51
|
Sarvghad-Moghaddam H, Rezaei A, Ziejewski M, Karami G. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 26968860 DOI: 10.1002/cnm.2782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 03/06/2016] [Indexed: 05/16/2023]
Abstract
Head protective tools such as helmets and faceshields can induce a localized high pressure region on the skull because of the underwash of the blast waves. Whether this underwash overpressure can affect the brain tissue response is still unknown. Accordingly, a computational approach was taken to confirm the incidence of underwash with regards to blast direction, as well as examine the influence of this effect on the mechanical responses of the brain. The variation of intracranial pressure (ICP) as one of the major injury predictors, as well as the maximum shear stress were mainly addressed in this study. Using a nonlinear finite element (FE) approach, generation and interaction of blast waves with the unprotected, helmeted, and fully protected (helmet and faceshield protected) FE head models were modeled using a multi-material arbitrary Lagrangian-Eulerian (ALE) method and a fluid-structure interaction (FSI) coupling algorithm. The underwash incidence overpressure was found to greatly change with the blast direction. Moreover, while underwash induced ICP (U-ICP) did not exceed the peak ICP of the unprotected head, it was comparable and even more than the peak ICP imposed on the protected heads by the primary shockwaves (Coup-ICP). It was concluded that while both helmet and faceshield protected the head against blast waves, the underwash overpressure affected the brain tissue response and altered the dynamic load experienced by the brain as it led to increased ICP levels at the countercoup site, imparted elevated skull flexure, and induced high negative pressure regions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hesam Sarvghad-Moghaddam
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Asghar Rezaei
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Mariusz Ziejewski
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Ghodrat Karami
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| |
Collapse
|
52
|
Giammarinaro B, Coulouvrat F, Pinton G. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain. J Biomech Eng 2016; 138:041003. [PMID: 26833489 DOI: 10.1115/1.4032643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 12/22/2022]
Abstract
Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries.
Collapse
|
53
|
Feng K, Zhang L, Jin X, Chen C, Kallakuri S, Saif T, Cavanaugh J, King A. Biomechanical Responses of the Brain in Swine Subject to Free-Field Blasts. Front Neurol 2016; 7:179. [PMID: 27822197 PMCID: PMC5075707 DOI: 10.3389/fneur.2016.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo. This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field. The incident overpressure (IOP) was generated using 3.6 kg of C4 charge placed at three standoff distances from the swine. Five swine were exposed to a total of 19 blasts. The three average peak IOP pressure levels in this study were 148.8, 278.9, and 409.2 kPa as measured by a pencil probe. The duration of the first positive wave was in the range of 2.1–3 ms. Pressure changes in the brain and head kinematics were recorded with intracranial pressure (ICP) sensors, linear accelerometers, and angular rate sensors. The corresponding average peak ICPs were in the range of 79–143, 210–281, and 311–414 kPa designated as low, medium, and high blast level, respectively. Peak head linear accelerations were in the range of 120–412 g. A positive correlation between IOP and its corresponding biomechanical responses of the brain was also observed. These experimental data can be used to validate computer models of bTBI.
Collapse
Affiliation(s)
- Ke Feng
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Xin Jin
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Tal Saif
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - John Cavanaugh
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Albert King
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| |
Collapse
|
54
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
55
|
Affiliation(s)
- Graham Martin
- Accident Compensation Corporation of New Zealand, Wellington, New Zealand
| |
Collapse
|
56
|
Brody DL, Mac Donald CL, Shimony JS. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging. HANDBOOK OF CLINICAL NEUROLOGY 2016; 127:267-75. [PMID: 25702222 DOI: 10.1016/b978-0-444-52892-6.00017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement.
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
57
|
Mao H, Unnikrishnan G, Rakesh V, Reifman J. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves. J Biomech Eng 2016; 137:124502. [PMID: 26458125 DOI: 10.1115/1.4031765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/19/2023]
Abstract
Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.
Collapse
|
58
|
Abstract
OBJECTIVES Blast explosions are the most frequent mechanism of traumatic brain injury (TBI) in recent wars, but little is known about their long-term effects. METHODS Functional connectivity (FC) was measured in 17 veterans an average of 5.46 years after their most serious blast related TBI, and in 15 demographically similar veterans without TBI or blast exposure. Subcortical FC was measured in bilateral caudate, putamen, and globus pallidus. The default mode and fronto-parietal networks were also investigated. RESULTS In subcortical regions, between-groups t tests revealed altered FC from the right putamen and right globus pallidus. However, following analysis of covariance (ANCOVA) with age, depression (Center for Epidemiologic Studies Depression Scale), and posttraumatic stress disorder symptom (PTSD Checklist - Civilian version) measures, significant findings remained only for the right globus pallidus with anticorrelation in bilateral temporal occipital fusiform cortex, occipital fusiform gyrus, lingual gyrus, and cerebellum, as well as the right occipital pole. No group differences were found for the default mode network. Although reduced FC was found in the fronto-parietal network in the TBI group, between-group differences were nonsignificant after the ANCOVA. CONCLUSIONS FC of the globus pallidus is altered years after exposure to blast related TBI. Future studies are necessary to explore the trajectory of changes in FC in subcortical regions after blast TBI, the effects of isolated versus repetitive blast-related TBI, and the relation to long-term outcomes in veterans. (JINS, 2016, 22, 631-642).
Collapse
|
59
|
Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D'Surney L, Ferrell J, Deng B, Hines-Beard J, Bu W, Ren H, Elberger AJ, Marchetta JG, Rex TS, Honig MG, Reiner A. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice. J Neurotrauma 2016; 33:403-22. [PMID: 26414413 PMCID: PMC4761824 DOI: 10.1089/neu.2015.3886] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits.
Collapse
Affiliation(s)
- Natalie H. Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joshua T. Rogers
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rafiqul M. Islam
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Lauren D'Surney
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Ferrell
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bowei Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Hines-Beard
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Wei Bu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Huiling Ren
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrea J. Elberger
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Tonia S. Rex
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
60
|
Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, Li G, Meeker KD, Kraemer BC, Petrie EC, Raskind MA, Peskind ER, Cook DG. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 2016; 8:321ra6. [DOI: 10.1126/scitranslmed.aaa9585] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury. Sci Rep 2015; 5:16959. [PMID: 26586273 PMCID: PMC4653713 DOI: 10.1038/srep16959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI.
Collapse
|
62
|
Michael AP, Stout J, Roskos PT, Bolzenius J, Gfeller J, Mogul D, Bucholz R. Evaluation of Cortical Thickness after Traumatic Brain Injury in Military Veterans. J Neurotrauma 2015; 32:1751-8. [DOI: 10.1089/neu.2015.3918] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alex P. Michael
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jeffrey Stout
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - P. Tyler Roskos
- Department of Physical Medicine and Rehabilitation, Oakwood, Wayne State University, School of Medicine, Dearborn, Michigan
| | | | - Jeffrey Gfeller
- Department of Psychology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David Mogul
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Richard Bucholz
- Department of Neurosurgery, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
63
|
Salimi Jazi M, Rezaei A, Azarmi F, Ziejewski M, Karami G. Computational biomechanics of human brain with and without the inclusion of the body under different blast orientation. Comput Methods Biomech Biomed Engin 2015; 19:1019-31. [DOI: 10.1080/10255842.2015.1088525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
64
|
Zhu F, Kalra A, Saif T, Yang Z, Yang KH, King AI. Parametric analysis of the biomechanical response of head subjected to the primary blast loading – a data mining approach. Comput Methods Biomech Biomed Engin 2015; 19:1053-9. [DOI: 10.1080/10255842.2015.1091887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
65
|
Relevance of Blood Vessel Networks in Blast-Induced Traumatic Brain Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:928236. [PMID: 26495036 PMCID: PMC4606104 DOI: 10.1155/2015/928236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022]
Abstract
Cerebral vasculature is a complex network that circulates blood through the brain. However, the role of this networking effect in brain dynamics has seldom been inspected. This work is to study the effects of blood vessel networks on dynamic responses of the brain under blast loading. Voronoi tessellations were implemented to represent the network of blood vessels in the brain. The brain dynamics in terms of maximum principal strain (MPS), shear strain (SS), and intracranial pressure (ICP) were monitored and compared. Results show that blood vessel networks significantly affected brain responses. The increased MPS and SS were observed within the brain embedded with vessel networks, which did not exist in the case without blood vessel networks. It is interesting to observe that the alternation of the ICP response was minimal. Moreover, the vessel diameter and density also affected brain dynamics in both MPS and SS measures. This work sheds light on the role of cerebral vasculature in blast-induced traumatic brain injury.
Collapse
|
66
|
Trotter BB, Robinson ME, Milberg WP, McGlinchey RE, Salat DH. Military blast exposure, ageing and white matter integrity. Brain 2015; 138:2278-92. [PMID: 26033970 PMCID: PMC4840948 DOI: 10.1093/brain/awv139] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure-one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan-is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a 'dose-response' relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here.
Collapse
Affiliation(s)
- Benjamin B Trotter
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA
| | - Meghan E Robinson
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA
| | - William P Milberg
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA
| | - Regina E McGlinchey
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA 4 The Athinoula A. Martinos Center For Biomedical Imaging, Charlestown, Massachusetts, USA
| |
Collapse
|
67
|
Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR. Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 2015; 77:120-34. [PMID: 25920690 DOI: 10.1016/j.bone.2015.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
The human calvarium is a sandwich structure with two dense layers of cortical bone separated by porous cancellous bone. The variation of the three dimensional geometry, including the layer thicknesses and the volume fraction of the cancellous layer across the population, is unavailable in the current literature. This information is of particular importance to mathematical models of the human head used to simulate mechanical response. Although the target geometry for these models is the median geometry of the population, the best attempt so far has been the scaling of a unique geometry based on a few median anthropometric measurements of the head. However, this method does not represent the median geometry. This paper reports the average three dimensional geometry of the calvarium from X-ray computed tomography (CT) imaging and layer thickness and trabecular volume fraction from micro CT (μCT) imaging of ten adult male post-mortem human surrogates (PMHS). Skull bone samples have been obtained and μCT imaging was done at a resolution of 30 μm. Monte Carlo simulation was done to estimate the variance in these measurements due to the uncertainty in image segmentation. The layer thickness data has been averaged over areas of 5mm(2). The outer cortical layer was found to be significantly (p < 0.01; Student's t test) thicker than the inner layer (median of thickness ratio 1.68). Although there was significant location to location difference in all the layer thicknesses and volume fraction measurements, there was no trend. Average distribution and the variance of these metrics on the calvarium have been shown. The findings have been reported as colormaps on a 2D projection of the cranial vault.
Collapse
Affiliation(s)
- Sourabh Boruah
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA.
| | - Glenn R Paskoff
- Human Systems Department, Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - Barry S Shender
- Human Systems Department, Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - Damien L Subit
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Robert S Salzar
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Jeff R Crandall
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
68
|
Newsome MR, Durgerian S, Mourany L, Scheibel RS, Lowe MJ, Beall EB, Koenig KA, Parsons M, Troyanskaya M, Reece C, Wilde E, Fischer BL, Jones SE, Agarwal R, Levin HS, Rao SM. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. NEUROIMAGE-CLINICAL 2015; 8:543-53. [PMID: 26110112 PMCID: PMC4477106 DOI: 10.1016/j.nicl.2015.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Mild to moderate traumatic brain injury (TBI) due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes). Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI) study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female) who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females) with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females) and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females) without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate). Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results could not be attributed to caudate atrophy or the presence of PTSD symptoms. Our results point to a specific vulnerability of the caudate to blast injury. Changes in activation during the Sternberg Item Recognition Task, and potentially other tasks that recruit the caudate, may serve as biomarkers for blast TBI. We investigated whether fMRI would discriminate blunt-force from blast mTBI. We used a working memory task with varying numbers of letters (set sizes). Blunt-force TBI showed a monotonic relation between set size and caudate activation. This relation was disrupted in the blast TBI group. Results point to a specific vulnerability of the caudate to blast injury
Collapse
Affiliation(s)
- Mary R Newsome
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Sally Durgerian
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lyla Mourany
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Randall S Scheibel
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erik B Beall
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Michael Parsons
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maya Troyanskaya
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Christine Reece
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elisabeth Wilde
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Barbara L Fischer
- Geriatric Research Education and Clinical Center (GRECC), Wm. S. Middleton Memorial Veterans Affairs Hospital, Madison, WI, USA
| | | | - Rajan Agarwal
- Diagnostic and Therapeutic Care, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Harvey S Levin
- Research Service Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA ; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stephen M Rao
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
69
|
Young L, Rule GT, Bocchieri RT, Walilko TJ, Burns JM, Ling G. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front Neurol 2015; 6:89. [PMID: 25999910 PMCID: PMC4423508 DOI: 10.3389/fneur.2015.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems.
Collapse
Affiliation(s)
- Leanne Young
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., Dallas, TX, USA
- Center for Brain Health, University of Texas at Dallas, Dallas, TX, USA
| | - Gregory T. Rule
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Robert T. Bocchieri
- Silicon Valley Office, Applied Research Associates, Inc., Los Altos, CA, USA
| | - Timothy J. Walilko
- Rocky Mountain Division, Applied Research Associates, Inc., Littleton, CO, USA
| | - Jennie M. Burns
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Geoffrey Ling
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
70
|
del Mar N, von Buttlar X, Yu AS, Guley NH, Reiner A, Honig MG. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol 2015; 271:53-71. [PMID: 25957630 DOI: 10.1016/j.expneurol.2015.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly, our findings of extensive axonal injury also caution that repeated trauma is likely to have cumulative adverse consequences for both brain and spinal cord.
Collapse
Affiliation(s)
- Nobel del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xinyu von Buttlar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Angela S Yu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Natalie H Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
71
|
Miller AP, Shah AS, Aperi BV, Budde MD, Pintar FA, Tarima S, Kurpad SN, Stemper BD, Glavaski-Joksimovic A. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures. Front Neurol 2015; 6:20. [PMID: 25729377 PMCID: PMC4325926 DOI: 10.3389/fneur.2015.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/25/2015] [Indexed: 11/13/2022] Open
Abstract
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.
Collapse
Affiliation(s)
- Anna P Miller
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Frank A Pintar
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Aleksandra Glavaski-Joksimovic
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| |
Collapse
|
72
|
Cotton R, Pearce C, Young P, Kota N, Leung A, Bagchi A, Qidwai S. Development of a geometrically accurate and adaptable finite element head model for impact simulation: the Naval Research Laboratory–Simpleware Head Model. Comput Methods Biomech Biomed Engin 2015; 19:101-13. [DOI: 10.1080/10255842.2014.994118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Tan LB, Chew FS, Tse KM, Chye Tan VB, Lee HP. Impact of complex blast waves on the human head: a computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1476-1505. [PMID: 25132676 DOI: 10.1002/cnm.2668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at the temporal and parietal lobes when compared with results from the single frontal blast case. By analyzing the pressure wave flow surrounding the head and correlating them with the consequential evolution of ICP and skull stress, the paper provides insights into the interaction mechanics between the concomitant blast waves and the biological head model.
Collapse
Affiliation(s)
- Long Bin Tan
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
74
|
Ryu J, Horkayne-Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, Troncoso JC, Koliatsos VE. The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Commun 2014; 2:153. [PMID: 25422066 PMCID: PMC4260204 DOI: 10.1186/s40478-014-0153-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/11/2014] [Indexed: 11/18/2022] Open
Abstract
Introduction Blast injury to brain, a hundred-year old problem with poorly characterized neuropathology, has resurfaced as health concern in recent deployments in Iraq and Afghanistan. To characterize the neuropathology of blast injury, we examined the brains of veterans for the presence of amyloid precursor protein (APP)-positive axonal swellings typical of diffuse axonal injury (DAI) and compared them to healthy controls as well as controls with opiate overdose, anoxic-ischemic encephalopathy, and non-blast TBI (falls and motor vehicle crashes). Results In cases with blast history, we found APP (+) axonal abnormalities in several brain sites, especially the medial dorsal frontal white matter. In white matter, these abnormalities were featured primarily by clusters of axonal spheroids or varicosities in a honeycomb pattern with perivascular distribution. Axonal abnormalities colocalized with IBA1 (+) reactive microglia and had an appearance that was distinct from classical DAI encountered in TBI due to motor vehicle crashes. Opiate overdose cases also showed APP (+) axonal abnormalities, but the intensity of these lesions was lower compared to cases with blast histories and there was no clear association of such lesions with microglial activation. Conclusions Our findings demonstrate that many cases with history of blast exposure are featured by APP (+) axonopathy that may be related to blast exposure, but an important role for opiate overdose, antemortem anoxia, and concurrent blunt TBI events in war theater or elsewhere cannot be discounted. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0153-3) contains supplementary material, which is available to authorized users.
Collapse
|
75
|
Sarvghad-Moghaddam H, Jazi MS, Rezaei A, Karami G, Ziejewski M. Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves. Comput Methods Biomech Biomed Engin 2014; 18:1846-55. [DOI: 10.1080/10255842.2014.977878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
76
|
Wang C, Pahk JB, Balaban CD, Miller MC, Wood AR, Vipperman JS. Computational study of human head response to primary blast waves of five levels from three directions. PLoS One 2014; 9:e113264. [PMID: 25409326 PMCID: PMC4237386 DOI: 10.1371/journal.pone.0113264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.
Collapse
Affiliation(s)
- Chenzhi Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jae Bum Pahk
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carey D. Balaban
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark C. Miller
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Adam R. Wood
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey S. Vipperman
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
77
|
An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment. Proc Natl Acad Sci U S A 2014; 111:15310-5. [PMID: 25267617 DOI: 10.1073/pnas.1415743111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.
Collapse
|
78
|
Rezaei A, Salimi Jazi M, Karami G, Ziejewski M. A computational study on brain tissue under blast: primary and tertiary blast injuries. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:781-795. [PMID: 24515869 DOI: 10.1002/cnm.2629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/04/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
In this paper, a biomechanical study of a human head model exposed to blast shock waves followed by a blunt impact with the surface of the enclosing walls of a confined space is carried out. Under blast, the head may experience primary blast injury (PBI) due to exposure to the shockwaves and tertiary blast injury (TeBI) due to a possible blunt impact. We examine the brain response data in a deformable finite element head model in terms of the inflicted stress/pressure, velocity, and acceleration on the brain for several blast scenarios with different intensities. The data will be compared for open space and confined spaces. Following the initial impact of the shock front in the confined space, one can see the fluctuations in biomechanical data due to wave reflections. Although the severity of the PBI and TeBI is dependent on the situation, for the cases studied here, PBI is considerably more pronounced than TeBI in confined spaces.
Collapse
Affiliation(s)
- A Rezaei
- Mechanical Engineering Department, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | | | |
Collapse
|
79
|
Vakhtin AA, Calhoun VD, Jung RE, Prestopnik JL, Taylor PA, Ford CC. Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. Brain Inj 2014; 27:1304-10. [PMID: 24020442 DOI: 10.3109/02699052.2013.823561] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Blast-induced mild traumatic brain injuries (mTBI) commonly go undetected by computed tomography and conventional magnetic resonance imaging (MRI). This study was used to investigate functional brain network abnormalities in a group of blast-induced mTBI subjects using independent component analysis (ICA) of resting state functional MRI (fMRI) data. METHODS Twenty-eight resting state networks of 13 veterans who sustained blast-induced mTBI were compared with healthy controls across three fMRI domains: blood oxygenation level-dependent spatial maps, time course spectra and functional connectivity. RESULTS The mTBI group exhibited hyperactivity in the temporo-parietal junctions and hypoactivity in the left inferior temporal gyrus. Abnormal frequencies in default-mode (DMN), sensorimotor, attentional and frontal networks were detected. In addition, functional connectivity was disrupted in six network pairs: DMN-basal ganglia, attention-sensorimotor, frontal-DMN, attention-sensorimotor, attention-frontal and sensorimotor-sensorimotor. CONCLUSIONS The results suggest white matter disruption across certain attentional networks. Additionally, given their elevated activity relative to controls', the temporo-parietal junctions of blast mTBI subjects may be compensating for diffuse axonal injury in other cortical regions.
Collapse
Affiliation(s)
- Andrei A Vakhtin
- Department of Neurology, Health Sciences Center, University of New Mexico , Albuquerque, NM , USA
| | | | | | | | | | | |
Collapse
|
80
|
Singh D, Cronin DS, Haladuick TN. Head and brain response to blast using sagittal and transverse finite element models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:470-489. [PMID: 24293124 DOI: 10.1002/cnm.2612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
Mild traumatic brain injury caused by blast exposure from Improvised Explosive Devices has become increasingly prevalent in modern conflicts. To investigate head kinematics and brain tissue response in blast scenarios, two solid hexahedral blast-head models were developed in the sagittal and transverse planes. The models were coupled to an Arbitrary Lagrangian-Eulerian model of the surrounding air to model blast-head interaction, for three blast load cases (5 kg C4 at 3, 3.5 and 4 m). The models were validated using experimental kinematic data, where predicted accelerations were in good agreement with experimental tests, and intracranial pressure traces at four locations in the brain, where the models provided good predictions for frontal, temporal and parietal, but underpredicted pressures at the occipital location. Brain tissue response was investigated for the wide range of constitutive properties available. The models predicted relatively low peak principal brain tissue strains from 0.035 to 0.087; however, strain rates ranged from 225 to 571 s-1. Importantly, these models have allowed us to quantify expected strains and strain rates experienced in brain tissue, which can be used to guide future material characterization. These computationally efficient and predictive models can be used to evaluate protection and mitigation strategies in future analysis.
Collapse
|
81
|
Calabrese E, Du F, Garman RH, Johnson GA, Riccio C, Tong LC, Long JB. Diffusion tensor imaging reveals white matter injury in a rat model of repetitive blast-induced traumatic brain injury. J Neurotrauma 2014; 31:938-50. [PMID: 24392843 DOI: 10.1089/neu.2013.3144] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but existing data suggest cumulative increases in brain damage with a second blast. MRI and, in particular, diffusion tensor imaging (DTI), have become important tools for assessing bTBI in both clinical and preclinical settings. Computational statistical methods such as voxelwise analysis have shown promise in localizing and quantifying bTBI throughout the brain. In this study, we use voxelwise analysis of DTI to quantify white matter injury in a rat model of repetitive primary blast exposure. Our results show a significant increase in microstructural damage with a second blast exposure, suggesting that primary bTBI may sensitize the brain to subsequent injury.
Collapse
Affiliation(s)
- Evan Calabrese
- 1 Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.
Collapse
Affiliation(s)
- Paul A Taylor
- Sandia National Laboratories, Terminal Ballistics Technology , Albuquerque , USA and
| | | | | |
Collapse
|
83
|
Reduced amygdala volume is associated with deficits in inhibitory control: a voxel- and surface-based morphometric analysis of comorbid PTSD/mild TBI. BIOMED RESEARCH INTERNATIONAL 2014; 2014:691505. [PMID: 24724093 PMCID: PMC3958771 DOI: 10.1155/2014/691505] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/11/2014] [Indexed: 11/17/2022]
Abstract
A significant portion of previously deployed combat Veterans from Operation Enduring Freedom and Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) are affected by comorbid posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI). Despite this fact, neuroimaging studies investigating the neural correlates of cognitive dysfunction within this population are almost nonexistent, with the exception of research examining the neural correlates of diagnostic PTSD or TBI. The current study used both voxel-based and surface-based morphometry to determine whether comorbid PTSD/mTBI is characterized by altered brain structure in the same regions as observed in singular diagnostic PTSD or TBI. Furthermore, we assessed whether alterations in brain structures in these regions were associated with behavioral measures related to inhibitory control, as assessed by the Go/No-go task, self-reports of impulsivity, and/or PTSD or mTBI symptoms. Results indicate volumetric reductions in the bilateral anterior amygdala in our comorbid PTSD/mTBI sample as compared to a control sample of OEF/OIF Veterans with no history of mTBI and/or PTSD. Moreover, increased volume reduction in the amygdala predicted poorer inhibitory control as measured by performance on the Go/No-go task, increased self-reported impulsivity, and greater symptoms associated with PTSD. These findings suggest that alterations in brain anatomy in OEF/OIF/OND Veterans with comorbid PTSD/mTBI are associated with both cognitive deficits and trauma symptoms related to PTSD.
Collapse
|
84
|
Heldt SA, Elberger AJ, Deng Y, Guley NH, Del Mar N, Rogers J, Choi GW, Ferrell J, Rex TS, Honig MG, Reiner A. A novel closed-head model of mild traumatic brain injury caused by primary overpressure blast to the cranium produces sustained emotional deficits in mice. Front Neurol 2014; 5:2. [PMID: 24478749 PMCID: PMC3898331 DOI: 10.3389/fneur.2014.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022] Open
Abstract
Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25-40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50-60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2-8 weeks after blast, 50-60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3-8 weeks after blast. Thus, the TBI caused by single 50-60 psi blasts in mice exhibits the minimal neuronal loss coupled to "diffuse" axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI.
Collapse
Affiliation(s)
- Scott A. Heldt
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrea J. Elberger
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Natalie H. Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua Rogers
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gy Won Choi
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jessica Ferrell
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tonia S. Rex
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
85
|
Strigo IA, Spadoni AD, Lohr J, Simmons AN. Too hard to control: compromised pain anticipation and modulation in mild traumatic brain injury. Transl Psychiatry 2014; 4:e340. [PMID: 24399043 PMCID: PMC3905226 DOI: 10.1038/tp.2013.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022] Open
Abstract
Mild traumatic brain injury (MTBI) is a vulnerability factor for the development of pain-related conditions above and beyond those related to comorbid traumatic and emotional symptoms. We acquired functional magnetic resonance imaging (fMRI) on a validated pain anticipation task and tested the hypotheses that individuals with a reported history of MTBI, compared with healthy comparison subjects, would show increased brain response to pain anticipation and ineffective pain modulation after controlling for psychiatric symptoms. Eighteen male subjects with a reported history of blast-related MTBI related to combat, and eighteen healthy male subjects with no reported history of MTBI (healthy controls) underwent fMRI during an event-related experimental pain paradigm with cued high or low intensity painful heat stimuli. No subjects in either group met diagnostic criteria for current mood or anxiety disorder. We found that relative to healthy comparison subjects, after controlling for traumatic and depressive symptoms, participants with a reported history of MTBI showed significantly stronger activations within midbrain periaqueductual grey (PAG), right dorsolateral prefrontal cortex and cuneus during pain anticipation. Furthermore, we found that brain injury was a significant moderator of the relationship between anticipatory PAG activation and reported subjective pain. Our results suggest that a potentially disrupted neurocognitive anticipatory network may result from damage to the endogenous pain modulatory system and underlie difficulties with regulatory pain processing following MTBI. In other words, our findings are consistent with a notion that brain injury makes it more difficult to control acute pain. Understanding these mechanisms of dysfunctional acute pain processing following MTBI may help shed light on the underlying causes of increased vulnerability for the development of pain-related conditions in this population.
Collapse
Affiliation(s)
- I A Strigo
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA,University of California San Diego, La Jolla, CA, USA,BioCircuits Institute, University of California San Diego, La Jolla, CA, USA,Department of Psychiatry, University of California San Diego, 3350 La Jolla Village Dr, Building 13, MC 9151-B, La Jolla, CA 92161, USA. E-mail:
| | - A D Spadoni
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA,University of California San Diego, La Jolla, CA, USA
| | - J Lohr
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA,University of California San Diego, La Jolla, CA, USA
| | - A N Simmons
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA,University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
86
|
Rezaei A, Salimi Jazi M, Karami G. Computational modeling of human head under blast in confined and open spaces: primary blast injury. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:69-82. [PMID: 23996897 DOI: 10.1002/cnm.2590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/05/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head.
Collapse
Affiliation(s)
- A Rezaei
- Mechanical Engineering Department, North Dakota State University, Fargo, ND, 58108-6050, U.S.A
| | | | | |
Collapse
|
87
|
Fox WC, Park MS, Belverud S, Klugh A, Rivet D, Tomlin JM. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage. Neurol Res 2013; 35:223-32. [PMID: 23485049 DOI: 10.1179/1743132813y.0000000162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. METHODS A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. RESULTS Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). DISCUSSION Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.
Collapse
Affiliation(s)
- W Christopher Fox
- Department of Neurosurgery, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92134, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, Oh J, Flaherty S, Fang R, Raichle ME, Brody DL. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. Neuroimage 2013; 84:76-96. [PMID: 23968735 DOI: 10.1016/j.neuroimage.2013.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 08/09/2013] [Indexed: 01/21/2023] Open
Abstract
Blast-related traumatic brain injury (TBI) has been one of the "signature injuries" of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive 'mild' blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20min of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90days post-injury and 65 subjects underwent a follow-up scan 6 to 12months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI served as a validation dataset. The second independent cohort underwent an initial scan within 30days post-injury. 75% of the scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in the participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in the participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p<0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p=0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p=0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p=0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required.
Collapse
Affiliation(s)
- Kihwan Han
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Panzer MB, Myers BS, Bass CR. Mesh considerations for finite element blast modelling in biomechanics. Comput Methods Biomech Biomed Engin 2013; 16:612-21. [DOI: 10.1080/10255842.2011.629615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
90
|
Gupta RK, Przekwas A. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects. Front Neurol 2013; 4:59. [PMID: 23755039 PMCID: PMC3667273 DOI: 10.3389/fneur.2013.00059] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/09/2013] [Indexed: 01/13/2023] Open
Abstract
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI.
Collapse
Affiliation(s)
- Raj K Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Fort Detrick, MD , USA
| | | |
Collapse
|
91
|
Selvan V, Ganpule S, Kleinschmit N, Chandra N. Blast Wave Loading Pathways in Heterogeneous Material Systems–Experimental and Numerical Approaches. J Biomech Eng 2013; 135:61002-14. [DOI: 10.1115/1.4024132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 04/04/2013] [Indexed: 01/27/2023]
Abstract
Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid.
Collapse
Affiliation(s)
| | | | | | - Namas Chandra
- Professor Fellow, ASME e-mail: Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| |
Collapse
|
92
|
Sevagan G, Zhu F, Jiang B, Yang KH. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions. Proc Inst Mech Eng H 2013; 227:778-87. [PMID: 23636759 DOI: 10.1177/0954411913483430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.
Collapse
Affiliation(s)
- Gopinath Sevagan
- Bioengineering Center, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
93
|
Zhu F, Skelton P, Chou CC, Mao H, Yang KH, King AI. Biomechanical responses of a pig head under blast loading: a computational simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:392-407. [PMID: 23345257 DOI: 10.1002/cnm.2518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
A series of computational studies were performed to investigate the biomechanical responses of the pig head under a specific shock tube environment. A finite element model of the head of a 50-kg Yorkshire pig was developed with sufficient details, based on the Lagrangian formulation, and a shock tube model was developed using the multimaterial arbitrary Lagrangian-Eulerian (MMALE) approach. These two models were integrated and a fluid/solid coupling algorithm was used to simulate the interaction of the shock wave with the pig's head. The finite element model-predicted incident and intracranial pressure traces were in reasonable agreement with those obtained experimentally. Using the verified numerical model of the shock tube and pig head, further investigations were carried out to study the spatial and temporal distributions of pressure, shear stress, and principal strain within the head. Pressure enhancement was found in the skull, which is believed to be caused by shock wave reflection at the interface of the materials with distinct wave impedances. Brain tissue has a shock attenuation effect and larger pressures were observed in the frontal and occipital regions, suggesting a greater possibility of coup and contrecoup contusion. Shear stresses in the brain and deflection in the skull remained at a low level. Higher principal strains were observed in the brain near the foramen magnum, suggesting that there is a greater chance of cellular or vascular injuries in the brainstem region.
Collapse
Affiliation(s)
- Feng Zhu
- Bioengineering Center, Wayne State University, 818 W. Hancock, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Mac Donald C, Johnson A, Cooper D, Malone T, Sorrell J, Shimony J, Parsons M, Snyder A, Raichle M, Fang R, Flaherty S, Russell M, Brody DL. Cerebellar white matter abnormalities following primary blast injury in US military personnel. PLoS One 2013; 8:e55823. [PMID: 23409052 PMCID: PMC3567000 DOI: 10.1371/journal.pone.0055823] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/02/2013] [Indexed: 12/01/2022] Open
Abstract
Little is known about the effects of blast exposure on the human brain in the absence of head impact. Clinical reports, experimental animal studies, and computational modeling of blast exposure have suggested effects on the cerebellum and brainstem. In US military personnel with isolated, primary blast-related ‘mild’ traumatic brain injury and no other known insult, we found diffusion tensor MRI abnormalities consistent with cerebellar white matter injury in 3 of 4 subjects. No abnormalities in other brain regions were detected. These findings add to the evidence supporting the hypothesis that primary blast exposure contributes to brain injury in the absence of head impact and that the cerebellum may be particularly vulnerable. However, the clinical effects of these abnormalities cannot be determined with certainty; none of the subjects had ataxia or other detected evidence of cerebellar dysfunction. The details of the blast events themselves cannot be disclosed at this time, thus additional animal and computational modeling will be required to dissect the mechanisms underlying primary blast-related traumatic brain injury. Furthermore, the effects of possible subconcussive impacts and other military-related exposures cannot be determined from the data presented. Thus many aspects of topic will require further investigation.
Collapse
Affiliation(s)
- Christine Mac Donald
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ann Johnson
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dana Cooper
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Thomas Malone
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - James Sorrell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Joshua Shimony
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Matthew Parsons
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Abraham Snyder
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Marcus Raichle
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Raymond Fang
- Department of Trauma Surgery, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Stephen Flaherty
- Department of Trauma Surgery, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Michael Russell
- Rehabilitation and Reintegration Division, US Army, San Antonio, Texas, United States of America
| | - David L. Brody
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
95
|
Wright RM, Post A, Hoshizaki B, Ramesh KT. A Multiscale Computational Approach to Estimating Axonal Damage under Inertial Loading of the Head. J Neurotrauma 2013; 30:102-18. [DOI: 10.1089/neu.2012.2418] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rika M. Wright
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Andrew Post
- Neurotrauma Impact Science Laboratory, Department of Human Kinetics, University of Ottawa, Rideau Campus, Ottawa, Ontario, Canada
| | - Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, Department of Human Kinetics, University of Ottawa, Rideau Campus, Ottawa, Ontario, Canada
| | - Kaliat T. Ramesh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
96
|
Ganpule S, Gu L, Alai A, Chandra N. Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput Methods Biomech Biomed Engin 2012; 15:1233-44. [DOI: 10.1080/10255842.2011.597353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
97
|
Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech Model Mechanobiol 2012; 12:511-31. [PMID: 22832705 DOI: 10.1007/s10237-012-0421-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 07/10/2012] [Indexed: 12/17/2022]
Abstract
Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.
Collapse
|
98
|
Ravin R, Blank PS, Steinkamp A, Rappaport SM, Ravin N, Bezrukov L, Guerrero-Cazares H, Quinones-Hinojosa A, Bezrukov SM, Zimmerberg J. Shear forces during blast, not abrupt changes in pressure alone, generate calcium activity in human brain cells. PLoS One 2012; 7:e39421. [PMID: 22768078 PMCID: PMC3387147 DOI: 10.1371/journal.pone.0039421] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023] Open
Abstract
Blast-Induced Traumatic Brain Injury (bTBI) describes a spectrum of injuries caused by an explosive force that results in changes in brain function. The mechanism responsible for primary bTBI following a blast shockwave remains unknown. We have developed a pneumatic device that delivers shockwaves, similar to those known to induce bTBI, within a chamber optimal for fluorescence microscopy. Abrupt changes in pressure can be created with and without the presence of shear forces at the surface of cells. In primary cultures of human central nervous system cells, the cellular calcium response to shockwaves alone was negligible. Even when the applied pressure reached 15 atm, there was no damage or excitation, unless concomitant shear forces, peaking between 0.3 to 0.7 Pa, were present at the cell surface. The probability of cellular injury in response to a shockwave was low and cell survival was unaffected 20 hours after shockwave exposure.
Collapse
Affiliation(s)
- Rea Ravin
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul S. Blank
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Alex Steinkamp
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shay M. Rappaport
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nitay Ravin
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ludmila Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
99
|
Kane MJ, Angoa-Pérez M, Francescutti DM, Sykes CE, Briggs DI, Leung LY, VandeVord PJ, Kuhn DM. Altered gene expression in cultured microglia in response to simulated blast overpressure: possible role of pulse duration. Neurosci Lett 2012; 522:47-51. [PMID: 22698585 DOI: 10.1016/j.neulet.2012.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/27/2022]
Abstract
Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to "isolate" the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15 to 45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process.
Collapse
Affiliation(s)
- Michael J Kane
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Clayton EH, Genin GM, Bayly PV. Transmission, attenuation and reflection of shear waves in the human brain. J R Soc Interface 2012; 9:2899-910. [PMID: 22675163 DOI: 10.1098/rsif.2012.0325] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system.
Collapse
Affiliation(s)
- Erik H Clayton
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, One Brookings Drive, Campus Box 1185, St Louis, MO 63130, USA.
| | | | | |
Collapse
|