51
|
Weisman M, McClelland S, Agrawal N, Jimenez RB, Yechieli R, Fields E, Ishaq O, Holmes JA, Golden DW, Mak R, Shiue K. FCB-CHOPS: An Evolution of a Commonly Used Acronym for Evaluating Radiation Treatment Plans. Adv Radiat Oncol 2025; 10:101627. [PMID: 40017913 PMCID: PMC11867132 DOI: 10.1016/j.adro.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/23/2024] [Indexed: 03/01/2025] Open
Abstract
Checklists have been used across many fields as a systematic framework to reduce human error and improve safety. In radiation oncology, the CB-CHOP acronym was previously developed as a tool to aid physicians in assessing the quality of radiation treatment plans for approval. This manuscript updates the acronym for the modern era with the addition of F and S to create FCB-CHOPS: fusion, contours, beams, coverage, heterogeneity, organs at risk, prescription, and dose summation. These 2 additions reflect the evolution and importance of image fusion to aid in the delineation of targets and organs at risk and dose summation to reflect the increased incidence of reirradiation and the need to consider prior treatment courses in the final plan evaluation. Utilization of this and similar checklists is critical in maintaining high-quality and safe radiation oncology treatments.
Collapse
Affiliation(s)
- Michael Weisman
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shearwood McClelland
- Depatments of Radiation Oncology and Neurological Surgery, University Hospitals Seidman Cancer Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Namita Agrawal
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachel B. Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Raphael Yechieli
- Department of Radiation Oncology, University of Miami, Miami Florida
| | - Emma Fields
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Omar Ishaq
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jordan A. Holmes
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel W. Golden
- Department of Radiation Oncology, RUSH University, Chicago, Illinois
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kevin Shiue
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
52
|
Gieger TL. Radiation Therapy for Brain Tumors in Dogs and Cats. Vet Clin North Am Small Anim Pract 2025; 55:67-80. [PMID: 39393930 DOI: 10.1016/j.cvsm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
External beam radiation therapy (RT) has become the standard of care for non-resectable or post-operative incompletely excised brain tumors in dogs and cats due to its relatively low side effect profile and increasing availability. This article reviews the indications for, expected outcomes of and possible toxicities associated with RT, follow-up care recommendations after RT, and publications about specific tumor types in dogs and cats with brain tumors.
Collapse
Affiliation(s)
- Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
53
|
Lin MH, Olsen L, Kavanaugh JA, Jacqmin D, Lobb E, Yoo S, Berry SL, Pichardo JC, Cardenas CE, Roper J, Kirk M, Bennett S, Cheung JP, Solberg TD, Moore KL, Kim M. Ensuring High Quality Treatment Plans with a Plan Quality Review Checklist. Pract Radiat Oncol 2025; 15:e82-e87. [PMID: 39357772 DOI: 10.1016/j.prro.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Treatment plan quality is a crucial component for a successful outcome of radiation therapy treatments. As the complexity of radiation therapy planning and delivery techniques increases, the role of the medical physicist in assessing treatment plan quality becomes more critical. Integrating plan quality review throughout the treatment planning process allows improvements without delaying treatment or rushing to produce changes at the last minute. In this work, we aim to provide practical check items for physicists to reference when assessing treatment plan quality with a critical eye, asking questions such as "is this the best dose distribution feasible for this patient?," "could we change any planning parameters to improve plan quality?," and "could we change the planning strategy for this particular patient or for future patients?"; and to work with planners and physicians to create a multidisciplinary collaborative culture that achieves the best plan feasible for every patient. We tabulate the features that affect plan quality in each process step and check details for individual items. This report is aimed at medical physicists, planners, radiation oncologists, and other professionals who are involved in treatment planning.
Collapse
Affiliation(s)
- Mu-Han Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Lindsey Olsen
- Department of Radiation Oncology, Memorial Hospital, Colorado Springs, Colorado
| | - James A Kavanaugh
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Dustin Jacqmin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Eric Lobb
- Department of Radiation Oncology, Ascension NE Wisconsin - St. Elizabeth Hospital, Appleton, Wisconsin
| | - Sua Yoo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Sean L Berry
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Justin Roper
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Maura Kirk
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephanie Bennett
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Center, Harvard Medical School, Boston, Massachutsetts
| | - Joey P Cheung
- Department of Radiation Oncology, Sutter Health - Mills-Peninsula Medical Center, San Mateo, California
| | - Timothy D Solberg
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - Minsun Kim
- Department of Radiation Oncology, University of Washington, Seattle, Washington.
| |
Collapse
|
54
|
Snyder KC, Siddiqui SM, Parikh P, Thind K. Adaptive treatment workflow and dosimetric evaluation of intracranial fractionated stereotactic radiosurgery on a low-field magnetic resonance-linear accelerator. Phys Imaging Radiat Oncol 2025; 33:100702. [PMID: 39911877 PMCID: PMC11795098 DOI: 10.1016/j.phro.2025.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Background and Purpose Online adaptive radiotherapy for fractionated intracranial stereotactic radiosurgery (FSRS) on a magnetic resonance linear accelerator (MR-L) has the potential to allow for real-time adjustments of anatomical changes during radiotherapy treatment. This study investigates the dosimetric improvements of an online-adaptive MR-L workflow and validates the dosimetry utilizing an MR-visible phantom. Methods and materials Twenty-six cases previously treated with a conventional C-arm linear accelerator (CA-L) were replanned to determine optimal optimization constraints and objectives for achieving comparable MR-L plans. The optimization methodology was subsequently applied to simulate an online adaptive workflow on an MR phantom, incorporating target volumes from five previously treated patients that required offline adaptation. Plan quality and normal brain dose statistics were evaluated and compared to the offline adapted CA-L plans. Results No significant difference was observed between the CA-L and MR-L target coverage. The normal brain dose for MR-L plans increased with target volume more rapidly than for CA-L plans. However, some outliers achieved equivalent normal brain doses, indicating potential benefits of MRIgRT for specific superficial volumes located in the frontal, occipital lobes, and cerebellum. End-to-end validation with simulated adaptive workflow on a MR phantom utilizing target volumes that previously required adaption showed acceptable difference of <2.5 % between measured and planned target dose. Conclusion The study shows promising results for an online adaptive workflow for the treatment of intracranial FSRS on a low-field MR-L.
Collapse
Affiliation(s)
- Karen Chin Snyder
- Department of Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, United States
| | - Salim M. Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, United States
| | - Parag Parikh
- Department of Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, United States
| | - Kundan Thind
- Department of Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, United States
| |
Collapse
|
55
|
Courtney PT, L Santoso M, Savjani RR, K Reddy V, Chai-Ho W, Velez Velez MA, J Wong D, Palodichuk C, Basehart TV, P O'Connell D, Cao M, Telesca D, Chin RK. A phase II study of personalized ultrafractionated stereotactic adaptive radiotherapy for palliative head and neck cancer treatment (PULS-Pal): a single-arm clinical trial protocol. BMC Cancer 2024; 24:1564. [PMID: 39709372 PMCID: PMC11662514 DOI: 10.1186/s12885-024-13303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Many patients with head and neck cancer are not candidates for standard of care definitive treatments though often require palliative treatments given the frequent symptoms associated with head and neck cancer. While existing palliative radiotherapy regimens can provide adequate symptom control, they have limitations particularly with respect to local control which is becoming more important as advances in systemic therapy are improving survival. Personalized ultrafractionated stereotactic adaptive radiotherapy (PULSAR) is a novel radiotherapy regimen which leverages advances in radiotherapy treatment technology and extended interfraction intervals to enable adaptive radiotherapy and possible synergy with the immune system. Additionally, HyperArc© (Varian Medical Systems, Inc.) radiotherapy planning software allows for safe dose-escalation to head and neck tumors. METHODS This single-arm phase II study will prospectively evaluate PULSAR with HyperArc© software for palliative treatment of head and neck cancer. Patients with de novo or recurrent, localized or metastatic, head and neck cancer who are ineligible for or decline standard of care definitive treatments are eligible for enrollment. Forty-three patients will receive an 11 Gray fraction of radiation every two weeks for a total of five fractions and dose of 55 Gy. Adaptive radiotherapy planning is permitted. A safety and feasibility evaluation will be performed after enrollment of the first fifteen patients whereby the trial will be closed if five or more patients experience a CTCAEv5.0 grade 3 or 4 or any patient experiences a grade 5 toxicity probably attributable to PULSAR during or within three months after its completion. The primary endpoint is one-year local head and neck tumor control. Secondary endpoints include safety, disease progression-free and overall survival, symptomatic impact, frequency of re-simulation and/or adaptive planning, and radiation dosimetry of PULSAR. Additionally, enrolled patients are permitted to receive cancer-directed systemic therapy, including immunotherapy, during PULSAR which may allow for the analysis of the safety and efficacy of this combination. DISCUSSION The PULS-Pal trial is the first prospective study of PULSAR with HyperArc© software for head and neck cancer. We hypothesize that this radiotherapy regimen will lead to improved local tumor control compared with historical controls in patients undergoing palliative radiotherapy for head and neck cancer. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT06572423 . Date of registration: August 28th, 2024.
Collapse
Affiliation(s)
- P Travis Courtney
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA.
| | - Milisuryani L Santoso
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Ricky R Savjani
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Vishruth K Reddy
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Wanxing Chai-Ho
- Department of Medical Oncology, University of California, Los Angeles, USA
| | | | - Deborah J Wong
- Department of Medical Oncology, University of California, Los Angeles, USA
| | - Christy Palodichuk
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - T Vincent Basehart
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Dylan P O'Connell
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| | - Donatello Telesca
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Robert K Chin
- Department of Radiation Oncology, University of California, 200 Medical Plaza Driveway, Suite #B265, Los Angeles, CA, 90025, USA
| |
Collapse
|
56
|
Song Y, Kim YJ, Choi S, Yun JK, Ahn JH, Kim JE, Lee JS, Kim W, Do KH, Chung HW, Lee GD, Song SY. Stereotactic ablative radiotherapy for pulmonary metastasis from sarcoma: a retrospective comparison with metastasectomy. Clin Exp Metastasis 2024; 42:2. [PMID: 39680241 DOI: 10.1007/s10585-024-10320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Recent studies report excellent local control (LC) and favorable toxicities of stereotactic ablative radiotherapy (SABR) for pulmonary metastasis (PM) from sarcoma. This study compared the LC and survival of SABR and metastasectomy for sarcoma PM. We analyzed the LC rates of 54 PMs treated with SABR between 2008 and 2022. For survival analysis, we compared 14 patients who received SABR as first-line treatment with 61 patients who underwent metastatectomy. For SABR-treated PMs, a median total dose of 55 Gy (range, 48-60) was administered over 3-10 fractions. Median follow-up for LC in SABR-treated PMs was 19.2 months (range, 0.8-124.0), and the 2-year LC rate was 92.2%. No patients experienced toxicities of grade 3 or higher. The median age of the patients in the survival analysis was 73 years (range, 42-83) in the SABR group and 54 years (range, 19-78) in the metastasectomy group (p < 0.001). PMs in the "gray zone" were more common in the SABR group (35.7%) than in the metastasectomy group (8.2%) (p = 0.029). The median follow-up for survival analysis was 44.8 months (interquartile range, 21.5-66.4). The 3-year rates of LC and overall survival were 92.3% and 57.3% in the SABR group and 89.2% and 75.9% in the metastasectomy group (p = 0.807, 0.224), respectively. The out-of-field intrapulmonary failure-free survival and extrapulmonary systemic failure-free survival rates at 3 years were not significantly different (p = 0.673, 0.386). SABR for sarcoma PM demonstrated excellent LC with acceptable toxicity. Survival rates of SABR were comparable to those of metastasectomy.
Collapse
Affiliation(s)
- Youngju Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sehoon Choi
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Seok Lee
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Wanlim Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hyun Do
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Won Chung
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
57
|
Zhang T, Li W, Chen Q, He W, Sun J, Li D, Wang Q, Duan X. Prognostic significance of early alpha fetoprotein and des-gamma carboxy prothrombin responses in unresectable hepatocellular carcinoma patients undergoing triple combination therapy. Front Immunol 2024; 15:1508028. [PMID: 39726604 PMCID: PMC11669689 DOI: 10.3389/fimmu.2024.1508028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Background Recent advancements in combination therapy for unresectable hepatocellular carcinoma (uHCC) have shown promise, but reliable serological prognostic indicators are currently lacking for patients undergoing triple combination therapy of stereotactic body radiation therapy (SBRT), immunotherapy, and targeted therapy. We aimed to investigate the prognostic significance of early alpha fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP) responses in these patients. Methods This retrospective research included 115 uHCC patients treated with SBRT in combination with immunotherapy and targeted therapy (triple therapy) at our institution from April 2021 to December 2022. Participants were categorized into high AFP and high DCP cohorts based on baseline levels. AFP and DCP responses were defined as decreases from baseline of over 50% and 70%, respectively, according to ROC curve analysis. Differences in overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) were assessed between the tumor biomarker response and non-response groups. Results Multivariate analysis indicated that AFP or DCP response at 6-8 weeks post-therapy significantly influenced ORR (high AFP cohort: odds ratio [OR] 5.50, 95% CI 2.04-14.83, p=0.001; high DCP cohort: OR 7.99, 95%CI 2.82-22.60, p<0.001). The median PFS was notably longer in tumor biomarker response groups (high AFP cohort: 13.7 vs 6.2 months, hazard ratio [HR] 0.36, 95% CI 0.20-0.62, p<0.001; high DCP cohort: 15.6 vs 9.3 months, HR 0.44, 95% CI 0.26-0.74, p=0.002). AFP or DCP response was associated with prolonged OS (high AFP cohort: not reached vs. 21.9 months, HR 0.47, 95% CI 0.22-0.99, p=0.047; high DCP cohort: not reached vs. 20.6 months, HR 0.35, 95% CI 0.14-0.86, p=0.022). Conclusion AFP or DCP response at 6-8 weeks post-therapy predicts better oncological outcomes in patients with uHCC treated with triple therapy.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Department of Oncology, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, China
- Medical School of Chinese PLA, Beijing, China
| | - Wengang Li
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Weiping He
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Sun
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dong Li
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
58
|
Saito M, Abe K, Tsuneda M, Fujita Y, Abe Y, Nishimura T, Kodate A, Kanazawa A, Harada R, Watanabe M, Uno T. Feasibility of creating a daily adaptive plan using automatic DIR-created target and OARs contours in patients with prostate cancer magnetic-resonance-guided adaptive radiotherapy. JOURNAL OF RADIATION RESEARCH 2024; 65:845-850. [PMID: 39528305 PMCID: PMC11630044 DOI: 10.1093/jrr/rrae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The purpose of this study was to evaluate the feasibility of treatment plans for prostate cancer with magnetic resonance (MR)-guided online adaptive radiotherapy, which are generated using deformable image registration (DIR)-created contours of the targets and organs. Totally, 150 fractions from 30 prostate cancer patients implanted with a hydrogel spacer and treated with the MR-Linac were studied. Reference treatment plans that satisfied all institutional dose constraints were initially created on planning MRI. The adaptive treatment plans were created on daily MRI based on the reference plan using the DIR-created contours, ensuring all dose constraints were met. Subsequently, a clinician manually created reference contours for each daily MRI. Finally, the dose volume histogram indices of the plan generated with DIR-created contours were re-evaluated with clinician created contours. The evaluated contours included the bladder wall, rectum wall, sigmoid, small bowel and planning target volume (PTV) for dose prescription. The PTV for dose prescription met the dose constraints in all fractions. The bladder and rectum walls met the dose constraint of maximum dose (D0.03 cc) in all fractions. Five patients failed to meet the sigmoid and small bowel dose constraints, with the largest deviation being 13.3% exceedance at D2 cc in the small bowel added 3 mm margin. This study suggests that most treatment plans created without modifying the DIR-created contours are clinically viable. However, dislodgements of the small bowel and sigmoid may exceed the extent of DIR propagation from the reference plan contours, and it is recommended that these contours be verified.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Tsuneda
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yukio Fujita
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Department of Radiation Sciences, Komazawa University, Setagaya, Tokyo, 259-1193, Japan
| | - Yukinao Abe
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Tsumugi Nishimura
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Asuka Kodate
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Aki Kanazawa
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Rintaro Harada
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Miho Watanabe
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
59
|
Teng CL, Lin SC, Lovelock DM, Lim SB. Dosimetric commissioning of a high-resolution CMOS 2D detector array for patient-specific QA of single-isocenter multi-target VMAT stereotactic radiosurgery. JOURNAL OF RADIATION RESEARCH 2024; 65:787-797. [PMID: 39412202 PMCID: PMC11629995 DOI: 10.1093/jrr/rrae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/21/2024] [Indexed: 12/12/2024]
Abstract
Stereotactic radiosurgery (SRS) using the single-isocenter-multiple-target (SIMT) technique by volumetric modulated arc therapy is increasingly popular for treating multiple brain metastases. However, the complex nature of SIMT SRS necessitates rigorous patient-specific quality assurance (PSQA). This study presents a multi-institutional dosimetric commissioning of a high-resolution complementary metal oxide semiconductor (CMOS) 2D detector array, the myQA SRS device for SIMT SRS PSQA. Basic dosimetric properties such as dose-rate, field-size, energy and angular dependencies were characterized for the CMOS detectors. Additionally, gamma index analyses were performed between the measured dose and the films for nine simulated and clinical plans. The results showed that the CMOS detector was dose-rate, field-size, energy and beam-angle dependent. Specific to SIMT SRS, angular dependence on gantry rotations was invariant to couch rotations but was sensitive to off-isocenter distances. With appropriate dose calibration and angular corrections, myQA SRS showed a high dosimetric correlation with films. The average gamma index pass rates were 99.9 ± 0.03% and 99.2 ± 1.1% at 3%/2 mm/10%thr(global) and 1 mm/1%/10%thr(local) criteria, respectively. The average dose difference between myQA SRS and films was 0.4 ± 1.3%. In conclusion, the CMOS 2D detector array has demonstrated its potential as a reliable tool for PSQA for SIMT SRS. The excellent dosimetric agreement with the films was consistent in multiple institutions, further validating the dosimetric accuracy and reproducibility. It provides a timely alternative to film dosimetry for commissioning and quality assurance.
Collapse
Affiliation(s)
- Ching-Ling Teng
- Radiation Oncology, Mount Sinai West, 1000 10th Avenue, New York, NY 10019, USA
| | - Shih-Chi Lin
- Biomedical Engineering, One University Avenue, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dale Michael Lovelock
- Radiation Oncology, The Mount Sinai Hospital, 1158 5th Avenue, New York, NY 10029, USA
| | - Seng Boh Lim
- Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
60
|
Wang Q, Ji X, Sun J, Zhang A, Jia J, Zhang T, Li W, Duan X. Stereotactic Body Radiotherapy Combined With Lenvatinib With or Without PD-1 Inhibitors as Initial Treatment for Unresectable Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:1363-1376. [PMID: 38583495 DOI: 10.1016/j.ijrobp.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The aim of this study was to compare the clinical benefit and safety of the triple combination of stereotactic body radiotherapy (SBRT), lenvatinib, and programmed cell death protein 1 (PD-1) inhibitors with the dual combination of SBRT and lenvatinib in patients with unresectable hepatocellular carcinoma (uHCC). METHODS AND MATERIALS Patients with uHCC who received SBRT in combination with lenvatinib and PD-1 inhibitors or SBRT in combination with lenvatinib alone as first-line treatment from October 2018 to July 2022 were reviewed in this study. The primary endpoints were overall survival (OS) and progression-free survival (PFS). The secondary endpoints were intrahepatic PFS, extrahepatic PFS, and objective remission rate. In addition, safety profiles were assessed by analyzing treatment-related adverse events between the two groups to assess safety profiles. RESULTS In total, 214 patients with uHCC who received combination therapy were included in this retrospective study. Among them, 146 patients received triple combination therapy of SBRT, lenvatinib, and PD-1 inhibitors (SBRT-L-P group), and 68 patients received dual therapy of SBRT and lenvatinib (SBRT-L group). The median OS times of the 2 groups were 31.2 months and 17.4 months, respectively (P < .001). The median PFS time was significantly longer in the SBRT-L-P group than in the SBRT-L group (15.6 months vs 8.8 months, P < .001). Additionally, the median intrahepatic PFS (17.5 vs 9.9 months, P < .001) and extrahepatic PFS (20.9 vs 11.6 months, P < .001) were significantly longer in the SBRT-L-P group than in the SBRT-L group. The objective remission rate in the SBRT-L-P group was higher than in the SBRT-L group (63.0 vs 39.7%, P = .002). The incidence and severity of treatment-related adverse events in the SBRT-L-P group were comparable to those in the SBRT-L group. CONCLUSION The use of both lenvatinib and PD-1 inhibitors with SBRT in patients with uHCC was associated with improved overall survival compared with lenvatinib and SBRT alone with a manageable safety profile.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoquan Ji
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Aimin Zhang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Jia
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Teng Zhang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wengang Li
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
61
|
Benavente S, Giraldo A, Seoane A, Ramos M, Vergés R. Clinical effects of re-evaluating a lung SBRT failure mode and effects analysis in a radiotherapy department. Clin Transl Oncol 2024; 26:3142-3149. [PMID: 38831192 DOI: 10.1007/s12094-024-03539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE The increasing complexity of radiation treatments can hinder its clinical success. This study aimed to better understand evolving risks by re-evaluating a Failure Mode and Effects Analysis (FMEA) in lung SBRT. METHODS An experienced multidisciplinary team conducted an FMEA and made a reassessment 3 years later. A process map was developed with potential failure modes (FMs) identified. High-risk FMs and their possible causes and corrective actions were determined. The initial FMEA analysis was compared to gain a deeper perspective. RESULTS We identified 232 FMs. The high-risk processes were plan approval, target contouring, and patient evaluation. The corrective measures were based on stricter standardization of plan approval, pre-planning peer review, and a supporting pretreatment checklist, which substantially reduced the risk priority number in the revised FMEA. In the FMEA reassessment, we observed that the increased complexity and number of patients receiving lung SBRT conditioned a more substantial presence of human factors and communication errors as causal conditions and a potential wrong dose as a final effect. CONCLUSIONS Conducting a lung SBRT FMEA analysis has identified high-risk conditions that have been effectively mitigated in an FMEA reanalysis. Plan approval has shown to be a weak link in the process. The increasing complexity of treatments and patient numbers have shifted causal factors toward human failure and communication errors. The potential of a wrong dose as a final effect augments in this scenario. We propose that digital and artificial intelligence options are needed to mitigate potential errors in high-complexity and high-risk RT scenarios.
Collapse
Affiliation(s)
- Sergi Benavente
- Department of Radiation Oncology, Vall d'Hebron University Hospital Campus, Barcelona, Spain.
| | - Alexandra Giraldo
- Department of Radiation Oncology, Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Alejandro Seoane
- Department of Medical Physics and Radiation Protection, Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Mónica Ramos
- Department of Radiation Oncology, Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Ramona Vergés
- Department of Radiation Oncology, Vall d'Hebron University Hospital Campus, Barcelona, Spain
| |
Collapse
|
62
|
Sidhu C, Tang C, Scott A, Yamini Ramamurty H, Yagnik L, Morey S, Phillips M, Jacques A, Thomas R. Feasibility, safety and outcomes of stereotactic radiotherapy for ultra-central thoracic oligometastatic disease guided by linear endobronchial ultrasound-inserted fiducials. Radiother Oncol 2024; 201:110547. [PMID: 39332638 DOI: 10.1016/j.radonc.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND & PURPOSE Local treatment of oligometastases has been found to improve survival and prognosis. Stereotactic body radiotherapy (SBRT) has emerged as a treatment option for oligometastases but its use in ultra-central (UC) areas can cause significant toxicity and mortality. Fiducial markers (FM) can be used to improve SBRT accuracy, and can be inserted in the central thorax using linear endobronchial ultrasound (EBUS) bronchoscopy. Outcomes of FM-guided SBRT for UC thoracic oligometastases is unknown. METHODS A single-centre retrospective study investigating the feasibility, safety and outcomes of both linear EBUS-inserted FMs and subsequent FM-guided SBRT for UC-oligometastatic disease. Motion analyses of FMs were also performed. RESULTS Thirty outpatients underwent 32 EBUS-FM insertion procedures with 100 % success, and no major procedural mortality or morbidity. Minor complications were 4.8 % incidence of delayed FM-displacement. UC FM-guided SBRT was completed in 20 patients with 99.9 % fractions delivered. Median SBRT dose delivered was 40 Gy over a median of 8 fractions. Majority of adverse events were Grade 1 and there was no SBRT-related mortality. Local control with SBRT was 95 %, with overall survival at 1-year and 3-years of 90 % and 56.3 % respectively. Median overall survival after SBRT was 43.6 months. FM movements in UC areas were recorded being greatest in the superior-inferior axis. CONCLUSION Combined linear EBUS sampling and FM-insertion in UC thoracic oligometastatic disease is feasible and safe. UC-SBRT to oligometastases using FM guidance was found to have minimal complications and associated with moderate survival up to 3 years post-treatment.
Collapse
Affiliation(s)
- Calvin Sidhu
- School of Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Colin Tang
- School of Health Sciences, Edith Cowan University, Joondalup, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alison Scott
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Hema Yamini Ramamurty
- Department of Respiratory Medicine, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Lokesh Yagnik
- Department of Respiratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Sue Morey
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | | | - Angela Jacques
- Institute of Health Research, University of Notre Dame, Fremantle, Australia
| | - Rajesh Thomas
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia; School of Medicine, University of Western Australia, Perth, Australia; Institute for Respiratory Health, Perth, Australia
| |
Collapse
|
63
|
Rohrer Bley C, Meier V, Turek M, Besserer J, Unterhirkhers S. Stereotactic Radiation Therapy Planning, Dose Prescription and Delivery in Veterinary Medicine: A Systematic Review on Completeness of Reporting and Proposed Reporting Items. Vet Comp Oncol 2024; 22:457-469. [PMID: 39367729 DOI: 10.1111/vco.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Increasing numbers of dogs and cats with cancer are treated with stereotactic radiosurgery, stereotactic radiation therapy or stereotactic body radiotherapy (SRS, SRT or SBRT). We provide a systematic review of the current data landscape with a focus on technical and dosimetric data of stereotactic radiotherapy in veterinary oncology. Original peer-reviewed articles on dogs and cats with cancer treated with SRT were included. The systematic search included Medline via PubMed and EMBASE. The study was performed according to the Preferred Reporting Items for Systematic Reviews (PRISMA) statement. We assessed the manuscripts regarding outcome reporting, treatment planning, dose prescription, -delivery and -reporting as well as quality assurance. As of February 2024, there are 80 peer-reviewed publications on various disease entities on SRS, SRT and SBRT in veterinary medicine. Overall, we found often insufficient or highly variable technical data, with incomplete information to reproduce these treatments. While in some instances, technical factors may not impact clinical outcome, the variability found in protocols, outcome and toxicity assessments precludes accurate and reliable conclusions for a benefit of stereotactic radiotherapy for many of the treated diseases. In line with the extensive recommendations from human stereotactic radiotherapy practise, we propose a draft of reporting items for future stereotactic radiation treatments in veterinary medicine. SRS, SRT and SBRT have specific clinical and technological requirements that differ from those of standard radiation therapy. Therefore, a deep understanding of the methodologies, as well as the quality and precision of dose delivery, is essential for effective clinical knowledge transfer.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Valeria Meier
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michelle Turek
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juergen Besserer
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| | - Sergejs Unterhirkhers
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| |
Collapse
|
64
|
Kannan M, Saminathan S, Chandraraj V, Shwetha B, Gowtham Raj D, Ganesh KM. Evaluation of patient-specific quality assurance for fractionated stereotactic treatment plans with 6 and 10MV photon beams in beam-matched linacs. Radiol Phys Technol 2024; 17:896-906. [PMID: 39365408 DOI: 10.1007/s12194-024-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Beam-matched linear accelerators (LA's) require accurate and precise dosimetry for fractionated stereotactic treatment. In this study, the beam data were validated by comparing the three-beam-matched LA's measured data and the vendor reference data. Upon its validation, the accuracy of the volumetric dose delivery for eighty patient-specific fractionated stereotactic treatment plans was evaluated. Measurements of the percentage depth dose (PDD), beam profiles, output factors (OFs), absolute output, and dynamic multi-leaf collimator (MLC) transmission factors for 6 MV and 10 MV flattening filter (FF) and flattening filter-free (FFF) photon beams were obtained from three-beam-matched LA's. The patient-specific quality assurance evaluation for all eighty plans was performed using PTW Octavius 1000 SRS™ array detectors for two-dimensional (2D) fluence measurement. The following 2D gamma passing criteria were used: 1%/1 mm, 2%/1 mm, 1%/2 mm, 2%/2 mm and 3%/2 mm. In all three LA's, gamma analysis for PDD and profile were above 97% with gamma criteria of 1%/1 mm. The differences OFs, absolute output, and dynamic MLC transmission factors were less than ± 1% of base value. For all eighty cases, the median passing rates on the three LA's were above 76%, 88%, 92%, 96%, and 98% for the above-mentioned gamma criteria of the three LA's. The beam-matched LA's showed good agreement between the measured and treatment planning system (TPS) calculated values for fractionated stereotactic VMAT plans with 6 MV and 10 MV (FF and FFF) photon beams. Patients can be shifted and treated on any beam-matched linac without the need of re-planning.
Collapse
Affiliation(s)
- Mageshraja Kannan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India.
| | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - B Shwetha
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - D Gowtham Raj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - K M Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, India
| |
Collapse
|
65
|
Ho LT, Chen JLY, Hsu JC, Chan HM, Huang YC, Su MY, Kuo SH, Chang YC, Lin JL, Chen WJ, Lee WJ, Juang JMJ, Lin LY. Long-term results of stereotactic arrhythmia radioablation for refractory ventricular Arrhythmias—A Taiwanese population study. J Formos Med Assoc 2024. [DOI: 10.1016/j.jfma.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
|
66
|
Weng J, Ryckman J, Katz MS, Saeed H, Estes C, Naqa IE, Moreno A, Yom SS. Dose Planning and Radiation Optimization for Thoracic Conventional, Twice Daily, and Stereotactic Radiation Therapy: A Delphi Consensus From a National Survey of Practitioners. Pract Radiat Oncol 2024:S1879-8500(24)00308-4. [PMID: 39615586 DOI: 10.1016/j.prro.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/22/2024]
Abstract
PURPOSE We sent surveys to a large number of radiation oncologists with active thoracic cancer practices and applied the Delphi method over 3 rounds to generate consensus dose-volume histogram metrics. We used these results to create consensus-based organs-at-risk dose constraints and target goal templates for practical implementation. METHODS AND MATERIALS In this institutional review board-approved study, data were collected using REDCap electronic data capture on a secure server. Radiation oncologists identified from the Accreditation Council for Graduate Medical Education-accredited departments' websites were asked to confirm their self-identification as thoracic radiation oncologists and nominate other respondents. All invitees were asked to complete 3 rounds of questions related to normal tissue constraints, target coverage metrics, prescribing practices, and other planning considerations. Preliminary consensus statements were presented in the second round of surveys for voting on a 5-point Likert scale. The third and last round of surveys presented the iterated consensus statements and target coverage metric statements for final voting. The high consensus was predefined as ≥ 75% agreement. RESULTS Eighty-three (42.8%) of 194 invitees completed at least 1 round of surveys. The group included a diversity of gender, geography, and clinical settings. Response rates were 83%, 57%, and 55%, respectively, for the 3 rounds. By the end of the process, 48 of 96 (50%) originally proposed normal tissue dose constraint statements were iterated to consensus, and 5 of 7 (71%) proposed target coverage metric statements achieved consensus. These were used to create crowdsourced treatment planning templates. CONCLUSION This study achieved broad-based consensus-building on ideal and acceptable dose constraints for conventional, twice-daily, and stereotactic thoracic radiation therapy. Future directions could include extending this approach to other disease sites, studying the influence of widespread implementation on treatment planning, or facilitating the development of community consensus around emergent or controversial questions.
Collapse
Affiliation(s)
- Julius Weng
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Jeff Ryckman
- Department of Radiation Oncology, West Virginia University, West Virginia University Camden Clark Medical Center, Parkersburg, West Virginia
| | | | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Baptist Health South Florida, Florida
| | - Christopher Estes
- Department of Radiation Oncology, Mercy Hospital, Springfield, Missouri
| | - Issam El Naqa
- Department of Radiation Oncology, Moffit Cancer Center, Tampa, Florida
| | - Amy Moreno
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
67
|
Samanci Y, Tepebasili MA, Düzkalir AH, Askeroglu MO, Peker S. Management of treatment-naïve Koos grade IV vestibular schwannomas using hypofractionated Gamma Knife radiosurgery: a retrospective single-institution study. Neurosurg Rev 2024; 47:874. [PMID: 39589528 DOI: 10.1007/s10143-024-03125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
While single-fraction Gamma Knife radiosurgery (GKRS) has shown efficacy in managing vestibular schwannomas (VSs), some concerns have been raised regarding its safety profile, particularly in the context of hearing preservation. Hypofractionation has emerged as a promising approach to improving the safety profile. This retrospective, single-institution study evaluated patient outcomes following hypofractionated GKRS (hf-GKRS) for treatment-naïve Koos grade IV VSs. This study involved all patients with treatment-naïve Koos grade IV VSs who underwent hf-GKRS (3 or 5 fractions) between January 2018 and June 2021, with a follow-up period of ≥ 36 months. The outcomes assessed included local control (LC), the preservation of serviceable hearing as determined by the Gardner-Robertson hearing scale, and procedure-related adverse events. Twenty-nine patients (14 females, median age 49 years) were treated with three different dose regimens: 21 patients received 18 Gy in 3 fractions, 6 patients received 20 Gy in 5 fractions, and 2 patients received 25 Gy in 5 fractions. Prior to treatment, 13 patients (44.8%) had serviceable hearing, one (3.4%) presented with facial palsy, and four (13.8%) had trigeminal nerve dysfunction. The median tumor volume was 10.8 cm3. During a median radiological follow-up period of 60 months (range, 36-78 months), LC was achieved in all patients. All 13 patients retained serviceable hearing at the last follow-up. Trigeminal nerve dysfunction occurred in one patient (3.4%), while another patient (3.4%) needed a ventriculoperitoneal shunt insertion due to new-onset hydrocephalus. No new-onset facial palsy was observed. hf-GKRS shows promise as an effective and safe primary or adjuvant treatment for Koos grade IV VSs with non-life-threatening or debilitating symptoms. Future studies with larger cohorts and extended follow-up periods are needed to validate these findings and to refine fractionation schemes.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University School of Medicine, Türkiye Davutpasa Caddesi No:4, Istanbul, Zeytinburnu/İstanbul, 34010, Turkey
- Department of Neurosurgery, Gamma Knife Center, Koç University Hospital, Istanbul, Turkey
| | - Mehmet Ali Tepebasili
- Department of Neurosurgery, Koç University School of Medicine, Türkiye Davutpasa Caddesi No:4, Istanbul, Zeytinburnu/İstanbul, 34010, Turkey
| | - Ali Haluk Düzkalir
- Department of Neurosurgery, Gamma Knife Center, Koç University Hospital, Istanbul, Turkey
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - M Orbay Askeroglu
- Department of Neurosurgery, Gamma Knife Center, Koç University Hospital, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, Koç University School of Medicine, Türkiye Davutpasa Caddesi No:4, Istanbul, Zeytinburnu/İstanbul, 34010, Turkey.
- Department of Neurosurgery, Gamma Knife Center, Koç University Hospital, Istanbul, Turkey.
| |
Collapse
|
68
|
Miao Y, Li J, Ge R, Xie C, Liu Y, Zhang G, Miao M, Xu S. Dose prediction of CyberKnife Monte Carlo plan for lung cancer patients based on deep learning: robust learning of variable beam configurations. Radiat Oncol 2024; 19:170. [PMID: 39587661 PMCID: PMC11587619 DOI: 10.1186/s13014-024-02531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Accurate calculation of lung cancer dose using the Monte Carlo (MC) algorithm in CyberKnife (CK) is essential for precise planning. We aim to employ deep learning to directly predict the 3D dose distribution calculated by the MC algorithm, enabling rapid and accurate automatic planning. However, most current methods solely focus on conventional intensity-modulated radiation therapy and assume a consistent beam configuration across all patients. This study seeks to develop a more versatile model incorporating variable beam configurations of CK and considering the patient's anatomy. METHODS This study proposed that the AB (anatomy and beam) model be compared with the control Mask (only anatomy) model. These models are based on a 3D U-Net network to investigate the impact of CK beam encoding information on dose prediction. The study collected 86 lung cancer patients who received CK's built-in MC algorithm plans using different beam configurations for training/validation (66 cases) and testing (20 cases). We compared the gamma passing rate, dose difference maps, and relevant dose-volume metrics to evaluate the model's performance. In addition, the Dice similarity coefficients (DSCs) were calculated to assess the spatial correspondence of isodose volumes. RESULTS The AB model demonstrated superior performance compared to the Mask model, particularly in the trajectory dose of the beam. The DSCs of the AB model were 20-40% higher than that of the Mask model in some dose regions. We achieved approximately 99% for the PTV and generally more than 95% for the organs at risk (OARs) referred to the clinical planning dose in the gamma passing rates (3 mm/3%). Relative to the Mask model, the AB model exhibited more than 90% improvement in small voxels (p < 0.001). The AB model matched well with the clinical plan's dose-volume histograms, and the average dose error for all organs was 1.65 ± 0.69%. CONCLUSIONS Our proposed new model signifies a crucial advancement in predicting CK 3D dose distributions for clinical applications. It enables planners to rapidly and precisely predict MC doses for lung cancer based on patient-specific beam configurations and optimize the CK treatment process.
Collapse
Affiliation(s)
- Yuchao Miao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Physics, Beihang University, Beijing, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiwei Li
- ACCURAY, China National Nuclear Corporation, Tianjin, China
| | - Ruigang Ge
- Department of Radiation Oncology, The First Medical Center of the People's Liberation Army General Hospital, Beijing, China
| | - Chuanbin Xie
- Department of Radiation Oncology, The First Medical Center of the People's Liberation Army General Hospital, Beijing, China
| | - Yaoying Liu
- School of Physics, Beihang University, Beijing, China
| | - Gaolong Zhang
- School of Physics, Beihang University, Beijing, China
| | - Mingchang Miao
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shouping Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
69
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
70
|
Li Y, Ma H, Hua R, Wang T, Ding N, Deng L, Lu X, Chen W. Analysis of linear accelerator-based fractionated stereotactic radiotherapy in brain metastases: efficacy, safety, and dose tolerances. Front Oncol 2024; 14:1471004. [PMID: 39687885 PMCID: PMC11647529 DOI: 10.3389/fonc.2024.1471004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Objective To assess the efficacy and safety of linear accelerator-based fractionated stereotactic radiotherapy (LINAC-FSRT) in patients with brain metastases (BM). Methods We retrospectively analyzed 214 patients treated with LINAC-FSRT, categorized based on biologically effective dose (BED10, α/β = 10) into two groups (≤55 Gy, >55 Gy). Stratified analyses were conducted based on targeted therapy to compare survival outcomes. To examine brain tissue dose-tolerance volume, patients were divided into two groups: the standard Hypofractionated Treatment Effects in the Clinic (HyTEC) protocol group and an adjusted HyTEC protocol group where dose-volume restrictions exclude the planning target volume (PTV). Results Results as of December 2023 showed median intracranial progression-free survival (iPFS) at 12.4 months, with median overall survival (OS) not reached and a one-year local control (LC) rate of 68.7%. Mild to moderate toxicity affected 17.3% of patients, while severe toxicity occurred in 2.8%. Multivariate Cox analysis indicated that uncontrolled extracranial disease significantly reduced iPFS (HR = 2.692, 95%CI:1.880-3.853, P < 0.001) and OS (HR = 3.063, 95%CI:1.987-4.722, P < 0.001). BED10 >55 Gy (HR = 0.656, 95%CI:0.431-0.998, P = 0.049) improved OS, showing statistical significance (P = 0.037) without affecting iPFS or CNS toxicity (P = 0.127, P = 0.091). Stratified analysis highlighted nearly significant OS improvements with high-dose FSRT and targeted therapy (P = 0.054), while concurrent therapy markedly enhanced iPFS (P = 0.027). No significant differences were observed in intracranial local failure (ILF-which represents progression in previously treated areas during follow-up), one-year LC rates, iPFS, or OS between dose-volume groups. Adjusting HyTEC volume restrictions did not significantly increase CNS adverse reactions (P = 0.889). Conclusions LINAC-FSRT is safe and effective in BM. BED10>55 Gy notably enhances OS post-LINAC-FSRT and may benefit LC. High BED10 FSRT with targeted therapy likely boosts synergy, and concurrent targeted therapy significantly improves iPFS. Diminishing dose volume constraints at different fractions based on the HyTEC guidelines is feasible.
Collapse
Affiliation(s)
- Yuhong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Huiying Ma
- Department of Radiation Oncology, The First People's Hospital of Jiande, Hangzhou, China
| | - Rui Hua
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tingting Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Naixin Ding
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Liping Deng
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Wei Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
71
|
Martin-Paulpeter RM, Jensen PJ, Perles LA, Sawakuchi GO, Das P, Koay EJ, Koong AC, Ludmir EB, Niedzielski JS, Beddar S. Daily Diagnostic Quality Computed Tomography-on-Rails (CTOR) Image Guidance for Abdominal Stereotactic Body Radiation Therapy (SBRT). Cancers (Basel) 2024; 16:3770. [PMID: 39594725 PMCID: PMC11591933 DOI: 10.3390/cancers16223770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Stereotactic body radiation therapy (SBRT) for abdominal targets faces a variety of challenges, including motion caused by the respiration and digestion and a relatively poor level of contrast between the tumor and the surrounding tissues. Breath-hold treatments with computed tomography-on-rails (CTOR) image guidance is one way of addressing these challenges, allowing for both the tumor and normal tissues to be well-visualized. Using isodose lines (IDLs) from CT simulations as a guide, the anatomical information can be used to shift the alignment or trigger a replan, such that normal tissues receive acceptable doses of radiation. METHODS This study aims to describe the workflow involved when using CTOR for pancreas and liver SBRT and demonstrates its effectiveness through several case studies. RESULTS In these case studies, using the anatomical information gained through diagnostic-quality CT guidance to make slight adjustments to the alignment, resulted in reductions in the maximum dose to the stomach. CONCLUSIONS High-quality imaging, such as CTOR, and the use of IDLs to estimate the doses to OARs, enable the safe delivery of SBRT, without the added complexity and resource commitment required by daily online adaptive planning.
Collapse
Affiliation(s)
- Rachael M. Martin-Paulpeter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| | - P. James Jensen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| | - Luis A. Perles
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| | - Gabriel O. Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| | - Prajnan Das
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Albert C. Koong
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ethan B. Ludmir
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua S. Niedzielski
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.A.P.)
| |
Collapse
|
72
|
Bilski M, Peszyńska-Piorun M, Konat-Bąska K, Brzozowska A, Korab K, Wojtyna E, Janiak P, Ponikowska J, Sroka S, Cisek P, Fijuth J, Kuncman Ł. Radiotherapy as a metastasis directed therapy for liver oligometastases - comparative analysis between CT-guided interstitial HDR brachytherapy and two SBRT modalities performed on double-layer and single layer LINACs. Front Oncol 2024; 14:1478872. [PMID: 39558956 PMCID: PMC11570579 DOI: 10.3389/fonc.2024.1478872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Surgical resection is gold standard for treatment of liver metastasis, locally ablative techniques including computer tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy (CT-BRT) and stereotactic body radiotherapy (SBRT) have gained prominence as alternatives, offering comparable outcomes in selected patients. We aim to compare CT-BRT and SBRT - based on dosimetric analysis. Material and methods Patients who underwent CT-BRT for oligometastatic, ≤4cm liver metastases between 2018 and 2024 were eligible. SBRT plans for Halcyon (SBRTh) and TrueBeam (SBRTtb) were prepared virtually. In the CT-BRT group CTV was equal to PTV, for SBRTh and SBRTtb planning, a 5 mm margin was applied to CTV to create PTV. Dose calculation was carried out with the TG-43 algorithm for CT-BRT and Anisotropic Analytical Algorithm for SBRTh and SBRTtb group. Descriptive statistics were used to compare the data. The Wilcoxon pairwise order test was utilized to compare dependent groups. Results CT-BRT resulted in a more favorable dose distribution within PTVs for Dmean, D50, and D90, while SBRT showed better results for D98 and V27.5Gy. No significant differences were observed for V25Gy between CT-BRT and SBRTtb, but SBRTh favored over CT-BRT. For OARs, CT-BRT plans showed better values for V5, V10, and V11.6Gy in the uninvolved liver volume. There were no significant differences in dose distribution for the duodenum, bowel, and heart. SBRT modalities performed better in the kidney. CT-BRT had improved dose distribution in the esophagus, great vessels, ribs, skin, spinal cord, and stomach compared to SBRT. Conclusions CT-BRT could be a viable alternative to SBRT for certain patients with liver malignancies.
Collapse
Affiliation(s)
- Mateusz Bilski
- Department of Brachytherapy, Saint John’s Cancer Center, Lublin, Poland
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
- Department of Radiotherapy, Saint John’s Cancer Center, Lublin, Poland
| | - Magdalena Peszyńska-Piorun
- Radiotherapy Planning Department, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| | - Katarzyna Konat-Bąska
- Department of Brachytherapy, Lower Silesian Oncology, Pulmonology and Hematology Center, Wrocław, Poland
| | - Agnieszka Brzozowska
- Department of Mathematics and Statistics with e-Health Lab, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Korab
- Department of Medical Physics, Saint John’s Cancer Center, Lublin, Poland
| | - Ewa Wojtyna
- Department of Medical Physics, Saint John’s Cancer Center, Lublin, Poland
| | - Przemysław Janiak
- Radiotherapy Planning Department, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| | - Julia Ponikowska
- Department of Medical Physics, Saint John’s Cancer Center, Lublin, Poland
| | - Sylwia Sroka
- Department of Medical Physics, Saint John’s Cancer Center, Lublin, Poland
| | - Paweł Cisek
- Department of Brachytherapy, Saint John’s Cancer Center, Lublin, Poland
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Lodz, Łódź, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Łódź, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, Łódź, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Łódź, Poland
| |
Collapse
|
73
|
Van Asselt N, Christensen N. Initial treatment experience obtained with the real-time predictive motion tracking radiotherapy platform Synchrony: A pilot study. Vet Radiol Ultrasound 2024; 65:745-749. [PMID: 39160652 DOI: 10.1111/vru.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
This pilot study presents initial experience obtained with a real-time predictive motion tracking platform called Synchrony mounted on the Radixact radiotherapy device. Synchrony radiotherapy treatments were offered as an alternative to surgical excision for primary pulmonary carcinomas as well as in dogs in a suspected oligometastatic disease state. All dogs were treated with three fractions of 8 Gy. Six dogs with pulmonary targets were successfully treated, while we were unable to treat abdominal targets with implanted fiducials. Cranial targets showed minimal movement, while targets located adjacent to the diaphragm showed a large amplitude of movement. No acute or late clinically apparent side effects were noted in any of the dogs that received radiation therapy. A strong partial response with minimal pneumonitis was seen in follow-up imaging of the one dog where imaging was available. Synchrony motion tracking will continue to be investigated for efficacy.
Collapse
Affiliation(s)
- Nathaniel Van Asselt
- Department of Surgical Sciences, University of Wisconsin Veterinary Care, Madison, Wisconsin, USA
| | - Neil Christensen
- Department of Surgical Sciences, University of Wisconsin Veterinary Care, Madison, Wisconsin, USA
| |
Collapse
|
74
|
Bai H, Wang XF, Xu YH, Zaorsky NG, Wang HH, Niu GM, Li JC, Dong Y, Li JY, Yu L, Chen MF, Lu XT, Yuan ZY, Yang JL, Meng MB. Brachial plexopathy following stereotactic body radiation therapy in apical lung malignancies: A dosimetric pooled analysis of individual patient data. Radiother Oncol 2024; 200:110529. [PMID: 39255923 DOI: 10.1016/j.radonc.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study is to establish dosimetric constraints for the brachial plexus at risk of developing grade ≥ 2 brachial plexopathy in the context of stereotactic body radiation therapy (SBRT). PATIENTS AND METHODS Individual patient data from 349 patients with 356 apical lung malignancies who underwent SBRT were extracted from 5 articles. The anatomical brachial plexus was delineated following the guidelines provided in the atlases developed by Hall, et al. and Kong, et al.. Patient characteristics, pertinent SBRT dosimetric parameters, and brachial plexopathy grades (according to CTCAE 4.0 or 5.0) were obtained. Normal tissue complication probability (NTCP) models were used to estimate the risk of developing grade ≥ 2 brachial plexopathy through maximum likelihood parameter fitting. RESULTS The prescription dose/fractionation schedules for SBRT ranged from 27 to 60 Gy in 1 to 8 fractions. During a follow-up period spanning from 6 to 113 months, 22 patients (6.3 %) developed grade ≥2 brachial plexopathy (4.3 % grade 2, 2.0 % grade 3); the median time to symptoms onset after SBRT was 8 months (ranged, 3-54 months). NTCP models estimated a 10 % risk of grade ≥2 brachial plexopathy with an anatomic brachial plexus maximum dose (Dmax) of 20.7 Gy, 34.2 Gy, and 42.7 Gy in one, three, and five fractions, respectively. Similarly, the NTCP model estimates the risks of grade ≥2 brachial plexopathy as 10 % for BED Dmax at 192.3 Gy and EQD2 Dmax at 115.4 Gy with an α/β ratio of 3, respectively. Symptom persisted after treatment in nearly half of patients diagnosed with grade ≥2 brachial plexopathy (11/22, 50 %). CONCLUSIONS This study establishes dosimetric constraints ranging from 20.7 to 42.7 Gy across 1-5 fractions, aimed at mitigating the risk of developing grade ≥2 brachial plexopathy following SBRT. These findings provide valuable guidance for future ablative SBRT in apical lung malignancies.
Collapse
Affiliation(s)
- Hui Bai
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yi-Han Xu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jia-Cheng Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jun-Yi Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Lu Yu
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mei-Feng Chen
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao-Tong Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
75
|
McGee KP, Cao M, Das IJ, Yu V, Witte RJ, Kishan AU, Valle LF, Wiesinger F, De-Colle C, Cao Y, Breen WG, Traughber BJ. The Use of Magnetic Resonance Imaging in Radiation Therapy Treatment Simulation and Planning. J Magn Reson Imaging 2024; 60:1786-1805. [PMID: 38265188 PMCID: PMC12052475 DOI: 10.1002/jmri.29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Kiaran P. McGee
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Indra J. Das
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Victoria Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J. Witte
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Luca F. Valle
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | | | - Chiara De-Colle
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Bryan J. Traughber
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| |
Collapse
|
76
|
Ji X, Zhou B, Huang H, Jiang W, Wang J, Ding W, Wang Z, Sun X. Development and validation of a prognostic nomogram in patients aged ≥65 years with stage I-II non-small cell lung cancer treated with stereotactic body radiotherapy. J Geriatr Oncol 2024; 15:102067. [PMID: 39288506 DOI: 10.1016/j.jgo.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/18/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION This study aims to discern the efficacy and toxicity of stereotactic body radiotherapy (SBRT) in older adults with stage I-II non-small cell lung cancer (NSCLC) and establish a prognostic nomogram for these patients. MATERIALS AND METHODS One hundred forty-two patients (aged ≥65 years) with clinically-confirmed stage I-II NSCLC treated with SBRT from 2009 to 2020 were enrolled in the study. Primary end points included overall survival (OS), progression free survival (PFS), cumulative incidences of local failure (LF), regional failure (RF), distant failure (DF), and toxicity. A nomogram for OS was developed and validated internally using one thousand bootstrap resamplings. RESULTS The median times to LF, RF, and DF were 22.1 months, 26.9 months and 24.1 months, respectively. The 1-, 3-, and 5-year PFS rates from the start of SBRT were 79.4 %, 53.1 %, and 38.9 %, respectively. Performance status, pre-SBRT platelet to lymphocyte ratio (PLR), and planning tumor volume (PTV) were predictive of PFS. The 1-, 3-, and 5-year OS rates from the start of SBRT were 90.8 %, 67.9 % and 47.6 %, respectively. In multivariate analysis, good performance status, a low level of pre-SBRT PLR, and small tumor size were associated with better prognosis, all of which were included in the nomogram. The model showed optimal discrimination, with a C-index of 0.651 and good calibration. The most common adverse reactions were grade 1-2, such as anemia, cough, and fatigue. DISCUSSION SBRT is a reasonable treatment modality for early-stage NSCLC in older adults. It achieved good survival outcomes and low toxicity. The proposed nomogram may be able to estimate individual outcomes for these patients.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hua Huang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanrong Jiang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiasheng Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Ding
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhen Wang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangdong Sun
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
77
|
Covington EL, Popple RA. Technical and Quality Considerations for Stereotactic Radiation Treatment Techniques. Cancer J 2024; 30:372-376. [PMID: 39589468 DOI: 10.1097/ppo.0000000000000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
ABSTRACT Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT), collectively termed SRS-SBRT, are advanced treatment modalities delivering high doses of radiation in a single treatment or condensed treatment phase. Due to the small margins and steep dose gradient used in SRS-SBRT, the technical and safety considerations are more stringent than traditional radiation therapy and may include more advanced simulation, patient immobilization, treatment planning, and treatment delivery techniques. Respiratory motion management and intrafraction motion monitoring are often used during SRS-SBRT to ensure treatments are robust to both internal organ motion and patient movement during treatment. To ensure optimal treatment quality, SRS-SBRT programs should use multidisciplinary coordination of care to ensure patient-specific treatment strategies are used for optimal patient outcomes. Quality and safety considerations are presented, including peer review and external validation, for optimizing quality and adhering to national guidelines for stereotactic techniques.
Collapse
Affiliation(s)
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
78
|
Li G, Wang G, Wei W, Li Z, Xiao Q, He H, Luo D, Chen L, Li J, Zhang X, Song Y, Bai S. Cardiorespiratory motion characteristics and their dosimetric impact on cardiac stereotactic body radiotherapy. Med Phys 2024; 51:8551-8567. [PMID: 38994881 DOI: 10.1002/mp.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
79
|
Capaldi DPI, Skinner LB, Pinkham DW, Zavgorodni S, Stafford O, Shirmohammad M, Matney JE, Dubrowski P, De Jean P, Grafil EM, Yu AS. A multi-institutional trial evaluating the use of an integrated quality assurance phantom for frameless single-isocenter multitarget stereotactic radiosurgery. Front Oncol 2024; 14:1445166. [PMID: 39544300 PMCID: PMC11560902 DOI: 10.3389/fonc.2024.1445166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Background Brain radiosurgery treatments require multiple quality-assurance (QA) procedures to ensure accurate and precise treatment delivery of ablative doses. As single-isocenter multitarget radiosurgery treatments become more popular for treating patients with multiple brain metastases, quantifying off-axis accuracy of linear accelerators is crucial. In this study, we developed a novel brain radiosurgery integrated phantom and validated this phantom at multiple institutions to enable radiosurgery QA with a single phantom to facilitate implementation of a frameless single-isocenter, multitarget radiosurgery program. The phantom combines multiple independent verification system tests including the Winston-Lutz test, off-axis accuracy evaluation (i.e., off-axis Winston-Lutz), as well as dosimetric measurements utilizing both point dose and film measurement. Methods and materials A novel 3D-printed phantom, coined OneIso, was designed with a movable insert which can switch between Winston-Lutz test targets and dose measurement without moving the phantom itself. In total, four phantoms were printed, and eight institutions participated in this study, which included both Varian TrueBeam (n=6) and Elekta Versa (n=2) linear accelerators. For off-axis Winston-Lutz measurements, a row of off-axis ball-bearings (BBs) was integrated into the OneIso. To quantify the spatial accuracy versus distance from isocenter, two-dimensional displacements were calculated between the planned and delivered BB locations relative to their respective MLC-defined field borders. For dose verification, brain radiosurgery clinical treatment plans previously treated were delivered at multiple cancer centers (six of eight centers). Radiochromic film and pinpoint ion chamber comparison measurements were obtained with OneIso. Results Dose verification performed using the OneIso phantom across the different centers were all within on average 3% agreement, for both film and point-dose measurements. OneIso identified a reduction in spatial accuracy further away from isocenter for all eight radiosurgery machines. Differences increased as distance from isocenter increased, exceeding recommended radiosurgery accuracy tolerances (<1mm) at different distances for each machine (2-7cm), indicating that the tolerance is machine-dependent. Conclusion OneIso provides a streamlined, single-setup workflow for single-isocenter multitarget frameless linac-based radiosurgery QA that can be easily translated to multiple institutions. Additionally, quantifying off-axis spatial discrepancies allows for determination of the maximum distance between targets and iso that meet single-isocenter multitarget radiosurgery program recommendations.
Collapse
Affiliation(s)
- Dante P. I. Capaldi
- Department of Radiation Oncology, University of California, San Francisco (UCSF) Comprehensive Cancer Centre, San Francisco, CA, United States
| | - Lawrie B. Skinner
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Daniel W. Pinkham
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, United States
| | - Sergei Zavgorodni
- British Columbia Cancer Agency, Vancouver Island Centre, Victoria, BC, Canada
| | - Olga Stafford
- Department of Radiation Oncology, Alta Bates Summit Medical Center SutterHealth, Berkeley, CA, United States
| | - Maryam Shirmohammad
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Jason E. Matney
- Department of Radiation Oncology, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Piotr Dubrowski
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Paul De Jean
- Luca Medical Systems, Palo Alto, CA, United States
| | | | - Amy S. Yu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
80
|
Azadbakht J, Condos A, Haynor D, Gibbs WN, Jabehdar Maralani P, Sahgal A, Chao ST, Foote MC, Suh J, Chang EL, Guckenberger M, Mossa-Basha M, Lo SS. The Role of CT and MR Imaging in Stereotactic Body Radiotherapy of the Spine: From Patient Selection and Treatment Planning to Post-Treatment Monitoring. Cancers (Basel) 2024; 16:3692. [PMID: 39518130 PMCID: PMC11545634 DOI: 10.3390/cancers16213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Spine metastases (SMs) are common, arising in 70% of the cases of the most prevalent malignancies in males (prostate cancer) and females (breast cancer). Stereotactic body radiotherapy, or SBRT, has been incorporated into clinical treatment algorithms over the past decade. SBRT has shown promising rates of local control for oligometastatic spinal lesions with low radiation dose to adjacent critical tissues, particularly the spinal cord. Imaging is critically important in SBRT planning, guidance, and response monitoring. This paper reviews the roles of imaging in spine SBRT, including conventional and advanced imaging approaches for SM detection, treatment planning, and post-SBRT follow-up.
Collapse
Affiliation(s)
- Javid Azadbakht
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Condos
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David Haynor
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wende N. Gibbs
- Department of Radiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Samuel T. Chao
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthew C. Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD 4102, Australia
| | - John Suh
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric L. Chang
- Department of Radiation Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, 8091 Zürich, Switzerland
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
81
|
Van Werkhoven LA, Cammareri E, Hoogeman MS, Nout RA, Milder MTW, Nuyttens JJME. Stereotactic body radiation therapy on abdominal-pelvic lymph node oligometastases: a systematic review on toxicity. Acta Oncol 2024; 63:822-832. [PMID: 39473177 PMCID: PMC11541805 DOI: 10.2340/1651-226x.2024.40681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/05/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND AND PURPOSE To review available data on toxicity during and/or after treatment of abdominal-pelvic lymph node oligometastases (A-P LN) with stereotactic body radiation therapy (SBRT) and to provide an overview of adverse events and its relation to dose or fractionation. MATERIAL AND METHODS For this systematic review, we searched MEDLINE, Embase, Web of Science Core Collection, and CINAH for studies published between the database inception and October 3rd, 2023. Inclusion criteria were (1) patients with 1-5 A-P LN oligometastases, (2) treatment with SBRT to a median prescribed dose of ≥55 Gy BED10, and (3) description of acute and/or late toxicity. There were no language or date restrictions. RESULTS A total of 35 studies, including 1,512 patients, were selected. Late grade 3 and 4 adverse events occurred in 0.6% and 0.1% of the patients treated for A-P LN oligometastases. All late adverse events grade ≥ 3 occurred after treatment of the tumor with a minimum BED10 of 72 Gy. Of the 11 patients with severe late toxicity, five patients were re-irradiated. Late grade 2 and 1 toxicity was reported in 3.4% and 8.3% of the patients. Acute toxicity grades 4, 3, 2, and 1 occurred in 0.1%, 0.2%, 4.4%, and 19.8% of the patients, respectively. INTERPRETATION SBRT for A-P LN oligometastases show low toxicity rates. Nearly 50% of late adverse events ≥ grade 3 were associated with re-irradiation.
Collapse
Affiliation(s)
- Lucy A Van Werkhoven
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands.
| | - Eugenio Cammareri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Remi A Nout
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Maaike T W Milder
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| | - Joost J M E Nuyttens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, The Netherlands
| |
Collapse
|
82
|
Ladbury C, Sidiqi B, Cantrell N, Jones G, Skalina KA, Fekrmandi F, Andraos TY, Gogineni E, Dolan J, Siva S, Slotman B, Lee P. Stereotactic Body Radiation Therapy for Primary Lung Cancer and Metastases: A Case-Based Discussion on Challenging Cases. Pract Radiat Oncol 2024:S1879-8500(24)00275-3. [PMID: 39424129 DOI: 10.1016/j.prro.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Data informing the safety, efficacy, treatment logistics, and dosimetry of stereotactic body radiation therapy (SBRT) for lung tumors has primarily been derived from patients with favorably located solitary tumors. SBRT is now considered a standard-of-care treatment for inoperable early-stage non-small cell lung cancer and lung metastases, and therefore extrapolation beyond this limited foundational patient population remains an active source of interest. METHODS AND MATERIALS This case-based discussion provides a practical framework for delivering SBRT to challenging, yet frequently encountered, cases in radiation oncology. The cases highlighted herein include the use of SBRT for ultracentral tumors, multiple tumors, and reirradiation. Patient characteristics, fractionation, prescription dose, treatment technique, and dose constraints are discussed. Relevant literature to these cases is summarized to provide a framework for the treatment of similar patients. RESULTS Treatment of challenging cases with lung SBRT requires many considerations, including treatment intent, fractionation selection, tumor localization, and plan optimization. In such scenarios, patient selection is critical to understanding the risk-benefit profile of an SBRT approach despite significant advances in delivery techniques and safety. CONCLUSIONS A case-based discussion was developed by the Radiosurgery Society to provide a practical guide to the common challenging scenarios noted above affecting patients with lung tumors. A multidisciplinary approach should guide the treatment of such cases to maximize the therapeutic window.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Baho Sidiqi
- Department of Radiation Medicine, Northwell Health Cancer Institute, New Hyde Park, New York
| | - Nate Cantrell
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Gavin Jones
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Karin A Skalina
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Therese Y Andraos
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Jennifer Dolan
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victora, Australia
| | - Ben Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California; Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California.
| |
Collapse
|
83
|
Liu M, Liu M, Yang F, Liu Y, Wang S, Chen Y, Li J, Wang X, Orlandini LC. Impact of contrast-enhanced CT in the dosimetry of SBRT for liver metastases treated with MR-Linac. Radiat Oncol 2024; 19:144. [PMID: 39402595 PMCID: PMC11475857 DOI: 10.1186/s13014-024-02533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND To investigate the impact of using contrast-enhanced computed tomography (CHCT) in the dosimetry of stereotactic body radiation therapy (SBRT) for liver metastases treated with MR-Linac. METHODS A retrospective study was conducted on 21 liver cancer patients treated with SBRT (50 Gy in 5 fractions) using a 1.5 Tesla Unity MR-Linac. The clinical treatment plans optimised on plain computed tomography (pCT) were used as reference. The electronic density (ED) of regions of interest (ROIs) including the liver, duodenum, esophagus, spinal cord, heart, ribs, and lungs, from pCT and CHCT, was analysed. The average ED of each ROI from CHCT was used to generate synthetic CT (sCT) images by assigning the average ED value from the CHCT to the pCT. Clinical plans were recalculated on sCT images. Dosimetric comparisons between the original treatment plan (TPpCT) and the sCT plan (TPsCT) were performed using dose-volume histogram (DVH) parameters, and gamma analysis. RESULTS Significant ED differences (p < 0.05) were observed in the liver, great vessels, heart, lungs, and spinal cord between CHCT and pCT, with the lungs showing the largest differences (average deviation of 11.73% and 12.15% for the left and right lung, respectively). The target volume covered by the prescribed dose (VDpre), and the dose received by 2% and 98% of the volume (D2%, and D98%, respectively) showed statistical differences (p < 0.05), while the gradient index (GI) and the conformity index (CI) did not. Average deviations in target volume dosimetric parameters were below 1.02%, with a maximum deviation of 5.57% for. For the organs at risk (OARs), significant differences (p < 0.05) were observed for D0.35cc and D1.2cc of the spinal cord, D10cc for the stomach, D0.5cc for the heart, and D30% for the liver-GTV, with mean deviations lower than 1.83% for all the above OARs. Gamma analysis using 2%-2 mm criteria yielded a median value of 95.64% (range 82.22-99.65%) for the target volume and 99.40% (range 58-100%) for the OARs. CONCLUSION The findings suggest that the use of CHCT in the SBRT workflow for liver metastases may result in minor target volume overdosage, indicating its potential for adoption in clinical settings. However, its use should be further explored in a broader context and tied to personalized treatment approaches.
Collapse
Affiliation(s)
- Min Liu
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Mingzhe Liu
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, China.
- Department School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China.
| | - Feng Yang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Yanhua Liu
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, China
| | - Shoulong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Yazhen Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| |
Collapse
|
84
|
Ji X, Zhang A, Duan X, Wang Q. Stereotactic body radiotherapy versus lenvatinib for hepatocellular carcinoma with portal vein tumor thrombosis: a propensity matching score analysis. Radiat Oncol 2024; 19:143. [PMID: 39394613 PMCID: PMC11468427 DOI: 10.1186/s13014-024-02527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study was to investigate the survival benefit of Stereotactic Body Radiotherapy (SBRT) versus lenvatinib as first-line therapy in the treatment of hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT). MATERIALS AND METHODS 147 HCC patients with PVTT were included in this retrospective study, 70 were treated with SBRT and 77 of were treated with lenvatinib. Propensity score matching (PSM) analysis was employed to balance the differences in baseline characteristics between the two groups. Overall survival (OS), progression-free survival (PFS) and objective response rate (ORR) were compared between the two groups. In addition, the safety of patients in both groups was also evaluated. RESULTS After PSM, 38 patients were matched in each of the two groups. The median OS was 14.5 (95% CI: 10.1-18.9) and 11.1 (95% CI: 9.3-12.9) months in the SBRT and lenvatinib groups, respectively (P = 0.014). The median PFS was 6.8 (95% CI: 5.1-8.5) and 5.0 (95% CI: 3.0-7.0) months, respectively (P = 0.010). The 1-, 2-years OS rates in the two groups were 65.8% vs. 39.5% and 31.6% vs. 10.5%, respectively. The 6-, 12-months PFS rates in the two groups were 57.9% vs. 44.7% and 28.9% vs. 10.5%, respectively. In addition, the SBRT group had a better ORR than the lenvatinib group (52.6% vs. 23.7%, P = 0.009). Patients with good response to SBRT had better survival. Cox proportional hazard model showed that SBRT was an important prognostic factor for OS and PFS. The incidence of hypertension (34.2% vs. 0%) was higher in the LEN group, however, both treatment modalities were well tolerated in the two groups of patients. CONCLUSION In HCC patients with PVTT, SBRT had a better survival benefit than Lenvatinib treatment as first-line therapy.
Collapse
Affiliation(s)
- Xiaoquan Ji
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Aimin Zhang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
85
|
Zhang X, Yan D, Xiao H, Zhong R. Modeling of artificial intelligence-based respiratory motion prediction in MRI-guided radiotherapy: a review. Radiat Oncol 2024; 19:140. [PMID: 39380013 PMCID: PMC11463122 DOI: 10.1186/s13014-024-02532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The advancement of precision radiotherapy techniques, such as volumetric modulated arc therapy (VMAT), stereotactic body radiotherapy (SBRT), and particle therapy, highlights the importance of radiotherapy in the treatment of cancer, while also posing challenges for respiratory motion management in thoracic and abdominal tumors. MRI-guided radiotherapy (MRIgRT) stands out as state-of-art real-time respiratory motion management approach owing to the non-ionizing radiation nature and superior soft-tissue contrast characteristic of MR imaging. In clinical practice, MR imaging often operates at a frequency of 4 Hz, resulting in approximately a 300 ms system latency of MRIgRT. This system latency decreases the accuracy of respiratory motion management in MRIgRT. Artificial intelligence (AI)-based respiratory motion prediction has recently emerged as a promising solution to address the system latency issues in MRIgRT, particularly for advanced contour prediction and volumetric prediction. However, implementing AI-based respiratory motion prediction faces several challenges including the collection of training datasets, the selection of prediction methods, and the formulation of complex contour and volumetric prediction problems. This review presents modeling approaches of AI-based respiratory motion prediction in MRIgRT, and provides recommendations for achieving consistent and generalizable results in this field.
Collapse
Affiliation(s)
- Xiangbin Zhang
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Di Yan
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Haonan Xiao
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy, Jinan, China
| | - Renming Zhong
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
86
|
Duan W, Wu H, Zhu Y, Zhao G, Zhang C, Jiang J, Fan Z, Wang Z, Wang R. Dosimetric comparison of gamma knife and linear accelerator (VMAT and IMRT) plans of SBRT of Lung tumours. Sci Rep 2024; 14:22949. [PMID: 39363094 PMCID: PMC11450005 DOI: 10.1038/s41598-024-74397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
This study evaluates dosimetric differences in Stereotactic Body Radiation Therapy (SBRT) for lung tumors using plans of Gamma Knife, and Volumetric Modulated Arc Therapy (VMAT), Intensity-Modulated Radiation Therapy (IMRT) plans based on Linear Accelerator, aiming to inform the reader of appropriate treatment strategy selection. Ten patients with 23 lung tumor lesions treated with SBRT at Zhongshan Hospital of Dalian University were analyzed. Plans of Gamma Knife, and VMAT, IMRT plans based on Linear Accelerator were created for each lesion, totaling 18 plans per type. Lesions were treated with 30-50 Gy in 5-10 fractions. Dosimetric parameters, including gradient index (GI), heterogeneity index (HI), conformity index (CI), and doses to the plan target volumes (PTVs), the gross tumor volumes (GTVs) and organs at risk (OARs) were compared. Plans of Gamma Knife showed superior HI and GI, higher PTV and GTV doses, and reduced doses to the ipsilateral and contralateral lungs, esophagus, spinal cord, and heart compared to VMAT and IMRT plans (p < 0.05). However, Plans of Gamma Knife required longer delivery times. When comparing VMAT and IMRT plans, VMAT plans had shorter delivery times than IMRT plans, but required more monitor units (MUs). Additionally, IMRT plans delivered a lower mean dose to the ipsilateral lung compared to VMAT plans. Gamma Knife SBRT plans achieves steeper dose falloff and minimizes radiation to normal lung tissue compared to VMAT and IMRT plans, but with longer delivery times. VMAT and IMRT plans displayed similar dose distributions for lung SBRT.
Collapse
Affiliation(s)
- Wenyue Duan
- Department of Radiotherapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Huajian Wu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Yanmei Zhu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Genghao Zhao
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Chuanhao Zhang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- Graduate School of Dalian Medical University, Dalian, P. R. China
| | - Jianing Jiang
- Department of Radiotherapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Zhijun Fan
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China.
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China.
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China.
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China.
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, P. R. China.
- The Key Laboratory of Radioactive Particles and Thermal Precision Therapy, Dalian University, Dalian, P. R. China.
| |
Collapse
|
87
|
Lopez-Valcarcel M, Valcarcel FJ, Velasco J, Zapata I, Rodriguez R, Cardona J, Gil B, Cordoba S, Benlloch R, Hernandez M, Santana S, Gomez R, De la Fuente C, Garcia-Berrocal MI, Regueiro C, Romero J. Stereotactic ablative radiotherapy (SABR) for pelvic nodal oligorecurrence in prostate cancer. Rep Pract Oncol Radiother 2024; 29:445-453. [PMID: 39895963 PMCID: PMC11785391 DOI: 10.5603/rpor.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 02/04/2025] Open
Abstract
Background This study evaluated the clinical outcomes of stereotactic ablative radiotherapy (SABR) in the treatment of oligometastatic pelvic node prostate cancer to delay androgen deprivation therapy (ADT). Materials and methods Pelvic lymph node metastases were identified by 11C-choline positron emission tomography (PET)-computed tomography (CT), and patients were not receiving ADT. SABR was administered using linear accelerators with intensity-modulated and image-guided radiotherapy, at a prescribed dose of 35 Gy in 5 fractions over 2 weeks. Response was assessed using Response Evaluation Criteria in Solid Tumours (RECIST) v1.1 criteria, and prostate-specific antigen (PSA) levels were monitored post-SABR. Toxicity and quality of life were assessed by the Common Terminology Criteria for Adverse Events Toxicity (CTCAE) v.5.0 and European Organisation for Research and Treatment of Cancer (EORTC) quality of life questionnaires QLQ-C30/QLQ-PR25, respectively. Kaplan-Meier and T-test were used for statistical analysis. Results Between June 2015 and November 2023, 56 patients with 85 lesions were treated at our institution. Median follow-up was 30 months [95% confidence interval (CI): 24-33.6]. Prostatectomy was the radical treatment in 85.7% of patients, and radiotherapy in 14.3%. Response rates were 67.1% for complete response, 27.4% for partial response, and 1.4% for stable disease. In-field progression was observed in only 3 lesions (3.5%). The median time to biochemical relapse post-SABR was 15 months (95% CI: 11.4-18.6). Three-year pelvic nodal and distant progression-free survival were 62.5% and 80%, respectively. There was a significant decrease in PSA levels after SABR compared to pretreatment levels (0.77 vs. 2.16 ng/mL respectively, p = 0.001). No grade ≥ 2 genitourinary or gastrointestinal toxicities. The median global health status score was 83.33 points at both time points analysed. Conclusion SABR can delay the ADT and provide excellent local control while preserving quality of life.
Collapse
Affiliation(s)
- Marta Lopez-Valcarcel
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco J Valcarcel
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Joaquin Velasco
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Irma Zapata
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ruth Rodriguez
- Medical Physics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Jorge Cardona
- Department of Nuclear Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Beatriz Gil
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sofia Cordoba
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Raquel Benlloch
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Maria Hernandez
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sofia Santana
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ricardo Gomez
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cristina De la Fuente
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M Isabel Garcia-Berrocal
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Carlos Regueiro
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Jesus Romero
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
88
|
Botti A, Finocchiaro D, Panico N, Trojani V, Paolani G, Iori F, Sghedoni R, Cagni E, Lambertini D, Ciammella P, Iotti C, Iori M. LatticeOpt: An automatic tool for planning optimisation of spatially fractionated stereotactic body radiotherapy. Phys Med 2024; 126:104823. [PMID: 39332099 DOI: 10.1016/j.ejmp.2024.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE Lattice radiotherapy (LRT) is a three dimensional (3D) implementation of spatially fractionated radiation therapy, based on regular spatial distribution of high dose spheres (vertices) inside the target. Due to tumour shape heterogeneity, finding the best lattice arrangement is not trivial. The aim of this study was to develop the LatticeOpt tool to generate the best lattice structures on clinical cases for treatment planning. METHODS Developed in MATLAB, LatticeOpt finds the 3D-spatial configurations that maximize the number of vertices within the gross target volume (GTV). If organs at risk (OARs) are considered, it chooses the solution that minimizes the overlapping volume histograms (OVH). Otherwise, the lattice structure with the minimum Hausdorff distance between vertices and GTV boundary is chosen to avoid unpopulated regions. Different lattice structures were created for 20 patients, with (OVHopt) and without (OVHunopt) OVH minimization. Imported into TPS (Eclipse, Varian), corresponding plans were generated and evaluated in terms of OAR mean and maximum doses, GTV vertex coverage and dose gradients, as well as pre-clinical plan dosimetry. RESULTS Plans based on an optimized lattice structure (OVHopt, OVHunopt) had similar dose distributions in terms of vertex coverage and gradient index score. OAR sparing was observed in all patients, with a 4 % and 9 % difference for mean and max dose (both p-values <0.01), respectively. The best vertices dimensions and their relative distances were patient dependent. CONCLUSIONS LatticeOpt was able to reduce the time-consuming procedures of LRT, as well as to achieve standardized and reproducible results, useful for multicentre studies.
Collapse
Affiliation(s)
- Andrea Botti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy.
| | - Domenico Finocchiaro
- Azienda Ospedaliero-Universitaria di Modena, Medical Physics Unit, Modena, Italy
| | - Nicola Panico
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Valeria Trojani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Giulia Paolani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Federico Iori
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Roberto Sghedoni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Elisabetta Cagni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Daniele Lambertini
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Patrizia Ciammella
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Cinzia Iotti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Mauro Iori
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| |
Collapse
|
89
|
Tubin S, Ashdown ML, Ahmed MM, Guha C, Salerno G, Celedin B, Trummer B, Demschar S, Raunik W. Novel time-synchronized immune-guided partial tumor irradiation: Proof of principle trial. Radiother Oncol 2024; 199:110442. [PMID: 39069088 DOI: 10.1016/j.radonc.2024.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Radiotherapy for bulky tumors often results in palliation with suboptimal outcomes. The prognosis is worsened by immunosuppression caused by radio-chemotherapy, negatively impacting on survival. Novel Partial Tumor Irradiation (PTI) was designed to spare the Peritumoral Immune Microenvironment (PIM) and to be delivered synchronously with immune activity peaks, thus enhancing both local and distant tumor control through immunostimulation. MATERIALS AND METHODS Present proof-of-principle trial enrolled 26 patients with bulky tumors, comparing outcomes between treatments administered at immune activity peaks versus troughs. The primary endpoint was local-bystander and distal-abscopal response-rate. Secondary endpoints included overall-, progression-free-, cancer-specific survival, neoadjuvant and immunomodulatory potential. RESULTS All measured outcomes were significantly influenced by treatment-timing. The bystander and abscopal response rates were 77% and 41%, respectively. PTI significantly upregulated pro-inflammatory and cell-death-inducing pathways improving the efficacy of radiotherapy by highly complex tumors. CONCLUSIONS This study highlights the profound impact PTI can have on a highly palliative patient cohort previously deemed beyond therapeutic hope. With 41 % of these patients still alive after a median follow-up of 50 months, PTI offers a potential lifeline for those facing advanced, treatment-resistant cancers. This approach generated also distant immunogenic anti-tumor responses, offering a promising new avenue for the treatment of advanced cancers.
Collapse
Affiliation(s)
- S Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States.
| | - M L Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3010, Melbourne, Australia
| | - M M Ahmed
- Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States
| | - C Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - G Salerno
- Department of Neurosciences, Mental Health and Sensory Organs / Department of Clinical and Molecular Medicine, Universita' La Sapienza Roma, Ospedale Sant' Andrea, Via di Grottarossa, 1035 00189, Rome, RM, Italy.
| | - B Celedin
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| | - B Trummer
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - S Demschar
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - W Raunik
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| |
Collapse
|
90
|
Jaramillo-Jiménez E, Sandoval-Barrios J, Walsh FJ, Jaramillo-Jiménez MC, Echeverri-Sánchez JD, Rodríguez-Márquez IA, Barrientos-Montoya HD, Ascencio-Lancheros JL, Giraldo-Palacio JF, Sierra-Arrieta IM, Gómez-Duque DI, Pérez-López S, Bustamante MT. Epileptic encephalopathies secondary to hypothalamic hamartomas treated with radiosurgery: A case series. Epileptic Disord 2024; 26:581-590. [PMID: 38804823 DOI: 10.1002/epd2.20246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Hypothalamic hamartomas are congenital lesions that typically present with gelastic seizures, refractory epilepsy, neurodevelopmental delay, and severe cognitive impairment. Surgical procedures have been reported to be effective in removing the hamartomas, however, they are associated with significant morbidity. Therefore, it is not considered a safe therapeutic modality. Image-guided robotic radiosurgery (CyberKnife® Radiosurgery System) has been shown to provide good outcomes without lasting complications. METHODS This series of cases describes the clinical, radiological, radiotherapeutic, and postsurgical outcomes of five patients with epileptic encephalopathies secondary to hypothalamic hamartomas who were treated with CyberKnife®. RESULTS All patients exhibited refractory epilepsy with gelastic seizures and were unsuitable candidates for surgical resection The prescribed dose ranged between 16 and 25 Gy, delivered in a single fraction for four patients and five fractions for one patient while adhering strictly to visual pathway constraints. After radiosurgery, four patients maintained seizure control (one with an Engel class Ia, three with an Engel class 1d), and another presented sporadic, nondisabling gelastic seizures (with an Engel class IIa). After 24-26 months of follow-up, in three patients, their intelligence quotient scores increased. No complications were reported. SIGNIFICANCE This report suggests that Cyberknife may be a good option for treating hypothalamic hamartoma, particularly in cases where other noninvasive alternatives are unavailable. Nevertheless, additional studies are essential in order to evaluate the effectiveness of the technique in these cases.
Collapse
Affiliation(s)
| | | | - Fergus John Walsh
- School of Medicine, College of Health & Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Benali K, Zei PC, Lloyd M, Kautzner J, Guenancia C, Ninni S, Rigal L, Simon A, Bellec J, Vlachos K, Sacher F, Hammache N, Sellal JM, de Crevoisier R, Da Costa A, Martins R. One-year mortality and causes of death after stereotactic radiation therapy for refractory ventricular arrhythmias: A systematic review and pooled analysis. Trends Cardiovasc Med 2024; 34:488-496. [PMID: 38191005 DOI: 10.1016/j.tcm.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Patients treated with cardiac stereotactic body radiation therapy (radioablation) for refractory ventricular arrhythmias are patients with advanced structural heart disease and significant comorbidities. However, data regarding 1-year mortality after the procedure are scarce. This systematic review and pooled analysis aimed at determining 1-year mortality after cardiac radioablation for refractory ventricular arrhythmias and investigating leading causes of death in this population. MEDLINE/EMBASE databases were searched up to January 2023 for studies including patients undergoing cardiac radioablation for the treatment of refractory ventricular arrhythmias. Quality of included trials was assessed using the NIH Tool for Case Series Studies (PROSPERO CRD42022379713). A total of 1,151 references were retrieved and evaluated for relevance. Data were extracted from 16 studies, with a total of 157 patients undergoing cardiac radioablation for refractory ventricular arrhythmias. Pooled 1-year mortality was 32 % (95 %CI: 23-41), with almost half of the deaths occurring within three months after treatment. Among the 157 patients, 46 died within the year following cardiac radioablation. Worsening heart failure appeared to be the leading cause of death (52 %), although non-cardiac mortality remained substantial (41 %) in this population. Age≥70yo was associated with a significantly higher 12-month all-cause mortality (p<0.022). Neither target volume size nor radiotherapy device appeared to be associated with 1-year mortality (p = 0.465 and p = 0.199, respectively). About one-third of patients undergoing cardiac stereotactic body radiation therapy for refractory ventricular arrhythmias die within the first year after the procedure. Worsening heart failure appears to be the leading cause of death in this population.
Collapse
Affiliation(s)
- Karim Benali
- Section of Cardiac Electrophysiology, Saint-Etienne University, Saint-Etienne, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Bordeaux, France; INSERM-LTSI, U1099 Rennes, France.
| | - Paul C Zei
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, United States
| | - Michael Lloyd
- Section of Cardiac Electrophysiology, Emory University, Atlanta, United States
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Charles Guenancia
- Section of Cardiac Electrophysiology, Dijon University, Dijon, France
| | - Sandro Ninni
- Heart and Lung Institute, Lille University, Lille, France
| | | | | | - Julien Bellec
- Department of Radiation Oncology, Centre Eugène Marquis, Rennes, France
| | | | - Frederic Sacher
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Bordeaux, France
| | - Nefissa Hammache
- Section of Cardiac Electrophysiology, Nancy University, Nancy, France
| | - Jean-Marc Sellal
- Section of Cardiac Electrophysiology, Nancy University, Nancy, France
| | | | - Antoine Da Costa
- Section of Cardiac Electrophysiology, Saint-Etienne University, Saint-Etienne, France
| | - Raphael Martins
- INSERM-LTSI, U1099 Rennes, France; Section of Cardiac Electrophysiology, Rennes University, Rennes, France
| |
Collapse
|
92
|
Salahuddin S, Buzdar SA, Iqbal K, Azam MA, Aslam M, Altaf S, Ikhlaq A, Mustafa MU, Strigari L. Quality assurance for cancer patient safety: Clinical assessment for precise angles in linac during radiation therapy. TUMORI JOURNAL 2024; 110:366-374. [PMID: 39096026 DOI: 10.1177/03008916241261450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PURPOSE Quality assurance for stereotactic body radiation treatment requires that isocentric verification be ensured during gantry rotation at various angles. This study examined statistical parameters on Winston-Lutz tests to distinguish the deviation of angles from isocenter during gantry rotation using machine learning. METHOD The Varian TrueBeam linac was aligned with the marked lines on the Ruby phantom. Eight images were captured while the gantry was rotating at a 45° shift. The statistical features were derived from IsoCheck EPID software. The decision tree model was applied to these Winston-Lutz tests to cluster data into two groups: precise and error angles. RESULTS At 90° and 270° angles, the gantry exhibits isocentric stability compared to other angles. In these angles, the most statistical features were inside the range. Most variations were observed at 0° and 180° angles. In most tests, the angles 45°, 135°, 225°, and 315° showed reasonable performance and with less variation. CONCLUSION The comprehensive statistical analyses for gantry rotation of angles assists expert radiotherapists in determining the contribution of each feature that highly affects gantry movement at specific angles. Misalignment between radiation isocenter and imaging isocenter, tuning of the beam at each angle, or a slight change in the position of the Ruby phantom can further improve the inaccuracy that causes the most variations. Better precision can effectively increase patient safety and quality during cancer treatment.
Collapse
Affiliation(s)
- Sana Salahuddin
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | | | - Khalid Iqbal
- Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Muhammad Adeel Azam
- Department of Advanced Robotics, Italian Institute of Technology (IIT), Genova, Italy
| | - Mamona Aslam
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | - Saima Altaf
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | - Ayesha Ikhlaq
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | | | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| |
Collapse
|
93
|
McCullum L, Mulder S, West N, Aghoghovbia R, Ali AMS, Scott H, Salzillo TC, Ding Y, Dresner A, Subashi E, Ma D, Stafford RJ, Hwang KP, Fuller CD. Technical Development and In Silico Implementation of SyntheticMR in Head and Neck Adaptive Radiation Therapy: A Prospective R-IDEAL Stage 0/1 Technology Development Report. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.29.24312591. [PMID: 39252894 PMCID: PMC11383512 DOI: 10.1101/2024.08.29.24312591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Objective The purpose of this study was to investigate the technical feasibility of integrating the quantitative maps available from SyntheticMR into the head and neck adaptive radiation oncology workflow. While SyntheticMR has been investigated for diagnostic applications, no studies have investigated its feasibility and potential for MR-Simulation or MR-Linac workflow. Demonstrating the feasibility of using this technique will facilitate rapid quantitative biomarker extraction which can be leveraged to guide adaptive radiation therapy decision making. Approach Two phantoms, two healthy volunteers, and one patient were scanned using SyntheticMR on the MR-Simulation and MR-Linac devices with scan times between four to six minutes. Images in phantoms and volunteers were conducted in a test/retest protocol. The correlation between measured and reference quantitative T1, T2, and PD values were determined across clinical ranges in the phantom. Distortion was also studied. Contours of head and neck organs-at-risk (OAR) were drawn and applied to extract T1, T2, and PD. These values were plotted against each other, clusters were computed, and their separability significance was determined to evaluate SyntheticMR for differentiating tumor and normal tissue. Main Results The Lin's Concordance Correlation Coefficient between the measured and phantom reference values was above 0.98 for both the MR-Sim and MR-Linac. No significant levels of distortion were measured. The mean bias between the measured and phantom reference values across repeated scans was below 4% for T1, 7% for T2, and 4% for PD for both the MR-Sim and MR-Linac. For T1 vs. T2 and T1 vs. PD, the GTV contour exhibited perfect purity against neighboring OARs while being 0.7 for T2 vs. PD. All cluster significance levels between the GTV and the nearest OAR, the tongue, using the SigClust method was p < 0.001. Significance The technical feasibility of SyntheticMR was confirmed. Application of this technique to the head and neck adaptive radiation therapy workflow can enrich the current quantitative biomarker landscape.
Collapse
Affiliation(s)
- Lucas McCullum
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Mulder
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie West
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alaa Mohamed Shawky Ali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hayden Scott
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis C. Salzillo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Ding
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Dresner
- Philips Healthcare MR Oncology, Cleveland, Ohio, USA
| | - Ergys Subashi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
94
|
Ikawa T, Kanayama N, Arita H, Takano K, Sakai M, Morimoto M, Tanaka K, Yoshino Y, Tamenaga S, Konishi K. Multifraction stereotactic radiotherapy utilizing inhomogeneous dose distribution for brainstem metastases: a single-center retrospective analysis. JOURNAL OF RADIATION RESEARCH 2024; 65:658-666. [PMID: 39154372 PMCID: PMC11420839 DOI: 10.1093/jrr/rrae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Indexed: 08/20/2024]
Abstract
Brainstem metastases are challenging to manage owing to the critical neurological structures involved. Although stereotactic radiotherapy (SRT) offers targeted high doses while minimizing damage to adjacent normal tissues, the optimal dose fractionation remains undefined. This study evaluated the efficacy and safety of multifraction SRT with an inhomogeneous dose distribution. This retrospective study included 31 patients who underwent 33 treatments for 35 brainstem lesions using linear accelerator-based multifraction SRT (30 Gy in five fractions, 35 Gy in five fractions or 42 Gy in 10 fractions) with an inhomogeneous dose distribution (median isodose, 51.9%). The outcomes of interest were local failure, toxicity and symptomatic failure. The median follow-up time after brainstem SRT for a lesion was 18.6 months (interquartile range, 10.0-24.3 months; range, 1.8-39.0 months). Grade 2 toxicities were observed in two lesions, and local failure occurred in three lesions. No grade 3 or higher toxicities were observed. The 1-year local and symptomatic failure rates were 8.8 and 16.7%, respectively. Toxicity was observed in two of seven treatments with a gross tumor volume (GTV) greater than 1 cc, whereas no toxicity was observed in treatments with a GTV less than 1 cc. No clear association was observed between the biologically effective dose of the maximum brainstem dose and the occurrence of toxicity. Our findings indicate that multifraction SRT with an inhomogeneous dose distribution offers a favorable balance between local control and toxicity in brainstem metastases. Larger multicenter studies are needed to validate these results and determine the optimal dose fractionation.
Collapse
Affiliation(s)
- Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Koji Takano
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Mio Sakai
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Masahiro Morimoto
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Kazunori Tanaka
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yutaro Yoshino
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Setsuo Tamenaga
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
95
|
Wei TN, Lin JF, Cheng MC, Yeh HL. Stereotactic body radiotherapy using CyberKnife versus interstitial brachytherapy in accelerated partial breast irradiation on left-sided breast: A comparison of dosimetric characteristics and preliminary clinical results. Breast 2024; 78:103796. [PMID: 39243564 PMCID: PMC11406443 DOI: 10.1016/j.breast.2024.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION We compared the dosimetric characteristics of the target and organs at risk (OARs) as well as the preliminary clinical outcomes between two accelerated partial breast irradiation (APBI) techniques. METHODS Forty-four patients diagnosed with left-sided early breast cancer who underwent APBI using either interstitial brachytherapy (IB) or stereotactic body radiation therapy (SBRT) with CyberKnife (CK) were retrospectively reviewed. The dosimetric parameters of the target and OARs were compared. Preliminary clinical outcomes, including tumor control and acute toxicity, were analyzed. RESULTS Treatment plans with CK demonstrated a better cardiac dose-sparing effect. Radiation doses to the heart at V150cGy for the CK and IB groups were 24.4 % and 60.4 %, respectively (p < 0.001), while the mean heart doses for the CK and IB groups were 107.4 cGy and 204 cGy, respectively (p < 0.001). The heart D1c.c. and the ipsilateral lung received a lower dose in the IB group, without any significant differences. The median follow-up time in the CK and IB groups was 28.6 and 61.3 months, respectively. No patients died from either breast cancer or cardiac events during follow-up. A locoregional recurrence event at the neck occurred in one patient within the IB group. CONCLUSIONS APBI planned by CK was shown to have a better dose-sparing effect on the heart, as well as better conformity and homogeneity to the target. CK is a non-invasive treatment which showed minimal acute toxicity and promising tumor control.
Collapse
Affiliation(s)
- Ting-Na Wei
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Fu Lin
- Division of Radiation Physics, Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chun Cheng
- Division of Radiation Physics, Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hui-Ling Yeh
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
96
|
Xin X, Tang B, Wu F, Lang J, Li J, Wang X, Liu M, Zhang Q, Liao X, Yang F, Orlandini LC. Dose tracking assessment for magnetic resonance guided adaptive radiotherapy of rectal cancers. Radiat Oncol 2024; 19:114. [PMID: 39218934 PMCID: PMC11367860 DOI: 10.1186/s13014-024-02508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) at MR-Linac allows for plan optimisation on the MR-based synthetic CT (sCT) images, adjusting the target and organs at risk according to the patient's daily anatomy. Conversely, conventional linac image-guided radiotherapy (IGRT) involves rigid realignment of regions of interest to the daily anatomy, followed by the delivery of the reference computed tomography (CT) plan. This study aims to evaluate the effectiveness of MRgART versus IGRT for rectal cancer patients undergoing short-course radiotherapy, while also assessing the dose accumulation process to support the findings and determine its usefulness in enhancing treatment accuracy. METHODS Nineteen rectal cancer patients treated with a 1.5 Tesla MR-Linac with a prescription dose of 25 Gy (5 Gy x 5) and undergoing daily adapted radiotherapy by plan optimization based on online MR-based sCT images, were included in this retrospective study. For each adapted plan ([Formula: see text]), a second plan ([Formula: see text]) was generated by recalculating the reference CT plan on the daily MR-based sCT images after rigid registration with the reference CT images to simulate the IGRT workflow. Dosimetry of [Formula: see text] and[Formula: see text]was compared for each fraction. Cumulative doses on the first and last fractions were evaluated for both workflows. The dosimetry per single fraction and the cumulative doses were compared using dose-volume histogram parameters. RESULTS Ninety-five fractions delivered with MRgART were compared to corresponding simulated IGRT fractions. All MRgART fractions fulfilled the target clinical requirements. IGRT treatments did not meet the expected target coverage for 63 out of 94 fractions (67.0%), with 13 fractions showing a V95 median point percentage decrease of 2.78% (range, 1.65-4.16%), and 55 fractions exceeding the V107% threshold with a median value of 15.4 cc (range, 6.0-43.8 cc). For the bladder, the median [Formula: see text] values were 18.18 Gy for the adaptive fractions and 19.60 Gy for the IGRT fractions. Similarly the median [Formula: see text] values for the small bowel were 23.40 Gy and 25.69 Gy, respectively. No statistically significant differences were observed in the doses accumulated on the first or last fraction for the adaptive workflow, with results consistent with the single adaptive fractions. In contrast, accumulated doses in the IGRT workflow showed significant variations mitigating the high dose constraint, nevertheless, more than half of the patients still did not meet clinical requirements. CONCLUSIONS MRgART for short-course rectal cancer treatments ensures that the dose delivered matches each fraction of the planned dose and the results are confirmed by the dose accumulation process, which therefore seems redundant. In contrast, IGRT may lead to target dose discrepancies and non-compliance with organs at risk constraints and dose accumulation can still highlight notable dosimetric differences.
Collapse
Affiliation(s)
- Xin Xin
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China.
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Qingxian Zhang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Feng Yang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| |
Collapse
|
97
|
Ehret F, Rueß D, Blanck O, Fichte S, Chatzikonstantinou G, Wolff R, Mose L, Mose S, Fortmann T, Lehrke R, Turna M, Caglar HB, Mortasawi F, Bleif M, Krug D, Ruge MI, Fürweger C, Muacevic A. Stereotactic radiosurgery and radiotherapy for brainstem metastases: An international multicenter analysis. Int J Cancer 2024; 155:916-924. [PMID: 38720427 DOI: 10.1002/ijc.34980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 07/06/2024]
Abstract
Brainstem metastases (BSM) present a significant neuro-oncological challenge, resulting in profound neurological deficits and poor survival outcomes. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) offer promising therapeutic avenues for BSM despite their precarious location. This international multicenter study investigates the efficacy and safety of SRS and FSRT in 136 patients with 144 BSM treated at nine institutions from 2005 to 2022. The median radiographic and clinical follow-up periods were 6.8 and 9.4 months, respectively. Predominantly, patients with BSM were managed with SRS (69.4%). The median prescription dose and isodose line for SRS were 18 Gy and 65%, respectively, while for FSRT, the median prescription dose was 21 Gy with a median isodose line of 70%. The 12-, 24-, and 36-month local control (LC) rates were 82.9%, 71.4%, and 61.2%, respectively. Corresponding overall survival rates at these time points were 61.1%, 34.7%, and 19.3%. In the multivariable Cox regression analysis for LC, only the minimum biologically effective dose was significantly associated with LC, favoring higher doses for improved control (in Gy, hazard ratio [HR]: 0.86, p < .01). Regarding overall survival, good performance status (Karnofsky performance status, ≥90%; HR: 0.43, p < .01) and prior whole brain radiotherapy (HR: 2.52, p < .01) emerged as associated factors. In 14 BSM (9.7%), treatment-related adverse events were noted, with a total of five (3.4%) radiation necrosis. SRS and FSRT for BSM exhibit efficacy and safety, making them suitable treatment options for affected patients.
Collapse
Affiliation(s)
- Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- European Radiosurgery Center Munich, Munich, Germany
| | - Daniel Rueß
- Department of Stereotactic and Functional Neurosurgery, Centre of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Hospital Schleswig-Holstein and Saphir Radiosurgery Center Northern Germany, Kiel, Germany
| | | | - Georgios Chatzikonstantinou
- Department of Radiation Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Robert Wolff
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt and Saphir Radiosurgery Center, Frankfurt am Main, Germany
| | - Lucas Mose
- Department of Radiation Oncology, Inselspital, University of Bern, Bern, Switzerland
| | - Stephan Mose
- Department of Radiation Oncology, Schwarzwald-Baar Klinikum, Villingen-Schwenningen, Germany
| | | | | | - Menekse Turna
- Department of Radiation Oncology, Anadolu Medical Center, Gebze, Turkey
| | - Hale Basak Caglar
- Department of Radiation Oncology, Anadolu Medical Center, Gebze, Turkey
| | | | - Martin Bleif
- RadioChirurgicum, CyberKnife Südwest, Göppingen, Germany
| | - David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein and Saphir Radiosurgery Center Northern Germany, Kiel, Germany
| | - Maximilian I Ruge
- Department of Stereotactic and Functional Neurosurgery, Centre of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Christoph Fürweger
- European Radiosurgery Center Munich, Munich, Germany
- Department of Stereotactic and Functional Neurosurgery, Centre of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
98
|
Sagawa T, Ikawa T, Ohira S, Kanayama N, Ueda Y, Inui S, Miyazaki M, Konishi K. What is the optimal isodose line for stereotactic radiotherapy for single brain metastases using HyperArc? J Appl Clin Med Phys 2024; 25:e14408. [PMID: 38863310 PMCID: PMC11492347 DOI: 10.1002/acm2.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE The study aimed to investigate the optimal isodose line (IDL) in linear accelerator-based stereotactic radiotherapy for single brain metastasis, using HyperArc. We compared the dosimetric parameters for target and normal brain tissue among six plans with different IDLs. METHODS This study included 30 patients with single brain metastasis. We retrospectively generated six plans for each tumor with different IDLs (80%, 70%, 60%, 50%, 40%, and 33%) using HyperArc. All treatment plans were normalized to the prescription dose of 35 Gy in five fractions which was covered by 95% of the planning target volume (PTV), defined by adding a 1.0 mm margin to the gross tumor volume (GTV). The dosimetric parameters were compared among the six plans. RESULTS For GTV > 0.1 cm3, the ratio of brain-GTV volumes receiving 25 Gy to PTV (V25Gy/PTV) was significantly lower at IDL 40%-70% than at IDL 80% and 33% (p < 0.01, retrospectively). For GTV < 0.1 cm3, V25Gy/PTV decreased continuously as IDL decreased. The values of D99% and D80% for GTV increased with decreasing IDL. An IDL of 50% or less was required to achieve D99% of greater than 43 Gy and D80% of greater than 50 Gy. The mean values of D99% and D80% for IDL 50% were 44.3 and 51.9 Gy. CONCLUSION The optimal IDL is 40%-50% for GTV > 0.1 cm3. These lower IDLs could increase D99% and D80% of GTV while lowering V25Gy of normal brain tissue, which may help reduce the risk of radiation necrosis and improve local control.
Collapse
Affiliation(s)
- Tomohiro Sagawa
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Toshiki Ikawa
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Shingo Ohira
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Naoyuki Kanayama
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Ueda
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Shoki Inui
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Masayoshi Miyazaki
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Koji Konishi
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| |
Collapse
|
99
|
Xue X, Luan S, Ding Y, Li X, Li D, Wang J, Ma C, Jiang M, Wei W, Wang X. Treatment plan complexity quantification for predicting gamma passing rates in patient-specific quality assurance for stereotactic volumetric modulated arc therapy. J Appl Clin Med Phys 2024; 25:e14432. [PMID: 38889335 PMCID: PMC11492345 DOI: 10.1002/acm2.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE To investigate the beam complexity of stereotactic Volumetric Modulated Arc Therapy (VMAT) plans quantitively and predict gamma passing rates (GPRs) using machine learning. METHODS The entire dataset is exclusively made of stereotactic VMAT plans (301 plans with 594 beams) from Varian Edge LINAC. The GPRs were analyzed using Varian's portal dosimetry with 2%/2 mm criteria. A total of 27 metrics were calculated to investigate the correlation between metrics and GPRs. Random forest and gradient boosting models were developed and trained to predict the GPRs based on the extracted complexity features. The threshold values of complexity metric were obtained to predict a given beam to pass or fail from ROC curve analysis. RESULTS The three moderately significant values of Spearman's rank correlation to GPRs were 0.508 (p < 0.001), 0.445 (p < 0.001), and -0.416 (p < 0.001) for proposed metric LAAM, the ratio of the average aperture area over jaw area (AAJA) and index of modulation, respectively. The random forest method achieved 98.74% prediction accuracy with mean absolute error of 1.23% using five-fold cross-validation, and 98.71% with 1.25% for gradient boosting regressor method, respectively. LAAM, leaf travelling distance (LT), AAJA, LT modulation complexity score (LTMCS) and index of modulation, were the top five most important complexity features. The LAAM metric showed the best performance with AUC value of 0.801, and threshold value of 0.365. CONCLUSIONS The calculated metrics were effective in quantifying the complexity of stereotactic VMAT plans. We have demonstrated that the GPRs could be accurately predicted using machine learning methods based on extracted complexity metrics. The quantification of complexity and machine learning methods have the potential to improve stereotactic treatment planning and identify the failure of QA results promptly.
Collapse
Affiliation(s)
- Xudong Xue
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shunyao Luan
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Optoelectronic EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Yi Ding
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangbin Li
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Li
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingya Wang
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chi Ma
- Department of Radiation OncologyRutgers‐Cancer Institute of New JerseyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Man Jiang
- Department of Nuclear Engineering and TechnologySchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Wei Wei
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao Wang
- Department of Radiation OncologyRutgers‐Cancer Institute of New JerseyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| |
Collapse
|
100
|
Gieger TL, Magestro L, Walz J, Yoshikawa H, Nolan MW. Outcomes of Stereotactic Radiation Therapy Versus Fractionated Radiation Therapy in 44 Dogs With Pituitary Masses: A Multi-Institutional Retrospective Study (2016-2022). Vet Comp Oncol 2024; 22:429-436. [PMID: 38890790 DOI: 10.1111/vco.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Although canine pituitary masses (PM) are increasingly treated with stereotactic radiotherapy (SRT), historical literature supports superior outcomes with conventional full-course fractionated radiation therapy (FRT). A multi-institutional retrospective study was performed, including dogs with PM treated from 2016 to 2022 with SRT (total dose 30 or 35 Gy in 5 daily fractions) or FRT (total dose 50-54 Gy in 19-20 daily fractions). The influence of potential prognostic/predictive factors was assessed, including pituitary: brain height, pituitary: brain volume, sex, age and endocrine status (functional [F] vs. nonfunctional [NF] PM). Forty-four dogs with PM were included (26 F, 14 NF, 4 unknown). All patients completed protocols as scheduled (SRT = 27, FRT = 17) and two dogs had suspected Grade 1 acute neurotoxicity. During the first 6 months after RT, 5/27 (19%) dogs treated with SRT (4 F, 1 NF) and 3/17 (18%) dogs treated with FRT (all F) died or were euthanised because of progressive neurologic signs. The overall median survival time was 608 days (95% CI, 375-840 days). Young age at the time of treatment was significant for survival (p = 0.0288); the overall median survival time was 753 days for dogs <9 years of age (95% CI, 614-892 days) and 445 days for dogs ≥9 years of age (95% CI, 183-707 days). Survival time was not associated with treatment type or any other factor assessed herein. A prospective study using standardised protocols would further validate the results of the present study and potentially elucidate the predictors of early death.
Collapse
Affiliation(s)
- Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Leanne Magestro
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Jillian Walz
- Angell Memorial Animal Medical Center, Boston, Massachusetts, USA
| | - Hiroto Yoshikawa
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|