
Collapse
|
72
|
Jiang YH, Jiang LY, Wang YC, Ma DF, Li X. Quercetin Attenuates Atherosclerosis via Modulating Oxidized LDL-Induced Endothelial Cellular Senescence. Front Pharmacol 2020; 11:512. [PMID: 32410992 PMCID: PMC7198817 DOI: 10.3389/fphar.2020.00512] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
Background and Aims Endothelial senescence is an important risk factor leading to atherosclerosis. The mechanism of quercetin against endothelial senescence is worth exploring. Methods Quercetin (20 mg/kg/d) was administered to ApoE-/- mice intragastrically to evaluate the effectiveness of quercetin on atherosclerotic lesion in vivo. In vitro, human aortic endothelial cells (HAECs) were used to assess the effect of quercetin on cellular senescence induced by oxidized low-density lipoprotein (ox-LDL). Transcriptome microarray and quantitative RT-PCR was conducted to study the pharmacological targets of quercetin. Results ApoE-/- mice demonstrated obvious lipid deposition in arterial lumina, high level of serum sIcam-1 and IL-6, and high density of Vcam-1 and lower density of Sirt1 in aorta. Quercetin administration decreased lipid deposition in arterial lumina, serum sIcam-1, and IL-6 and Vcam-1 in aorta, while increased the density of Sirt1 in aorta of ApoE-/- mice. In vitro, quercetin (0.3, 1, or 3 μmol/L) decreased the expression of senescence-associated β-galactosidase and improved cell morphology of HAECs. And quercetin decreased the cellular apoptosis and increased mitochondrial membrane potential (ΔΨm) in dose-dependent manner, and decreased ROS generation simultaneously. Transcriptome microarray suggested 254 differentially expressed (DE) mRNAs (110 mRNAs were upregulated and 144 mRNAs were downregulated) in HAECs after quercetin treatment (fold change > 1.5, P < 0 .05, Que vs Ox-LDL). GO and KEGG analysis indicated nitrogen metabolism, ECM-receptor interaction, complement, and coagulation cascades, p53 and mTOR signaling pathway were involved in the pharmacological mechanisms of quercetin against ox-LDL. Conclusions Quercetin alleviated atherosclerotic lesion both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Yu Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Cheng Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Du-Fang Ma
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
73
|
Zhang Q, Nettleship I, Schmelzer E, Gerlach J, Zhang X, Wang J, Liu C. Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:64-78. [DOI: 10.1089/ten.teb.2019.0215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qinghao Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ian Nettleship
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jorg Gerlach
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xuewei Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jing Wang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Changsheng Liu
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|
74
|
Alique M, Sánchez-López E, Bodega G, Giannarelli C, Carracedo J, Ramírez R. Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells 2020; 9:cells9010195. [PMID: 31941032 PMCID: PMC7016968 DOI: 10.3390/cells9010195] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the hottest topics in biomedical research. Advances in research and medicine have helped to preserve human health, leading to an extension of life expectancy. However, the extension of life is an irreversible process that is accompanied by the development of aging-related conditions such as weakness, slower metabolism, and stiffness of vessels. It also debated that aging can be considered an actual disease with aging-derived comorbidities, including cancer or cardiovascular disease. Currently, cardiovascular disorders, including atherosclerosis, are considered as premature aging and represent the first causes of death in developed countries, accounting for 31% of annual deaths globally. Emerging evidence has identified hypoxia-inducible factor-1α as a critical transcription factor with an essential role in aging-related pathology, in particular, regulating cellular senescence associated with cardiovascular aging. In this review, we will focus on the regulation of senescence mediated by hypoxia-inducible factor-1α in age-related pathologies, with particular emphasis on the crosstalk between endothelial and vascular cells in age-associated atherosclerotic lesions. More specifically, we will focus on the characteristics and mechanisms by which cells within the vascular wall, including endothelial and vascular cells, achieve a senescent phenotype.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Elsa Sánchez-López
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| | - Chiara Giannarelli
- Cardiovascular Research Center, Institute for Genomics and Multiscale Biology, New York, NY 10029, USA;
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| |
Collapse
|
75
|
Ru YX, Shang HC, Dong SX, Zhao SX, Liang HY, Zhu CJ. Foam cell origination from degenerated vascular smooth muscle cells in atherosclerosis: An ultrastructural study on hyperlipidemic rabbits. Ultrastruct Pathol 2020; 44:103-115. [PMID: 31906762 DOI: 10.1080/01913123.2019.1711481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To clarify foam cell origination in atherosclerosis, a series of morphologic and ultrastructural alterations of vascular smooth muscle cells (VSMCs) and foam cells were studied by light and electron microscopy in atherosclerotic aortas from hyperlipidemic rabbits induced for 5 weeks. The study exhibited that VSMCs were severely degenerated and damaged, including irregular shapes, expanded mitochondria, aplenty lipid droplets, and disarranged myofilaments in cytoplasm in media adjacent to atheromatic bottoms. Most lipid laden cells shared interphase structures of VSMCs and foam cells, and some dissolved spindle cells contained lipid droplets, lipofuscin, and rod-like CCs in cytoplasm also. The result demonstrated that VSMCs were degenerated and transformed into foam cells in atherosclerosis, which was responsible for the accumulation of lipid and cholesterol crystals in atherosclerotic arteries.
Collapse
Affiliation(s)
- Yong-Xin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Hong-Cai Shang
- Key laboratory of Chinese internal medicine of Ministry of Education, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Shu-Xu Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Shi-Xuan Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Hao-Yue Liang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Chao-Jun Zhu
- Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
76
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
77
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
78
|
Mast Cells as Potential Accelerators of Human Atherosclerosis-From Early to Late Lesions. Int J Mol Sci 2019; 20:ijms20184479. [PMID: 31514285 PMCID: PMC6770933 DOI: 10.3390/ijms20184479] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cells are present in atherosclerotic lesions throughout their development. The process of atherogenesis itself is characterized by infiltration and retention of cholesterol-containing blood-derived low-density lipoprotein (LDL) particles in the intimal layer of the arterial wall, where the particles become modified and ingested by macrophages, resulting in the formation of cholesterol-filled foam cells. Provided the blood-derived high-density lipoproteins (HDL) particles are able to efficiently carry cholesterol from the foam cells back to the circulation, the early lesions may stay stable or even disappear. However, the modified LDL particles also trigger a permanent local inflammatory reaction characterized by the presence of activated macrophages, T cells, and mast cells, which drive lesion progression. Then, the HDL particles become modified and unable to remove cholesterol from the foam cells. Ultimately, the aging foam cells die and form a necrotic lipid core. In such advanced lesions, the lipid core is separated from the circulating blood by a collagenous cap, which may become thin and fragile and susceptible to rupture, so causing an acute atherothrombotic event. Regarding the potential contribution of mast cells in the initiation and progression of atherosclerotic lesions, immunohistochemical studies in autopsied human subjects and studies in cell culture systems and in atherosclerotic mouse models have collectively provided evidence that the compounds released by activated mast cells may promote atherogenesis at various steps along the path of lesion development. This review focuses on the presence of activated mast cells in human atherosclerotic lesions. Moreover, some of the molecular mechanisms potentially governing activation and effector functions of mast cells in such lesions are presented and discussed.
Collapse
|
79
|
Colpani O, Spinetti G. MicroRNAs orchestrating senescence of endothelial and vascular smooth muscle cells. ACTA ACUST UNITED AC 2019; 1:H75-H81. [PMID: 32923957 PMCID: PMC7439843 DOI: 10.1530/vb-19-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
During organism aging, the process of cellular senescence is triggered by critical stressors such as DNA damage, oncogenes, oxidative stress, and telomere erosion, and vascular cells are not exempted. Senescent cells stop proliferating but remain metabolically active producing pro-inflammatory signals in the environment collectively named senescence-associated secretory phenotype (SASP) that contribute to the amplification of the response to the neighbor and distant cells. Although the shift toward senescence is protective against tumors and needed during wound healing, the accumulation of senescent cells during aging due to an impairment of the immune system deputed to their clearance, can predispose to diseases of the cardiovascular system such as atherosclerosis. In this short review, we describe the main features of senescence of endothelial and smooth muscle cells and focus on the role non-coding RNAs of the microRNAs class in controlling this process. Finally, we discuss the potential of new strategies based on senescence removal in counteracting vascular disease burden.
Collapse
|
80
|
The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. Biomolecules 2019; 9:biom9080341. [PMID: 31382626 PMCID: PMC6723262 DOI: 10.3390/biom9080341] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Stress-induced premature cellular senescence is a significant factor in the onset of age-dependent disease in the cardiovascular system. Plasminogen activator inhibitor-1 (PAI-1), a major TGF-β1/p53 target gene and negative regulator of the plasmin-based pericellular proteolytic cascade, is elevated in arterial plaques, vessel fibrosis, arteriosclerosis, and thrombosis, correlating with increased tissue TGF-β1 levels. Additionally, PAI-1 is necessary and sufficient for the induction of p53-dependent replicative senescence. The mechanism of PAI-1 transcription in senescent cells appears to be dependent on caveolin-1 signaling. Src kinases are upstream effectors of both FAK and caveolin-1 activation as FAKY577,Y861 and caveolin-1Y14 phosphorylation are not detected in TGF-β1-stimulated src family kinase (pp60c-src, Yes, Fyn) triple-deficient (SYF−/−/−) cells. However, restoration of pp60c-src expression in SYF-null cells rescued both caveolin-1Y14 phosphorylation and PAI-1 induction in response to TGF-β1. Furthermore, TGF-β1-initiated Src phosphorylation of caveolin-1Y14 is critical in Rho-ROCK-mediated suppression of the SMAD phosphatase PPM1A maintaining and, accordingly, SMAD2/3-dependent transcription of the PAI-1 gene. Importantly, TGF-β1 failed to induce PAI-1 expression in caveolin-1-null cells, correlating with reductions in both Rho-GTP loading and SMAD2/3 phosphorylation. These findings implicate caveolin-1 in expression controls on specific TGF-β1/p53 responsive growth arrest genes. Indeed, up-regulation of caveolin-1 appears to stall cells in G0/G1 via activation of the p53/p21 cell cycle arrest pathway and restoration of caveolin-1 in caveolin-1-deficient cells rescues TGF-β1 inducibility of the PAI-1 gene. Although the mechanism is unclear, caveolin-1 inhibits p53/MDM2 complex formation resulting in p53 stabilization, induction of p53-target cell cycle arrest genes (including PAI-1), and entrance into premature senescence while stimulating the ATM→p53→p21 pathway. Identification of molecular events underlying senescence-associated PAI-1 expression in response to TGF-β1/src kinase/p53 signaling may provide novel targets for the therapy of cardiovascular disease.
Collapse
|
81
|
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2019; 114:622-634. [PMID: 29360955 DOI: 10.1093/cvr/cvy007] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Manon Moulis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Cécile Vindis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
82
|
Wang XB, Cui NH, Zhang S, Liu ZJ, Ma JF, Ming L. Leukocyte telomere length, mitochondrial DNA copy number, and coronary artery disease risk and severity: A two-stage case-control study of 3064 Chinese subjects. Atherosclerosis 2019; 284:165-172. [DOI: 10.1016/j.atherosclerosis.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
|
83
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
84
|
Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. GeroScience 2018; 40:513-521. [PMID: 30470983 DOI: 10.1007/s11357-018-0047-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022] Open
Abstract
Aging-induced pro-inflammatory phenotypic alterations of the cerebral vasculature critically contribute to the pathogenesis of vascular cognitive impairment. Cellular senescence is a fundamental aging process that promotes inflammation; however, its role in cerebrovascular aging remains unexplored. The present study was undertaken to test the hypothesis that advanced aging promotes cellular senescence in the cerebral vasculature. We found that in cerebral arteries of 24-month-old mice, expression of molecular markers of senescence (p16INK4a, p21) is upregulated as compared to that in young controls. Induction of senescence programs in cerebral arteries is associated by an upregulation of a wide range of inflammatory cytokines and chemokines, which are known to contribute to the senescence-associated secretory phenotype (SASP) in vascular cells. Age-related cerebrovascular senescence and inflammation are associated with neuroinflammation, as shown by the molecular footprint of microglia activation in the hippocampus. Genetic depletion of the pro-survival/anti-aging transcriptional regulator Nrf2 exacerbated age-related induction of senescence markers and inflammatory SASP factors and resulted in a heightened inflammatory status of the hippocampus. In conclusion, our studies provide evidence that aging and Nrf2 dysfunction promote cellular senescence in cerebral vessels, which may potentially cause or exacerbate age-related pathology.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Pulmonology, Semmelweis University, Budapest, Hungary. .,Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
85
|
Perrotta I. Occurrence and characterization of lipofuscin and ceroid in human atherosclerotic plaque. Ultrastruct Pathol 2018; 42:477-488. [PMID: 30465462 DOI: 10.1080/01913123.2018.1544953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerotic plaque formation starts early in life, develops silently over decades, and often displays clear evidence of accelerated biological aging. Lipofuscin has been classically defined as "the most consistent and phylogenetically conserved cellular morphologic change of aging," however, despite this traditional view different lines of evidence have recently demonstrated that, besides aging, various noxious influences can engeder its accumulation in cells and also that specific experimental conditions can revert this effect. Lipofuscin has been also proven to interact with disease-related factors to enhance cell loss. Along with lipofuscin, ceroid, another autofluorescent lipopigment usually produced under various pathological conditions unrelated to aging, has been suggested to jeopardize cell performance and viability by inducing membrane fragility, mitochondrial dysfunction, DNA damage, and oxidative stress-induced apoptosis. With regard to atherosclerosis, very few investigations have been conducted to assess whether a link could exist between lipofuscin/ceroid accumulation and the progression of the disease and no information still exist regarding the anatomy and the ultrastructural diversification of lipofuscin and ceroid in the lesional vascular tissue. At the same time, data concerning their potential toxicity at the cellular level are fragmentary, dated, and scarce. The present study investigates the occurrence and distribution of lipofuscin and ceroid in human atherosclerotic plaque and adjacent healthy tissues and analyzes the ultrastructural changes associated with their accumulation within the cell.
Collapse
Affiliation(s)
- Ida Perrotta
- a Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory , University of Calabria , Cosenza , Italy
| |
Collapse
|
86
|
Ogunbayo GO, Misumida N, Ayoub K, Hailemariam Y, Hillerson D, Elbadawi A, Abdel-Latif A, Smyth S, Ziada K, Messerli AW. Temporal trends, characteristics and outcomes of fibrinolytic therapy for ST-elevation myocardial infarction among patients 80 years or older. Catheter Cardiovasc Interv 2018; 92:E425-E432. [PMID: 30269436 DOI: 10.1002/ccd.27833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/30/2018] [Accepted: 07/28/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pharmacologic reperfusion therapy is a recommended and effective strategy in patients with ST-elevation myocardial infarction (STEMI) when percutaneous coronary intervention (PCI) is not available. This study investigates temporal trends and outcomes of fibrinolytic therapy (FT) in elderly patients with STEMI. METHODS Using the Nationwide Inpatient Sample database, we extracted patients ≥80 years a primary diagnosis of STEMI admitted between 2010 and 2014. Using ICD codes, we identified patients who underwent FT. We performed temporal trend analysis, then compared characteristics and inpatient outcomes in the FT group versus no-FT group. Our primary outcome of interest was hemorrhagic stroke (HS). We also assessed the impact of HS on mortality and discharge to skilled nursing facility (SNF). RESULTS Of the 917,307 patients with STEMI, 16.1% (n = 147,874) were aged 80 or older. Primary PCI was performed in 46.2%, 2.4% underwent FT, and 51.3% had neither pharmacologic nor mechanical revascularization. The rate of FT increased (1.9%-2.4%) in a nonlinear trend over the five years of the study. The FT group was eight times more likely to suffer HS (P < 0.001). FT was an independent predictor of HS (OR 7.90, 95% CI 4.36-14.30; P < 0.001), whether they underwent PCI or not. HS was an independent predictor of mortality and SNF discharge. CONCLUSION FT in patients 80 years or older presenting with STEMI was associated with an eight-fold increase in HS and no associated mortality advantage, both with or without PCI. These data underscore the increased risk of FT in the elderly.
Collapse
Affiliation(s)
- Gbolahan O Ogunbayo
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Naoki Misumida
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Karam Ayoub
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Yared Hailemariam
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Dustin Hillerson
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Ayman Elbadawi
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Susan Smyth
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Khaled Ziada
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Adrian W Messerli
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
87
|
Sun QR, Zhang X, Fang K. Phenotype of Vascular Smooth Muscle Cells (VSMCs) Is Regulated by miR-29b by Targeting Sirtuin 1. Med Sci Monit 2018; 24:6599-6607. [PMID: 30231015 PMCID: PMC6354642 DOI: 10.12659/msm.910068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Phenotypic switch of vascular smooth muscle cells (VSMCs) participates in the etiology of various vascular diseases. It has been proved that microRNAs (miRNAs) serve as crucial regulators of functions of VSMCs. This study aimed to discover how miR-29b regulates the transformation of VSMCs phenotypes in mice. Material/Methods Primary VSMCs of aorta in mice were cultured in DMEM medium. A series of experiments involving transfection of oligonucleotides in cultured VSMCs, quantitative reverse transcription PCR (qRT-PCR), luciferase reporter assay, and Western blotting analysis were performed in this study. Results We found that in VSMCs cultured in presence of stimulator, platelet-derived growth factor-BB (PDGF-BB), miR-29b was upregulated significantly and expressions of VSMC-phenotype-related genes (α-SMA, calponin, and SM-MHC) were regulated by miR-29b. Moreover, through downregulation of sirtuin 1 (SIRT1), miR-29b affects phenotypic transformation of VSMCs. Luciferase report assay identified a significant increase of SIRT1 3′-UTR activity in treatment with miR-29b inhibitor, which, however, was reversed in the presence of miR-29b mimic. Suppression of miR-29b reversed the activation of NF-κB induced by PDGF-BB in VSMCs. Conclusions We concluded that miR-29b is an important regulator in the PDGF-BB-mediated VSMC phenotypic transition by targeting SIRT1. Interventions aimed at miR-29b may be promising in treating numerous proliferative vascular disorders.
Collapse
Affiliation(s)
- Qian-Ru Sun
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Xiong Zhang
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (mainland)
| | - Kun Fang
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (mainland)
| |
Collapse
|
88
|
β-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. Mol Cell 2018; 71:1064-1078.e5. [PMID: 30197300 DOI: 10.1016/j.molcel.2018.07.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/02/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022]
Abstract
β-hydroxybutyrate (β-HB) elevation during fasting or caloric restriction is believed to induce anti-aging effects and alleviate aging-related neurodegeneration. However, whether β-HB alters the senescence pathway in vascular cells remains unknown. Here we report that β-HB promotes vascular cell quiescence, which significantly inhibits both stress-induced premature senescence and replicative senescence through p53-independent mechanisms. Further, we identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a direct binding target of β-HB. β-HB binding to hnRNP A1 markedly enhances hnRNP A1 binding with Octamer-binding transcriptional factor (Oct) 4 mRNA, which stabilizes Oct4 mRNA and Oct4 expression. Oct4 increases Lamin B1, a key factor against DNA damage-induced senescence. Finally, fasting and intraperitoneal injection of β-HB upregulate Oct4 and Lamin B1 in both vascular smooth muscle and endothelial cells in mice in vivo. We conclude that β-HB exerts anti-aging effects in vascular cells by upregulating an hnRNP A1-induced Oct4-mediated Lamin B1 pathway.
Collapse
|
89
|
Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1802-1809. [PMID: 31109450 DOI: 10.1016/j.bbadis.2018.08.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Increased cardiovascular disease in aging is partly a consequence of the vascular endothelial cell (EC) senescence and associated vascular dysfunction. In this contest, EC senescence is a pathophysiological process of structural and functional changes including dysregulation of vascular tone, increased endothelium permeability, arterial stiffness, impairment of angiogenesis and vascular repair, and a reduction of EC mitochondrial biogenesis. Dysregulation of cell cycle, oxidative stress, altered calcium signaling, hyperuricemia, and vascular inflammation have been implicated in the development and progression of EC senescence and vascular disease in aging. A number of abnormal molecular pathways are associated with these underlying pathophysiological changes including Sirtuin 1, Klotho, fibroblast growth factor 21, and activation of the renin angiotensin-aldosterone system. However, the molecular mechanisms of EC senescence and associated vascular impairment in aging are not completely understood. This review provides a contemporary update on molecular mechanisms, pathophysiological events, as well functional changes in EC senescence and age-associated cardiovascular disease. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
90
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
91
|
Alique M, Ramírez-Carracedo R, Bodega G, Carracedo J, Ramírez R. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. Int J Mol Sci 2018; 19:E2003. [PMID: 29987251 PMCID: PMC6073566 DOI: 10.3390/ijms19072003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease that causes the most heart attacks and strokes in humans, is the leading cause of death in the developing world; its principal clinical manifestation is coronary artery disease. The development of atherosclerosis is attributed to the aging process itself (biological aging) and is also associated with the development of chronic diseases (premature aging). Both aging processes produce an increase in risk factors such as oxidative stress, endothelial dysfunction and proinflammatory cytokines (oxi-inflamm-aging) that might generate endothelial senescence associated with damage in the vascular system. Cellular senescence increases microvesicle release as carriers of molecular information, which contributes to the development and calcification of atherosclerotic plaque, as a final step in advanced atherosclerotic plaque formation. Consequently, this review aims to summarize the information gleaned to date from studies investigating how the senescent extracellular vesicles, by delivering biological signalling, contribute to atherosclerotic calcification.
Collapse
Affiliation(s)
- Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/University Hospital Ramon y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain.
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| |
Collapse
|
92
|
Involvement of Flavonoids from the Leaves of Carya cathayensis Sarg. in Sirtuin 1 Expression in HUVEC Senescence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8246560. [PMID: 30105071 PMCID: PMC6076930 DOI: 10.1155/2018/8246560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is the commonest cause of death in the world and one of the most important processes that occurs with increasing age because it is accompanied by progressive endothelial dysfunction. Recent studies demonstrated that Sirtuin 1 (SIRT1) might potentially affect cell senescence. However, the effect of SIRT1 on the regulation of human umbilical vein endothelial cell (HUVEC) senescence with total flavonoids (TFs) has not been addressed previously. This study investigated how SIRT1 functions in the process of HUVEC senescence when TFs are present and identified the potential molecular mechanisms involved. Using a model of HUVEC senescence induced by angiotensin II, TFs pretreatment reduced the percentage of senescence-associated β-galactosidase (SA-β-gal) cells and p53 mRNA expression. The level of SIRT1 protein and E2F1 decreased during HUVEC senescence and could be partially recovered when cells were coincubated with TFs, while the levels of proteins p53 and p21 increased during cell senescence and diminished in response to the TFs treatment. When coincubated with 20 mM nicotinamide, the results with SA-β-gal-positive cells and the expression of SIRT1, E2F1, p53, and p21 were contrary to that obtained with only TFs pretreatment. The data indicate that the TFs exert their effect on HUVEC senescence through SIRT1.
Collapse
|
93
|
Xia L, Zeng Z, Tang WH. The Role of Platelet Microparticle Associated microRNAs in Cellular Crosstalk. Front Cardiovasc Med 2018; 5:29. [PMID: 29670887 PMCID: PMC5893844 DOI: 10.3389/fcvm.2018.00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 01/11/2023] Open
Abstract
Platelet is an anucleate cell containing abundant messenger RNAs and microRNAs (miRNAs), and their functional roles in hemostasis and inflammation remain elusive. Accumulating evidence has suggested that platelets can actively transfer RNAs to hepatocytes, vascular cells, macrophages, and tumor cells. The incorporated mRNAs are translated into proteins, and miRNAs were found to regulate the gene expression, resulting in the functional change of the recipient cells. This novel intercellular communication opens up a new avenue for the pathophysiological role of platelet in platelet-associated vascular diseases. Therefore, understanding the underlying mechanism and identification of the platelet miRNAs involved in this biological process would provide novel diagnostic and therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Luoxing Xia
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zeng
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
94
|
AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochem Biophys Res Commun 2018; 498:487-494. [DOI: 10.1016/j.bbrc.2018.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
|
95
|
Pan J, Lu L, Wang X, Liu D, Tian J, Liu H, Zhang M, Xu F, An F. AIM2 regulates vascular smooth muscle cell migration in atherosclerosis. Biochem Biophys Res Commun 2018; 497:401-409. [DOI: 10.1016/j.bbrc.2018.02.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
|
96
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
97
|
Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease – Activators and actions. Eur J Pharmacol 2017; 816:37-46. [DOI: 10.1016/j.ejphar.2017.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
|
98
|
McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol 2017; 217:65-77. [PMID: 29114066 PMCID: PMC5748990 DOI: 10.1083/jcb.201708092] [Citation(s) in RCA: 761] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is the major risk factor for cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. Although we are far from understanding the biological basis of aging, research suggests that targeting the aging process itself could ameliorate many age-related pathologies. Senescence is a cellular response characterized by a stable growth arrest and other phenotypic alterations that include a proinflammatory secretome. Senescence plays roles in normal development, maintains tissue homeostasis, and limits tumor progression. However, senescence has also been implicated as a major cause of age-related disease. In this regard, recent experimental evidence has shown that the genetic or pharmacological ablation of senescent cells extends life span and improves health span. Here, we review the cellular and molecular links between cellular senescence and aging and discuss the novel therapeutic avenues that this connection opens.
Collapse
Affiliation(s)
- Domhnall McHugh
- Medical Research Council London Institute of Medical Sciences, London, England, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| | - Jesús Gil
- Medical Research Council London Institute of Medical Sciences, London, England, UK .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| |
Collapse
|
99
|
Miao SB, Xie XL, Yin YJ, Zhao LL, Zhang F, Shu YN, Chen R, Chen P, Dong LH, Lin YL, Lv P, Zhang DD, Nie X, Xue ZY, Han M. Accumulation of Smooth Muscle 22α Protein Accelerates Senescence of Vascular Smooth Muscle Cells via Stabilization of p53 In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2017; 37:1849-1859. [DOI: 10.1161/atvbaha.117.309378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sui-Bing Miao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xiao-Li Xie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Juan Yin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Li Zhao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Fan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Nan Shu
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Rong Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Peng Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Hua Dong
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yan-Ling Lin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Pin Lv
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Dan-Dan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xi Nie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Zhen-Ying Xue
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Mei Han
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
100
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|