51
|
Kilroe SP, Fulford J, Jackman S, Holwerda A, Gijsen A, van Loon L, Wall BT. Dietary protein intake does not modulate daily myofibrillar protein synthesis rates or loss of muscle mass and function during short-term immobilization in young men: a randomized controlled trial. Am J Clin Nutr 2021; 113:548-561. [PMID: 32469388 DOI: 10.1093/ajcn/nqaa136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Short-term (<1 wk) muscle disuse lowers daily myofibrillar protein synthesis (MyoPS) rates resulting in muscle mass loss. The understanding of how daily dietary protein intake influences such muscle deconditioning requires further investigation. OBJECTIVES To assess the influence of graded dietary protein intakes on daily MyoPS rates and the loss of muscle mass during 3 d of disuse. METHODS Thirty-three healthy young men (aged 22 ± 1 y; BMI = 23 ± 1 kg/m2) initially consumed the same standardized diet for 5 d, providing 1.6 g protein/kg body mass/d. Thereafter, participants underwent a 3-d period of unilateral leg immobilization during which they were randomly assigned to 1 of 3 eucaloric diets containing relatively high, low, or no protein (HIGH: 1.6, LOW: 0.5, NO: 0.15 g protein/kg/d; n = 11 per group). One day prior to immobilization participants ingested 400 mL deuterated water (D2O) with 50-mL doses consumed daily thereafter. Prior to and immediately after immobilization upper leg bilateral MRI scans and vastus lateralis muscle biopsies were performed to measure quadriceps muscle volume and daily MyoPS rates, respectively. RESULTS Quadriceps muscle volume of the control legs remained unchanged throughout the experiment (P > 0.05). Immobilization led to 2.3 ± 0.4%, 2.7 ± 0.2%, and 2.0 ± 0.4% decreases in quadriceps muscle volume (P < 0.05) of the immobilized leg in the HIGH, LOW, and NO groups (P < 0.05), respectively, with no significant differences between groups (P > 0.05). D2O ingestion resulted in comparable plasma free [2H]-alanine enrichments during immobilization (∼2.5 mole percentage excess) across groups (P > 0.05). Daily MyoPS rates during immobilization were 30 ± 2% (HIGH), 26 ± 3% (LOW), and 27 ± 2% (NO) lower in the immobilized compared with the control leg, with no significant differences between groups (P > 0.05). CONCLUSIONS Three days of muscle disuse induces considerable declines in muscle mass and daily MyoPS rates. However, daily protein intake does not modulate any of these muscle deconditioning responses.Clinical trial registry number: NCT03797781.
Collapse
Affiliation(s)
- Sean Paul Kilroe
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, UK
| | - Jonathan Fulford
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Sarah Jackman
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, UK
| | - Andrew Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemie Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Benjamin Toby Wall
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
52
|
Petrocelli JJ, Drummond MJ. PGC-1α-Targeted Therapeutic Approaches to Enhance Muscle Recovery in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228650. [PMID: 33233350 PMCID: PMC7700690 DOI: 10.3390/ijerph17228650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
Collapse
|
53
|
Nay K, Koechlin-Ramonatxo C, Rochdi S, Island ML, Orfila L, Treffel L, Bareille MP, Beck A, Gauquelin-Koch G, Ropert M, Loréal O, Derbré F. Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground-based human model. FASEB J 2020; 34:14920-14929. [PMID: 32918768 DOI: 10.1096/fj.202001199rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023]
Abstract
The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses. DI increased spleen iron concentrations (SIC), whereas hepatic iron store (HIC) was not affected. Spleen iron sequestration could be due to the concomitant increase in serum hepcidin levels (P < .001). Increased serum unconjugated bilirubin, as well as the rise of serum myoglobin levels support that DI may promote hemolysis and myolysis. These phenomena could contribute to the concomitant increase of serum iron and transferrin saturation levels (P < .001). As HIC remained unchanged, increased serum hepcidin levels could be due both to higher transferrin saturation level, and to low-grade pro-inflammatory as suggested by the significant rise of serum ferritin and haptoglobin levels after DI (P = .003 and P = .003, respectively). These observations highlight the need for better assessment of iron metabolism in bedridden patients, and an optimization of the diet currently proposed to astronauts.
Collapse
Affiliation(s)
- Kévin Nay
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France.,DMEM, University of Montpellier, INRAE, Montpellier, France.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Sarah Rochdi
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Marie-Laure Island
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Luz Orfila
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| | - Loïc Treffel
- Institut NeuroMyoGène, Faculté de Médecine Lyon Est, Lyon, France
| | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | | | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) Institute, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Bruz, France
| |
Collapse
|
54
|
Mallard J, Hucteau E, Schott R, Petit T, Demarchi M, Belletier C, Ben Abdelghani M, Carinato H, Chiappa P, Fischbach C, Kalish-Weindling M, Bousinière A, Dufour S, Favret F, Pivot X, Hureau TJ, Pagano AF. Evolution of Physical Status From Diagnosis to the End of First-Line Treatment in Breast, Lung, and Colorectal Cancer Patients: The PROTECT-01 Cohort Study Protocol. Front Oncol 2020; 10:1304. [PMID: 32903594 PMCID: PMC7438727 DOI: 10.3389/fonc.2020.01304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Cancer cachexia and exacerbated fatigue represent two hallmarks in cancer patients, negatively impacting their exercise tolerance and ultimately their quality of life. However, the characterization of patients' physical status and exercise tolerance and, most importantly, their evolution throughout cancer treatment may represent the first step in efficiently counteracting their development with prescribed and tailored exercise training. In this context, the aim of the PROTECT-01 study will be to investigate the evolution of physical status, from diagnosis to the end of first-line treatment, of patients with one of the three most common cancers (i.e., lung, breast, and colorectal). Methods: The PROTECT-01 cohort study will include 300 patients equally divided between lung, breast and colorectal cancer. Patients will perform a series of assessments at three visits throughout the treatment: (1) between the date of diagnosis and the start of treatment, (2) 8 weeks after the start of treatment, and (3) after the completion of first-line treatment or at the 6-months mark, whichever occurs first. For each of the three visits, subjective and objective fatigue, maximal voluntary force, body composition, cachexia, physical activity level, quality of life, respiratory function, overall physical performance, and exercise tolerance will be assessed. Discussion: The present study is aimed at identifying the nature and severity of maladaptation related to exercise intolerance in the three most common cancers. Therefore, our results should contribute to the delineation of the needs of each group of patients and to the determination of the most valuable exercise interventions in order to counteract these maladaptations. This descriptive and comprehensive approach is a prerequisite in order to elaborate, through future interventional research projects, tailored exercise strategies to counteract specific symptoms that are potentially cancer type-dependent and, in fine, to improve the health and quality of life of cancer patients. Moreover, our concomitant focus on fatigue and cachexia will provide insightful information about two factors that may have substantial interaction but require further investigation. Trial registration: This prospective study has been registered at ClinicalTrials.gov (NCT03956641), May, 2019.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thierry Petit
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Martin Demarchi
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | | | - Hélène Carinato
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Pascale Chiappa
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Cathie Fischbach
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | - Audren Bousinière
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Stéphane Dufour
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Fabrice Favret
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thomas J Hureau
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Allan F Pagano
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
55
|
Millward DJ. Limiting deconditioned muscle atrophy and strength loss with appropriate nutrition: can it be done? Am J Clin Nutr 2020; 112:499-500. [PMID: 32559274 DOI: 10.1093/ajcn/nqaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
56
|
Greve JMD, Brech GC, Quintana M, Soares ALDS, Alonso AC. IMPACTS OF COVID-19 ON THE IMMUNE, NEUROMUSCULAR, AND MUSCULOSKELETAL SYSTEMS AND REHABILITATION. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202604esp002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT The new coronavirus, which causes the infectious disease named COVID-19 by the World Health Organization (WHO), was notified in 2020 in China. The main clinical manifestations in infected patients are fever, cough and dyspnoea. These patients are prone to developing cardiac changes, diffuse myopathy, decreased pulmonary function, decreased inspiratory muscle strength, and a deterioration in functional capacity. Thus, it is expected that patients affected by COVID-19 will suffer musculoskeletal consequences as a result of the inflammatory process and loss of muscle mass caused by immobility, generating motor incapacities that are not yet quantifiable. It is important to understand the clinical implications caused by COVID-19, in order to have better rehabilitation strategies for these patients. The aim of this study was to conduct a reflective analysis of the impact of COVID-19 on the immune, neuromuscular and musculoskeletal systems, and its rehabilitation process. This is a reflexive analysis, developed in the Laboratory for the Study of Movement of the Institute of Orthopaedics’ and Traumatology, at the Universidade de São Paulo School of Medicine, SP, Brazil. In this analysis, we reflect on the following topics related to COVID-19: immunological mechanisms, impact on the neuromuscular and musculoskeletal systems, and the rehabilitation of patients. Level of evidence V; Opinion of the specialist.
Collapse
Affiliation(s)
| | | | - Marília Quintana
- Universidade São Judas Tadeu, Brazil; Universidade Anhembi Morumbi, Brazil
| | | | - Angelica Castilho Alonso
- Universidade de São Paulo, Brazil; Universidade São Judas Tadeu, Brazil; Universidade Anhembi Morumbi, Brazil
| |
Collapse
|
57
|
Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 2020; 21:614-635. [PMID: 32394816 DOI: 10.1080/17461391.2020.1761076] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Marco Narici
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Gianni Biolo
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | - Nicola Fiotti
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Paul Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
58
|
Narici MV, Monti E, Franchi M, Reggiani C, Toniolo L, Giacomello E, Zampieri S, Simunič B, Pisot R. Early Biomarkers of Muscle Atrophy and of Neuromuscular Alterations During 10‐Day Bed Rest. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.09027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
59
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
60
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
61
|
Arc-Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano AF, Delobel P, Blanc S, Jasmin BJ, Blottner D, Salanova M, Gomez-Cabrera MC, Viña J, Brioche T, Chopard A. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol 2020; 11:71. [PMID: 32116779 PMCID: PMC7028694 DOI: 10.3389/fphys.2020.00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/22/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.
Collapse
Affiliation(s)
- Coralie Arc-Chagnaud
- DMEM, Université Montpellier, INRAE, Montpellier, France.,Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Guillaume Py
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Théo Fovet
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | | | - Rémi Demangel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Allan F Pagano
- Faculté des Sciences du Sport, Mitochondries, Stress Oxydant et Protection Musculaire, Université de Strasbourg, Strasbourg, France.,Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Delobel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Stéphane Blanc
- IPHC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dieter Blottner
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michele Salanova
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mari-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Thomas Brioche
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Angèle Chopard
- DMEM, Université Montpellier, INRAE, Montpellier, France
| |
Collapse
|
62
|
Effects of exercise countermeasure on myocardial contractility measured by 4D speckle tracking during a 21-day head-down bed rest. Eur J Appl Physiol 2019; 119:2477-2486. [DOI: 10.1007/s00421-019-04228-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023]
|
63
|
Maffiuletti NA, Green DA, Vaz MA, Dirks ML. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front Physiol 2019; 10:1031. [PMID: 31456697 PMCID: PMC6700209 DOI: 10.3389/fphys.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Human spaceflight is associated with a substantial loss of skeletal muscle mass and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary muscle contractions, which have the potential to preserve or restore skeletal muscle mass and neuromuscular function during and/or post spaceflight. This assumption is largely based on evidence from terrestrial disuse/immobilization studies without the use of large exercise equipment that may not be available in spaceflight beyond the International Space Station. In this mini-review we provide an overview of the rationale and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare this to that used in orbit, and in ground-based analogs in order to provide practical recommendations for implementation of NMES in future space missions. Emphasis will be placed on knee extensor and plantar flexor muscles known to be particularly susceptible to deconditioning in space missions.
Collapse
Affiliation(s)
| | - David A Green
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBRwyle, Wyle Laboratories GmbH, Cologne, Germany.,King's College London, Centre for Human & Applied Physiological Sciences (CHAPS), London, United Kingdom
| | - Marco Aurelio Vaz
- Exercise Research Laboratory (LAPEX), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marlou L Dirks
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
64
|
Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, Lefeuvre-Orfila L, Bendavid C, Rué O, Mariadassou M, Bonnieu A, Ollendorff V, Lepage P, Derbré F, Koechlin-Ramonatxo C. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab 2019; 317:E158-E171. [PMID: 31039010 DOI: 10.1152/ajpendo.00521.2018] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gut microbiota is involved in the development of several chronic diseases, including diabetes, obesity, and cancer, through its interactions with the host organs. It has been suggested that the cross talk between gut microbiota and skeletal muscle plays a role in different pathological conditions, such as intestinal chronic inflammation and cachexia. However, it remains unclear whether gut microbiota directly influences skeletal muscle function. In this work, we studied the impact of gut microbiota modulation on mice skeletal muscle function and investigated the underlying mechanisms. We determined the consequences of gut microbiota depletion after treatment with a mixture of a broad spectrum of antibiotics for 21 days and after 10 days of natural reseeding. We found that, in gut microbiota-depleted mice, running endurance was decreased, as well as the extensor digitorum longus muscle fatigue index in an ex vivo contractile test. Importantly, the muscle endurance capacity was efficiently normalized by natural reseeding. These endurance changes were not related to variation in muscle mass, fiber typology, or mitochondrial function. However, several pertinent glucose metabolism markers, such as ileum gene expression of short fatty acid chain and glucose transporters G protein-coupled receptor 41 and sodium-glucose cotransporter 1 and muscle glycogen level, paralleled the muscle endurance changes observed after treatment with antibiotics for 21 days and reseeding. Because glycogen is a key energetic substrate for prolonged exercise, modulating its muscle availability via gut microbiota represents one potent mechanism that can contribute to the gut microbiota-skeletal muscle axis. Taken together, our results strongly support the hypothesis that gut bacteria are required for host optimal skeletal muscle function.
Collapse
Affiliation(s)
- Kevin Nay
- DMEM, University of Montpellier, INRA, Montpellier , France
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | - Maxence Jollet
- DMEM, University of Montpellier, INRA, Montpellier , France
| | | | - Narjes Baati
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Barbara Vernus
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Maria Pontones
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | - Claude Bendavid
- Institut NuMeCan, Inserm U1241/CHU Rennes/INRA, Université de Rennes , Rennes , France
| | - Olivier Rué
- MaIAGE, INRA, Université Paris-Saclay , Jouy-en-Josas , France
| | | | - Anne Bonnieu
- DMEM, University of Montpellier, INRA, Montpellier , France
| | | | - Patricia Lepage
- MICALIS, AgroParisTech, INRA, Université Paris-Saclay , Jouy-en-Josas , France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | | |
Collapse
|
65
|
Influence of Forward Head Posture on Myotonometric Measurements of Superficial Neck Muscle Tone, Elasticity, and Stiffness in Asymptomatic Individuals With Sedentary Jobs. J Manipulative Physiol Ther 2019; 42:195-202. [PMID: 31122786 DOI: 10.1016/j.jmpt.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The objective of the study was to assess the influence of forward head posture on the mechanical parameters and pressure pain threshold of superficial neck muscles in clinically nonsymptomatic individuals with sedentary jobs. METHODS Twenty-five office workers with forward head posture and 25 office workers with normal head posture were matched for sex, age, body mass index, and the nature and duration of their work and were compared at a single point. The study participants were divided into study groups on the basis of photometric craniovertebral angle measurements. The upper trapezius, sternocleidomastoid, and splenius capitis mechanical properties were assessed in the sitting position. Primary outcome measures were muscle stiffness (N/m), muscle tone (Hz), and muscle elasticity. The secondary variable was perceived pain threshold. RESULTS No significant differences between the groups were found for biomechanical properties and perceived pain threshold in the studied muscles. CONCLUSION Forward head posture has no impact on muscle stiffness, tone, and elasticity, nor does it increase the pressure sensitivity of superficial neck muscles in healthy, mildly symptomatic office workers. It is most likely that not incorrect posture of the cervical spine, but probably other factors combined with forward head posture, like comorbid acute and chronic cervical pain and musculoskeletal disorders or prolonged sitting, contribute to changes in active myofascial tone and tensegrity as well as increased pressure sensitivity of neck muscles.
Collapse
|
66
|
Editorial Commentary: Do Patients With Femoroacetabular Impingement Syndrome Already Show Hip Muscle Atrophy? Arthroscopy 2019; 35:1454-1456. [PMID: 31054724 DOI: 10.1016/j.arthro.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 02/02/2023]
Abstract
Muscle atrophy, fatty degeneration, and strength deficits of the hip abductors, flexors, and even external rotators are well-known clinical and radiologic findings in patients with advanced hip osteoarthritis. More recently, in the context of prearthritic hip diseases, the role of hip muscle function in femoroacetabular impingement syndrome (FAIS) has gained greater focus for hip surgeons. Several studies have shown that patients with FAIS present with activation deficits of the hip muscles, which may result in hip muscle weakness. Nevertheless, previous studies have yet to determine whether young and mainly active patients with FAIS already show hip muscle atrophy. Future research is required to further characterize hip muscle function in patients with FAIS. Of particular interest is the investigation of whether both qualitative (muscle fatty degeneration) and quantitative (muscle atrophy) morphologic alterations of the hip muscles are present in patients with FAIS, as well as whether these alterations are sex specific and/or related to the underlying hip morphology.
Collapse
|
67
|
Tomilovskaya E, Shigueva T, Sayenko D, Rukavishnikov I, Kozlovskaya I. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Front Physiol 2019; 10:284. [PMID: 30971938 PMCID: PMC6446883 DOI: 10.3389/fphys.2019.00284] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 03/04/2019] [Indexed: 01/04/2023] Open
Abstract
Dry immersion (DI) is one of the most widely used ground models of microgravity. DI accurately and rapidly reproduces most of physiological effects of short-term space flights. The model simulates such factors of space flight as lack of support, mechanical and axial unloading as well as physical inactivity. The current manuscript gathers the results of physiological studies performed from the time of the model's development. This review describes the changes induced by DI of different duration (from few hours to 56 days) in the neuromuscular, sensory-motor, cardiorespiratory, digestive and excretory, and immune systems, as well as in the metabolism and hemodynamics. DI reproduces practically the full spectrum of changes in the body systems during the exposure to microgravity. The numerous publications from Russian researchers, which until present were mostly inaccessible for scientists from other countries are summarized in this work. These data demonstrated and validated DI as a ground-based model for simulation of physiological effects of weightlessness. The magnitude and rate of physiological changes during DI makes this method advantageous as compared with other ground-based microgravity models. The actual and potential uses of the model are discussed in the context of fundamental studies and applications for Earth medicine.
Collapse
Affiliation(s)
- Elena Tomilovskaya
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Shigueva
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Sayenko
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Ilya Rukavishnikov
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa Kozlovskaya
- RF SSC – Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
68
|
Šimunič B, Koren K, Rittweger J, Lazzer S, Reggiani C, Rejc E, Pišot R, Narici M, Degens H. Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J Appl Physiol (1985) 2019; 126:815-822. [PMID: 30676871 DOI: 10.1152/japplphysiol.00880.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In young and older people, skeletal muscle mass is reduced after as little as 7 days of disuse. The declines in muscle mass after such short periods are of high clinical relevance, particularly in older people who show a higher atrophy rate and a slower or even a complete lack of muscle mass recovery after disuse. Ten men (24.3 yr; SD 2.6) underwent 35 days of 6° head-down tilt bed rest, followed by 30 days of recovery. During bed rest, a neutral energy balance was maintained, with three weekly passive physiotherapy sessions to minimize muscle soreness and joint stiffness. All measurements were performed in a hospital at days 1-10, 16, 28, and 35 of bed rest (BR1-BR10, BR16, BR28, and BR35, respectively) and days 1, 3, and 30 after reambulation (R + 1, R + 3, and R + 30, respectively). Vastus medialis obliquus (VMO), vastus medialis longus (VML), and biceps femoris (BF) thickness (d) and pennation angle (Θ) were assessed by ultrasonography, whereas twitch muscle belly displacement (Dm) and contraction time (Tc) were assessed with tensiomyography (TMG). After bed rest, d and Θ decreased by 13-17% in all muscles ( P < 0.001) and had recovered at R + 30. Dm was increased by 42.3-84.4% ( P < 0.001) at BR35 and preceded the decrease in d by 7, 5, and 3 days in VMO, VML, and BF, respectively. Tc increased only in BF (32.1%; P < 0.001) and was not recovered at R + 30. TMG can detect early bed-rest-induced changes in muscle with higher sensitivity before overt architectural changes, and atrophy can be detected. NEW & NOTEWORTHY Detection of early atrophic processes and irreversible adaptation to disuse are of high clinical relevance. With the use of tensiomyography (TMG), we detected early atrophic processes before overt architectural changes, and atrophy can be detected using imaging technique. Furthermore, TMG detected irreversible changes of biceps femoris contraction time.
Collapse
Affiliation(s)
- Boštjan Šimunič
- University of Primorska , Koper , Slovenia.,Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Katja Koren
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center , Cologne , Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne , Cologne , Germany
| | - Stefano Lazzer
- Department of Medicine, University of Udine , Udine , Italy.,School of Sport Sciences, University of Udine , Udine , Italy
| | - Carlo Reggiani
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia.,Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia
| | - Marco Narici
- Science and Research Centre Koper, Institute for Kinesiology Research , Koper , Slovenia.,Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University , Manchester , United Kingdom.,Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania.,University of Medicine and Pharmacy of Targu Mures , Targu Mures , Romania
| |
Collapse
|
69
|
Huang J, Qin K, Tang C, Zhu Y, Klein CS, Zhang Z, Liu C. Assessment of Passive Stiffness of Medial and Lateral Heads of Gastrocnemius Muscle, Achilles Tendon, and Plantar Fascia at Different Ankle and Knee Positions Using the MyotonPRO. Med Sci Monit 2018; 24:7570-7576. [PMID: 30352050 PMCID: PMC6402278 DOI: 10.12659/msm.909550] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to assess the passive stiffness of the medial and lateral gastrocnemius (MG and LG), Achilles tendon (AT), and plantar fascia (PF) at different ankle and knee positions. Material/Methods Stiffness was assessed using a portable hand-held device (MyotonPRO). In 30 healthy participants (15 males, 15 females) with the knee fully extended or flexed 90°, stiffness of the MG, LG, AT, and PF was measured at 50° plantar flexion, 0° (neutral position), and 25° dorsiflexion (not for AT) of the ankle joint by passive joint rotation. Results With the knee fully extended, passive dorsiflexion caused significant increase in muscle stiffness (P<0.001), whereas AT and PF stiffness increased with passive ankle dorsiflexion regardless of knee position (P<0.001). Increased stiffness was observed in MG compared to LG (P<0.001) and at the 3-cm site of AT compared to the 6-cm site (P<0.05). Stiffness was greater in LG compared to MG at −50° plantar flexion (P<0.001) and was greater in MG compared to LG at 25° dorsiflexion (P<0.05). Stiffness of AT increased in a distal-to-proximal pattern: 0 cm >3 cm >6 cm (P<0.001). Conclusions Stiffness assessed by use of the MyotonPRO was similar assessments using other techniques, suggesting that the MyotonPRO is capable of detecting the variations in stiffness of MG, LG, AT, and PF at different ankle and knee positions.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Kun Qin
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Chunzhi Tang
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Yi Zhu
- Rehabilitation Therapy Center, Hainan Province Nongken Genernal Hospital, Haikou, Hainan, China (mainland)
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China (mainland)
| | - Zhijie Zhang
- Guangzhou, Guangdong, Luoyang Orthopedic Hospital of Henan Province, Louyang, Henan, China (mainland)
| | - Chunlong Liu
- Department of Rehabilitation, Clinical Medicine College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
70
|
Miroshnichenko GG, Meigal AY, Saenko IV, Gerasimova-Meigal LI, Chernikova LA, Subbotina NS, Rissanen SM, Karjalainen PA. Parameters of Surface Electromyogram Suggest That Dry Immersion Relieves Motor Symptoms in Patients With Parkinsonism. Front Neurosci 2018; 12:667. [PMID: 30319343 PMCID: PMC6168649 DOI: 10.3389/fnins.2018.00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Dry immersion (DI) is acknowledged as a reliable space flight analog condition. At DI, subject is immersed in water being wrapped in a waterproof film to imitate microgravity (μG). Microgravity is known to decrease muscle tone due to deprivation of the sensory stimuli that activate the reflexes that keep up the muscle tone. In contrary, parkinsonian patients are characterized by elevated muscle tone, or rigidity, along with rest tremor and akinesia. We hypothesized that DI can diminish the elevated muscle tone and/or the tremor in parkinsonian patients. Fourteen patients with Parkinson's disease (PD, 10 males, 4 females, 47-73 years) and 5 patients with vascular parkinsonism (VP, 1 male, 4 females, 65-72 years) participated in the study. To evaluate the effect of DI on muscles' functioning, we compared parameters of surface electromyogram (sEMG) measured before and after a single 45-min long immersion session. The sEMG recordings were made from the biceps brachii muscle, bilaterally. Each recording was repeated with the following loading conditions: with arms hanging freely down, and with 0, 1, and 2 kg loading on each hand with elbows flexed to 90°. The sEMG parameters comprised of amplitude, median frequency, time of decay of mutual information, sample entropy, correlation dimension, recurrence rate, and determinism of sEMG. These parameters have earlier been proved to be sensitive to PD severity. We used the Wilcoxon test to decide which parameters were statistically significantly different before and after the dry immersion. Accepting the p < 0.05 significance level, amplitude, time of decay of mutual information, recurrence rate, and determinism tended to decrease, while median frequency and sample entropy of sEMG tended to increase after the DI. The most statistically significant change was for the determinism of sEMG from the left biceps with 1 kg loading, which decreased for 84% of the patients. The results suggest that DI can promptly relieve motor symptoms of parkinsonism. We conclude that DI has strong potential as a rehabilitation method for parkinsonian patients.
Collapse
Affiliation(s)
- German G Miroshnichenko
- Biosignal Analysis and Medical Imaging Group, Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Alexander Yu Meigal
- Laboratory for Novel Methods in Physiology, Institute of High-Tech Biomedical Solutions, Petrozavodsk State University, Petrozavodsk, Russia
| | - Irina V Saenko
- Laboratory of Gravitational Physiology of Sensorimotor System, Department of Sensorimotor Physiology and Countermeasure, Institute of BioMedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Liudmila I Gerasimova-Meigal
- Department of Human and Animal Physiology, Physiopathology, Histology, Petrozavodsk State University, Petrozavodsk, Russia
| | - Liudmila A Chernikova
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalia S Subbotina
- Department of Neurology, Psychiatry, and Microbiology, Petrozavodsk State University, Petrozavodsk, Russia
| | - Saara M Rissanen
- Biosignal Analysis and Medical Imaging Group, Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Biosignal Analysis and Medical Imaging Group, Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
71
|
Crossland H, Skirrow S, Puthucheary ZA, Constantin-Teodosiu D, Greenhaff PL. The impact of immobilisation and inflammation on the regulation of muscle mass and insulin resistance: different routes to similar end-points. J Physiol 2018; 597:1259-1270. [PMID: 29968251 PMCID: PMC6395472 DOI: 10.1113/jp275444] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Loss of muscle mass and insulin sensitivity are common phenotypic traits of immobilisation and increased inflammatory burden. The suppression of muscle protein synthesis is the primary driver of muscle mass loss in human immobilisation, and includes blunting of post‐prandial increases in muscle protein synthesis. However, the mechanistic drivers of this suppression are unresolved. Immobilisation also induces limb insulin resistance in humans, which appears to be attributable to the reduction in muscle contraction per se. Again mechanistic insight is missing such that we do not know how muscle senses its “inactivity status” or whether the proposed drivers of muscle insulin resistance are simply arising as a consequence of immobilisation. A heightened inflammatory state is associated with major and rapid changes in muscle protein turnover and mass, and dampened insulin‐stimulated glucose disposal and oxidation in both rodents and humans. A limited amount of research has attempted to elucidate molecular regulators of muscle mass loss and insulin resistance during increased inflammatory burden, but rarely concurrently. Nevertheless, there is evidence that Akt (protein kinase B) signalling and FOXO transcription factors form part of a common signalling pathway in this scenario, such that molecular cross‐talk between atrophy and insulin signalling during heightened inflammation is believed to be possible. To conclude, whilst muscle mass loss and insulin resistance are common end‐points of immobilisation and increased inflammatory burden, a lack of understanding of the mechanisms responsible for these traits exists such that a substantial gap in understanding of the pathophysiology in humans endures.![]()
Collapse
Affiliation(s)
- Hannah Crossland
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Sarah Skirrow
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Zudin A Puthucheary
- Institute of Sport, Exercise and Health, London, UK.,Royal Free NHS Foundation Trust, London, UK
| | - Dumitru Constantin-Teodosiu
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Paul L Greenhaff
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| |
Collapse
|
72
|
Schoenrock B, Zander V, Dern S, Limper U, Mulder E, Veraksitš A, Viir R, Kramer A, Stokes MJ, Salanova M, Peipsi A, Blottner D. Bed Rest, Exercise Countermeasure and Reconditioning Effects on the Human Resting Muscle Tone System. Front Physiol 2018; 9:810. [PMID: 30018567 PMCID: PMC6037768 DOI: 10.3389/fphys.2018.00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/08/2018] [Indexed: 01/11/2023] Open
Abstract
The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015–2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.
Collapse
Affiliation(s)
- Britt Schoenrock
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vanja Zander
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Sebastian Dern
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Ulrich Limper
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Edwin Mulder
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Alar Veraksitš
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ragnar Viir
- Ragnar Viir, Limited Partnership, Helsinki, Finland
| | - Andreas Kramer
- Neuromechanics Research Group, Sport Sciences, University of Konstanz, Konstanz, Germany
| | - Maria J Stokes
- Faculty of Health Sciences, University of Southampton, Southampton, United Kingdom
| | - Michele Salanova
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| | | | - Dieter Blottner
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| |
Collapse
|
73
|
Debevec T, Ganse B, Mittag U, Eiken O, Mekjavic IB, Rittweger J. Hypoxia Aggravates Inactivity-Related Muscle Wasting. Front Physiol 2018; 9:494. [PMID: 29867545 PMCID: PMC5962751 DOI: 10.3389/fphys.2018.00494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD) and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i) bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg), (ii) bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg) and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg). Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001) was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027). Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47). Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017) and calf (-3.3%, SE 0.7%, P < 0.001) muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05). Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.
Collapse
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Bergita Ganse
- Department of Orthopaedic Trauma, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Uwe Mittag
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
74
|
Pagano AF, Brioche T, Arc-Chagnaud C, Demangel R, Chopard A, Py G. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:335-347. [PMID: 29248005 PMCID: PMC5879967 DOI: 10.1002/jcsm.12259] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many physiological and/or pathological conditions lead to muscle deconditioning, a well-described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well-recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age-related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. METHODS In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo-neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. RESULTS We showed that DI for only 3 days was able to decrease myofiber cross-sectional areas (-10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro-adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. CONCLUSIONS This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle.
Collapse
Affiliation(s)
- Allan F Pagano
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Thomas Brioche
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Coralie Arc-Chagnaud
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France.,Freshage Research Group - Dept. Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Rémi Demangel
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Angèle Chopard
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Guillaume Py
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
75
|
|
76
|
De Abreu S, Amirova L, Murphy R, Wallace R, Twomey L, Gauquelin-Koch G, Raverot V, Larcher F, Custaud MA, Navasiolava N. Multi-System Deconditioning in 3-Day Dry Immersion without Daily Raise. Front Physiol 2017; 8:799. [PMID: 29081752 PMCID: PMC5645726 DOI: 10.3389/fphys.2017.00799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022] Open
Abstract
Dry immersion (DI) is a Russian-developed, ground-based model to study the physiological effects of microgravity. It accurately reproduces environmental conditions of weightlessness, such as enhanced physical inactivity, suppression of hydrostatic pressure and supportlessness. We aimed to study the integrative physiological responses to a 3-day strict DI protocol in 12 healthy men, and to assess the extent of multi-system deconditioning. We recorded general clinical data, biological data and evaluated body fluid changes. Cardiovascular deconditioning was evaluated using orthostatic tolerance tests (Lower Body Negative Pressure + tilt and progressive tilt). Metabolic state was tested with oral glucose tolerance test. Muscular deconditioning was assessed via muscle tone measurement. Results: Orthostatic tolerance time dropped from 27 ± 1 to 9 ± 2 min after DI. Significant impairment in glucose tolerance was observed. Net insulin response increased by 72 ± 23% on the third day of DI compared to baseline. Global leg muscle tone was approximately 10% reduced under immersion. Day-night changes in temperature, heart rate and blood pressure were preserved on the third day of DI. Day-night variations of urinary K+ diminished, beginning at the second day of immersion, while 24-h K+ excretion remained stable throughout. Urinary cortisol and melatonin metabolite increased with DI, although within normal limits. A positive correlation was observed between lumbar pain intensity, estimated on the second day of DI, and mean 24-h urinary cortisol under DI. In conclusion, DI represents an accurate and rapid model of gravitational deconditioning. The extent of glucose tolerance impairment may be linked to constant enhanced muscle inactivity. Muscle tone reduction may reflect the reaction of postural muscles to withdrawal of support. Relatively modest increases in cortisol suggest that DI induces a moderate stress effect. In prospect, this advanced ground-based model is extremely suited to test countermeasures for microgravity-induced deconditioning and physical inactivity-related pathologies.
Collapse
Affiliation(s)
- Steven De Abreu
- Mitovasc, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France
| | - Liubov Amirova
- Mitovasc, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France.,Russian Federation State Research Center, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ronan Murphy
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Robert Wallace
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Laura Twomey
- Center for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | | | | - Françoise Larcher
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Marc-Antoine Custaud
- Mitovasc, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France.,Centre de Recherche Clinique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Nastassia Navasiolava
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
77
|
Pain and Vertebral Dysfunction in Dry Immersion: A Model of Microgravity Simulation Different from Bed Rest Studies. Pain Res Manag 2017; 2017:9602131. [PMID: 28785161 PMCID: PMC5530446 DOI: 10.1155/2017/9602131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/04/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Astronauts frequently experience back pain during and after spaceflight. The aim of this study was to utilize clinical methods to identify potential vertebral somatic dysfunction (VD) in subjects exposed to dry immersion (DI), a model of microgravity simulation. METHOD The experiment was performed in a space research clinic, respecting all the ethical rules, with subjects completing three days of dry immersion (n = 11). Assessments of VD, spine height, and back pain were made before and after simulated microgravity. RESULTS Back pain was present in DI with great global discomfort during the entire protocol. A low positive correlation was found (Pearson r = 0.44; P < 0.001) between VD before DI and pain developed in the DI experiment. CONCLUSIONS There is a specific location of pain in both models of simulation. Our analysis leads to relativizing constraints on musculoskeletal system in function of simulation models. This study was the first to examine manual palpation of the spine in a space experience. Additionally, osteopathic view may be used to select those individuals who have less risk of developing back pain.
Collapse
|
78
|
Narici MV. Neuromuscular deconditioning with disuse: should we live more on our nerves? J Physiol 2017; 595:4127. [PMID: 28459127 DOI: 10.1113/jp274347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Marco V Narici
- MRC ARUK Centre for Musculoskeletal Ageing Research, School of Graduate Entry to Medicine, University of Nottingham, Derby, DE22 3DT, UK
| |
Collapse
|