51
|
Carroll RC, Nicoll RA, Malenka RC. Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells. J Neurophysiol 1998; 80:2797-800. [PMID: 9819284 DOI: 10.1152/jn.1998.80.5.2797] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinases play an important role in controlling synaptic strength at excitatory synapses on CA1 pyramidal cells. We examined the effects of activating cAMP-dependent protein kinase or protein kinase C (PKC) on the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) with perforated patch recording techniques. Both forskolin and phorbol-12,13-dibutryate (PDBu) caused a large increase in mEPSC frequency, but only PDBu increased mEPSC amplitude, an effect that was not observed when standard whole cell recording was performed. These results support biochemical observations indicating that PKC, similar to calcium/calmodulin-dependent protein kinase II, has an important role in controlling synaptic strength via modulation of AMPA receptor function, potentially through the direct phosphorylation of the GluR1 subunit.
Collapse
Affiliation(s)
- R C Carroll
- Department of Psychiatry, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
52
|
Ge Q, Feldman JL. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J Physiol 1998; 509 ( Pt 1):255-66. [PMID: 9547398 PMCID: PMC2230945 DOI: 10.1111/j.1469-7793.1998.255bo.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. We investigated the role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and their regulation in affecting respiratory-related neurones in a neonatal rat medullary slice that spontaneously generates respiratory-related rhythm and motor output in the hypoglossal (XII) nerve. 2. Bath application of the AMPA receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine (GYKI) completely blocked XII nerve activity, as well as respiratory-related synaptic drives in neurones within the preBötzinger Complex (preBotC), site of rhythm generation in the slice. 3. Local application of GYKI to the preBötC blocked respiratory rhythm. Local application of AMPA to the preBötC increased rhythm frequency and depolarized respiratory-related neurones. 4. In the presence of tetrodotoxin (TTX), GYKI completely blocked the inward current induced by local application of AMPA, but not that induced by kainate. 5. Local application of okadaic acid, a membrane-permeable inhibitor of phosphatase 1 and 2A, to the preBotC increased the frequency of respiratory motor discharge. 6. Intracellular application of microcystin, a membrane-impermeable inhibitor of phosphatase 1 and 2A, enhanced endogenous inspiratory drive and exogenous AMPA-induced current (in the presence of TTX) in preBotC inspiratory neurones. Both the enhanced inspiratory drive and the increased AMPA-induced current were completely blocked by GYKI. 7. We suggest that AMPA receptor activation and AMPA receptor modulation by phosphorylation are crucial for the rhythm generation within the preBötC.
Collapse
Affiliation(s)
- Q Ge
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1763, USA
| | | |
Collapse
|
53
|
Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 1997; 272:32528-33. [PMID: 9405465 DOI: 10.1074/jbc.272.51.32528] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid (AMPA) receptors in the brain by protein phosphorylation may play a crucial role in the regulation of synaptic plasticity. Previous studies have demonstrated that calmodulin (CaM) kinase II can phosphorylate and modulate AMPA receptors. However, the sites of CaM kinase phosphorylation have not been unequivocally identified. In the current study, we have generated two phosphorylation site-specific antibodies to analyze the phosphorylation of the glutamate receptor GluR1 subunit. These antibodies recognize GluR1 only when it is phosphorylated on serine residues 831 or 845. We have used these antibodies to demonstrate that serine 831 is specifically phosphorylated by CaM kinase II in transfected cells expressing GluR1 as well as in hippocampal slice preparations. Two-dimensional phosphopeptide mapping experiments indicate that Ser-831 is the major site of CaM kinase II phosphorylation on GluR1. In addition, treatment of hippocampal slice preparations with phorbol esters and forskolin increase the phosphorylation of serine 831 and 845, respectively, indicating that protein kinase C and protein kinase A phosphorylate these residues in hippocampal slices. These results identify the site of CaM kinase phosphorylation of the GluR1 subunit and demonstrate that GluR1 is multiply phosphorylated by protein kinase A, protein kinase C, and CaM kinase II in situ.
Collapse
Affiliation(s)
- A L Mammen
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
54
|
Abramets II, Komissarov IV, Samoilovich IM, Kuznetsov YV. Glycine and serine as tentative agonists for metabotropic glutamate receptors. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02463351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Hell JW. Phosphorylation of receptors and ion channels and their interaction with structural proteins. Neurochem Int 1997; 31:651-8. [PMID: 9364451 DOI: 10.1016/s0197-0186(97)00023-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J W Hell
- Department of Pharmacology, University of Wisconsin, Madison 53706-1532, USA
| |
Collapse
|
56
|
Affiliation(s)
- J F MacDonald
- Department of Physiology, University of Toronto, Ontario, Canada
| |
Collapse
|
57
|
Lu Y, Wehner JM. Enhancement of contextual fear-conditioning by putative (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators and N-methyl-D-aspartate (NMDA) receptor antagonists in DBA/2J mice. Brain Res 1997; 768:197-207. [PMID: 9369316 DOI: 10.1016/s0006-8993(97)00644-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies demonstrated that DBA/2J (DBA) mice performed poorly while C57BL/6J (C57) mice performed normally on a number of complex learning and memory tasks. Chronic oxiracetam treatment dramatically improved the performance of DBA mice but not that of C57 mice on the Morris water task and in contextual fear conditioning. The present study demonstrates that acute treatment with nootropics, oxiracetam (10-1000 mg/kg) or aniracetam (10-100 mg/kg), and N-methyl-D-Aspartate (NMDA) antagonists, (+)-MK-801 (0.1-3 microg/kg), CPP (0.01-0.3 mg/kg), and (+)-HA-966 (0.1-3 mg/kg), administered prior to training and testing, reversed the contextual learning impairment in DBA mice in a dose-dependent manner without affecting auditory cue conditioning. These effects appeared to be independent of testing order (context vs. auditory cue tests) and were not due to state-dependent learning. The inactive stereoisomers, (-)-MK-801 and (-)-HA-966, were incapable of increasing contextual freezing in DBA mice. In DBA mice, the effects of 30 mg/kg oxiracetam and 100 mg/kg aniracetam were inhibited by the (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonists, NBQX, and GYKI-52466. The combined administration of 30 mg/kg oxiracetam and 1 microg/kg (+)-MK-801 produced an additive response. None of the pharmacological treatments altered performance in C57 mice at doses that were effective in DBA mice. These results suggest that DBA mice may be learning impaired due to altered glutamatergic receptor function.
Collapse
Affiliation(s)
- Y Lu
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
58
|
Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997; 276:2042-5. [PMID: 9197267 DOI: 10.1126/science.276.5321.2042] [Citation(s) in RCA: 830] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term potentiation (LTP), a cellular model of learning and memory, requires calcium-dependent protein kinases. Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA-Rs), which mediate rapid excitatory synaptic transmission. This AMPA-R phosphorylation appeared to be catalyzed by Ca2+- and calmodulin-dependent protein kinase II (CaM-KII): (i) it correlated with the activation and autophosphorylation of CaM-KII, (ii) it was blocked by the CaM-KII inhibitor KN-62, and (iii) its phosphorus-32 peptide map was the same as that of GluR1 coexpressed with activated CaM-KII in HEK-293 cells. This covalent modulation of AMPA-Rs in LTP provides a postsynaptic molecular mechanism for synaptic plasticity.
Collapse
Affiliation(s)
- A Barria
- Vollum Institute, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
59
|
Hall RA, Soderling TR. Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. Neuroscience 1997; 78:361-71. [PMID: 9145793 DOI: 10.1016/s0306-4522(96)00525-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein and messenger RNA levels of the AMPA-type glutamate receptor subunits 1-3 are high in many brain regions, but it is not known how much of the glutamate receptor protein is expressed on the surface of neurons in the form of functional receptors. To provide insight into this matter, western blot immunoreactivities for glutamate receptors 1 and 2/3, as well as binding of the specific ligand [3H]AMPA, were quantified following three independent treatments modifying surface receptors in intact primary hippocampal cultures: (i) proteolysis of surface receptors by chymotrypsin, (ii) cross-linking of surface receptors with the membrane-impermeant reagent bis(sulfosuccinimidyl)suberate, and (iii) biotinylation of surface receptors with the membrane-impermeant reagent sulfosuccinimidyl-2(biotinamido)ethyl-1,3-dithiopropionate. All three of these methods demonstrated that 60-70% of total glutamate receptor subunit 1 protein and 40-50% of total glutamate receptor 2/3 protein are expressed on the surface of hippocampal neurons. Parallel studies revealed that 52% of total [3H]AMPA binding sites could be precipitated with avidin beads following biotinylation of intact cultures, providing an estimate of [3H]AMPA binding site surface expression in accord with the estimates of the surface expression of glutamate receptor subunits 1-3. Experiments examining the surface expression of 32P-labeled glutamate receptor subunit 1 demonstrated that approximately 65% of the phosphorylated form of the subunit is located in the plasma membrane, an estimate similar to the that derived via western blot for the entire glutamate receptor subunit 1 population in the same samples. Moreover, no significant change in the surface expression profile of the glutamate receptor subunits 1-3 was observed following stimulatory treatments known to increase glutamate receptor phosphorylation. These data indicate that slightly more than half of the AMPA receptors in cultured hippocampal neurons are located in the plasma membrane, and that AMPA receptor surface expression is not rapidly altered by glutamate receptor phosphorylation.
Collapse
MESH Headings
- Animals
- Biotin/chemistry
- Blotting, Western
- Cells, Cultured
- Chymotrypsin/chemistry
- Cross-Linking Reagents
- Electrophoresis, Polyacrylamide Gel
- Hippocampus/cytology
- Hippocampus/metabolism
- Hydrolysis
- Indicators and Reagents
- Neurons/metabolism
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/biosynthesis
- Receptors, AMPA/chemistry
- Receptors, AMPA/metabolism
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- R A Hall
- Vollum Institute, Oregon Health Sciences University, Portland 97201, U.S.A
| | | |
Collapse
|
60
|
Watanabe A, Moriya T, Nisikawa Y, Araki T, Hamada T, Shibata S, Watanabe S. Adenosine A1-receptor agonist attenuates the light-induced phase shifts and fos expression in vivo and optic nerve stimulation-evoked field potentials in the suprachiasmatic nucleus in vitro. Brain Res 1996; 740:329-36. [PMID: 8973831 DOI: 10.1016/s0006-8993(96)00881-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenosine is widely accepted to act as an inhibitory neuromodulator in the mammalian central nervous system. In the present study, we examined whether adenosine receptor agonist modifies the photic entraining responses in the rat suprachiasmatic nucleus both in vivo and in vitro. Light (200 lux, 15 min)-induced phase shifts of hamster wheel-running rhythms was attenuated by a systemic administration of A1-adenosine receptor agonist N6-cyclohexyladenosine (N-CHA) in a dose-dependent manner; 0.5 mg/kg N-CHA caused 60% inhibition of light-induced phase shifts. On the other hand, A2-adenosine receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) failed to inhibit light-induced phase shifts. Systemic administration of N-CHA but not of DPMA inhibited light (300 lux, 1 h)-induced Fos expression in the suprachiasmatic nucleus in a dose-dependent manner; 1 mg/kg N-CHA caused 73% inhibition of light-induced Fos expression. Bath application of N-CHA but not of DPMA inhibited optic nerve stimulation-evoked field potentials in rat suprachiasmatic nucleus slices. The present results suggest that activation of adenosine A1-receptor attenuates the photic input through the inhibition of retinohypotalamic pathway to the SCN.
Collapse
Affiliation(s)
- A Watanabe
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Abramets II, Samoilovich IM, Kharin NA. Postsynaptic mechanisms of induction of NMDA-dependent long-term post-tetanic potentiation of synaptic transmission. NEUROPHYSIOLOGY+ 1996. [DOI: 10.1007/bf02262773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996; 16:1179-88. [PMID: 8663994 DOI: 10.1016/s0896-6273(00)80144-0] [Citation(s) in RCA: 643] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have characterized the phosphorylation of the glutamate receptor subunit GluR1, using biochemical and electrophysiological techniques. GluR1 is phosphorylated on multiple sites that are all located on the C-terminus of the protein. Cyclic AMP-dependent protein kinase specifically phosphorylates SER-845 of GluR1 in transfected HEK cells and in neurons in culture. Phosphorylation of this residue results in a 40% potentiation of the peak current through GluR1 homomeric channels. In addition, protein kinase C specifically phosphorylates Ser-831 of GluR1 in HEK-293 cells and in cultured neurons. These results are consistent with the recently proposed transmembrane topology models of glutamate receptors, in which the C-terminus is intracellular. In addition, the modulation of GluR1 by PKA phosphorylation of Ser-845 suggests that phosphorylation of this residue may underlie the PKA-induced potentiation of AMPA receptors in neurons.
Collapse
Affiliation(s)
- K W Roche
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
63
|
Asztély F, Gustafsson B. Ionotropic glutamate receptors. Their possible role in the expression of hippocampal synaptic plasticity. Mol Neurobiol 1996; 12:1-11. [PMID: 8732537 DOI: 10.1007/bf02740744] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds--the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and the N-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/ LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/ decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.
Collapse
Affiliation(s)
- F Asztély
- Institute of Physiology, Göteborg University, Sweden
| | | |
Collapse
|
64
|
Moss SJ, Smart TG. Modulation of amino acid-gated ion channels by protein phosphorylation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:1-52. [PMID: 8894843 DOI: 10.1016/s0074-7742(08)60662-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major excitatory and inhibitory amino acid receptors in the mammalian central nervous system are considered to be glutamate, gamma-aminobutyric acid type A (GABAA), and glycine receptors. These receptors are widely acknowledged to participated in fast synaptic neurotransmission, which ultimately is responsible for the control of neuronal excitability. In addition to these receptors being regulated by endogenous factors, including the natural neurotransmitters, they also form target substrates for phosphorylation by a number of protein kinases, including serine/threonine and tyrosine kinases. The process of phosphorylation involves the transfer of a phosphate group(s) from adenosine triphosphate to one or more serine, threonine, or tyrosine residues, which are invariably found in an intracellular location within the receptor Phosphorylation is an important means of receptor regulation since it represents a covalent modification of the receptor structure, which can have important implications for ion channel function. This chapter reviews the current molecular and biochemical evidence regarding the sites of phosphorylation for both native neuronal and recombinant glutamate, GABAA and glycine receptors, and also reviews the functional electrophysiological implications of phosphorylation for receptor function.
Collapse
Affiliation(s)
- S J Moss
- MRC Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | |
Collapse
|
65
|
Randić M. Plasticity of excitatory synaptic transmission in the spinal cord dorsal horn. PROGRESS IN BRAIN RESEARCH 1996; 113:463-506. [PMID: 9009751 DOI: 10.1016/s0079-6123(08)61104-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Randić
- Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames 50011, USA
| |
Collapse
|
66
|
Small DL, Monette R, Chakravarthy B, Durkin J, Barbe G, Mealing G, Morley P, Buchan AM. Mechanisms of 1S,3R-ACPD-induced neuroprotection in rat hippocampal slices subjected to oxygen and glucose deprivation. Neuropharmacology 1996; 35:1037-48. [PMID: 9121606 DOI: 10.1016/s0028-3908(96)00028-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The efficacy and mechanisms of 1-amino-cyclopentyl-1S,3R-dicarboxylate (1S,3R-ACPD)-induced neuroprotection were investigated in rat hippocampal slices subjected to 10 min of oxygen and glucose deprivation. Neuronal viability was assessed by measuring both the amplitude of evoked population spike in the CA1 pyramidale and by imaging CA1 neurons using a live/dead fluorescence assay with confocal microscopy. CA1 pyramidal neurons in oxygen-glucose deprived slices remained viable for up to 120 min following the insult but were dead by 240 min. Pretreatment with 1S,3R-ACPD significantly protected the oxygen-glucose deprived slices in a concentration-dependent fashion. Oxygen-glucose deprived slices pretreated for the same period with the protein kinase C (PKC) activation phorbol 12-myristate 13-acetate (PMA; 1 microM) were significantly protected whereas oxygen-glucose deprived slices treated with the adenylyl cyclase activator, forskolin (30 microM) were not. Oxygen-glucose deprivation induced a rapid and persistent decrease (approximately 50%) in PKC activity and a > 6 fold increase in cyclic adenosine monophosphate (cAMP) levels in whole hippocampal slices. While 1S,3R-ACPD did not stimulate PKC activity and had no effect on basal cAMP in whole slices, it significantly enhanced the rate of return of cAMP to basal levels following reperfusion. Consistent with this observation, the 1S,3R-ACPD-induced neuroprotection was inhibited by forskolin (30 microM). These results suggest that in vitro neuroprotection of CA1 neurons by 1S,3R-ACPD involves metabotropic glutamate receptors negatively linked to cAMP and possibly those which increase PKC activity.
Collapse
Affiliation(s)
- D L Small
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Marcaida G, Miñana MD, Burgal M, Grisolía S, Felipo V. Ammonia prevents activation of NMDA receptors by glutamate in rat cerebellar neuronal cultures. Eur J Neurosci 1995; 7:2389-96. [PMID: 8845943 DOI: 10.1111/j.1460-9568.1995.tb01036.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute ammonia toxicity is mediated by activation of NMDA receptors and is prevented by chronic moderate hyperammonaemia. The aim of this work was to assess whether the protective effect of chronic hyperammonaemia is due to impaired activation of the NMDA receptor. It is shown that chronic hyperammonaemia in rats decreases the binding of [3H]MK-801 to synaptosomal membranes from the hippocampus but not the amount of NMDAR1 receptor protein as determined by immunoblotting. In primary cultures of cerebellar neurons, long-term treatment with 1 mM ammonia also decreased significantly the binding of [3H]MK-801. These results suggest that ammonia impairs NMDA receptor activation. To confirm this possibility we tested the effect of long-term treatment of the cultured neurons with 1 mM ammonia on three well known events evoked by activation of the NMDA receptor: neuronal death induced by glutamate, increase in aspartate aminotransferase activity and increase in free intracellular [Ca2+]. Long-term treatment with ammonia prevented noticeably the effects of glutamate or NMDA on all these parameters. These results indicate that long-term treatment of neurons with 1 mM ammonia leads to impaired function of the NMDA receptor, which cannot be activated by glutamate or NMDA. Activation of protein kinase C by a phorbol ester restored the ability of the NMDA receptor to be activated in neurons treated with ammonia. This suggests that ammonia impairs NMDA receptor function by decreasing protein kinase C-dependent phosphorylation.
Collapse
Affiliation(s)
- G Marcaida
- Instituto de Investigaciones Citológicas de la Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
68
|
Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Br J Pharmacol 1995; 116:1761-8. [PMID: 8528557 PMCID: PMC1909100 DOI: 10.1111/j.1476-5381.1995.tb16660.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effects of propofol (2,6 di-isopropylphenol) on responses to the selective glutamate receptor agonists, N-methyl-D-aspartate (NMDA) and kainate, were investigated in cultured hippocampal neurones of the mouse. Whole cell and single channel currents were recorded by patch-clamp techniques. Drugs were applied with a multi-barrel perfusion system. 2. Propofol produced a reversible, dose-dependent inhibition of whole cell currents activated by NMDA. The concentration of propofol which induced 50% of the maximal inhibition (IC50) was approximately 160 microM. The maximal inhibition was incomplete leaving a residual current of about 33% of the control response. This inhibitory action of propofol was neither voltage- nor use-dependent. 3. Analysis of the dose-response relation for whole cell NMDA-activated currents indicated that propofol caused no significant change in the apparent affinity of the receptor for NMDA. 4. Outside-out patch recordings of single channel currents evoked by NMDA (10 microM) revealed that propofol (100 microM) reversibly decreased the probability of channel opening but did not influence the average duration of channel opening or single channel conductance. 5. Whole-cell currents evoked by kainate (50 microM) were insensitive to propofol (1 microM-1 mM). 6. These results indicate that propofol inhibits the NMDA subtype of glutamate receptor, possibly through an allosteric modulation of channel gating rather than by blocking the open channel. Depression of NMDA-mediated excitatory neurotransmission may contribute to the anaesthetic, amnesic and anti-convulsant properties of propofol.
Collapse
Affiliation(s)
- B A Orser
- Department of Anaesthesia, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
69
|
Wang JH, Kelly PT. Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 1995; 15:443-452. [PMID: 7646896 DOI: 10.1016/0896-6273(95)90048-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CA2+-regulated protein kinases play critical roles in long-term potentiation (LTP). To understand the role of Ca2+/calmodulin (CaM) signaling pathways in synaptic transmission better, Ca2+/CaM was injected into hippocampal CA1 neurons. Ca2+/CaM induced significant potentiation of excitatory synaptic responses, which was blocked by coinjection of a CaM-binding peptide and was not induced by injections of Ca2+ or CaM alone. Reciprocal experiments demonstrated that Ca2+/CaM-induced synaptic potentiation and tetanus-induced LTP occluded one another. Pseudosubstrate inhibitors or high-affinity substrates of CaMKII or PKC blocked Ca2/CaM-induced potentiation, indicating the requirement of CaMKII and PKC activities in synaptic potentiation. We suggest that postsynaptic levels of free Ca2+/CaM is a rate limiting factor and that functional cross-talk between Ca2+/CaM and PKC pathways occurs during the induction of LTP.
Collapse
Affiliation(s)
- J H Wang
- Department of Neurobiology and Anatomy, University of Texas, Houston 77225, USA
| | | |
Collapse
|
70
|
Lozovaya NA, Klee MR. Phorbol diacetate differentially regulates the N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated components of the rat hippocampal excitatory postsynaptic currents. Neurosci Lett 1995; 189:101-4. [PMID: 7609911 DOI: 10.1016/0304-3940(95)11463-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of phorbol 12,13-diacetate (PDAc) on evoked excitatory transmission were studied in neurons of the CA1 area of hippocampal slices of rats, using whole-cell voltage clamp of pyramidal neurons in situ and stimulation of the Schaffer collaterals. The application of PDAc (10 microM) increased the amplitude of the excitatory postsynaptic current (EPSC) and caused a lengthening of its decay, due to an increase in the contribution of the N-methyl-D-aspartate (NMDA) component to the total EPSC. The latter effect was depend upon the concentration of calcium in the extracellular medium. Experiments in which we separated the two components of the EPSCs by 6-cyano-7-nitroquinoxaline-2,3-dione and by 2-amino-5-phosphonopentanoic acid also demonstrated a more pronounced increase in the NMDA receptor-mediated current under PDAc. The effects of PDAc were markedly attenuated by the extracellular application of the protein kinase C inhibitor H-7 (300 microM), but not by intracellular perfusion with 20 mM of the same drug.
Collapse
Affiliation(s)
- N A Lozovaya
- Max-Planck Institute for Brain Research, Department of Neurophysiology, Frankfurt-Main, Germany
| | | |
Collapse
|
71
|
Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA, Soderling TR. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc Natl Acad Sci U S A 1995; 92:1376-80. [PMID: 7877986 PMCID: PMC42522 DOI: 10.1073/pnas.92.5.1376] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glutamate receptor ion channels are colocalized in postsynaptic densities with Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II), which can phosphorylate and strongly enhance non-N-methyl-D-aspartate (NMDA) glutamate receptor current. In this study, CaM-kinase II enhanced kainate currents of expressed glutamate receptor 6 in 293 cells and of wild-type glutamate receptor 1, but not the Ser-627 to Ala mutant, in Xenopus oocytes. A synthetic peptide corresponding to residues 620-638 in GluR1 was phosphorylated in vitro by CaM-kinase II but not by cAMP-dependent protein kinase or protein kinase C. The 32P-labeled peptide map of this synthetic peptide appears to be the same as the two-dimensional peptide map of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) glutamate receptors phosphorylated in cultured hippocampal neurons by CaM-kinase II described elsewhere. This CaM-kinase II regulatory phosphorylation site is conserved in all AMPA/kainate-type glutamate receptors, and its phosphorylation may be important in enhancing postsynaptic responsiveness as occurs during synaptic plasticity.
Collapse
Affiliation(s)
- J L Yakel
- Vollum Institute, Oregon Health Sciences University, Portland 97201
| | | | | | | | | |
Collapse
|
72
|
Affiliation(s)
- B Bettler
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92186-5800, USA
| | | |
Collapse
|
73
|
Wyllie DJ, Nicoll RA. A role for protein kinases and phosphatases in the Ca(2+)-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses. Neuron 1994; 13:635-43. [PMID: 7917294 DOI: 10.1016/0896-6273(94)90031-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the effects of inhibitors of protein kinases and protein phosphatases on the NMDA receptor-independent potentiation of evoked and miniature (m) excitatory postsynaptic currents (EPSCs) induced by the entry of Ca2+ via voltage-gated Ca2+ channels in hippocampal CA1 pyramidal neurons. Voltage pulse-induced potentiation was markedly attenuated when evoked in the presence of the protein kinase blockers KN-62, K-252a, or H-7. Bath application of the protein phosphatase inhibitor calyculin A converted the usual transient potentiation of both evoked and spontaneous EPSCs induced by voltage pulses into a more sustained potentiation. Similarly, the introduction of the phosphatase inhibitors microcystin LR or okadaic acid into postsynaptic cells, via patch pipettes, also resulted in a sustained increase in the amplitude of mEPSCs. We propose that entry of Ca2+ into CA1 neurons activates calcium/calmodulin-dependent protein kinase II, which leads to an enhanced responsiveness of synaptic AMPA receptor channels. The enhancement is transient, however, owing to postsynaptic phosphatase activity.
Collapse
Affiliation(s)
- D J Wyllie
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | |
Collapse
|
74
|
Abstract
The recent findings that glutamate receptors are phosphorylated and functionally modulated by protein kinases has provided evidence that phosphorylation of these receptors may play a critical role in mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- K W Roche
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | | |
Collapse
|