51
|
Lundregan SL, Niskanen AK, Muff S, Holand H, Kvalnes T, Ringsby T, Husby A, Jensen H. Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge. Mol Ecol 2020; 29:3812-3829. [DOI: 10.1111/mec.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah L. Lundregan
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Stefanie Muff
- Centre for Biodiversity Dynamics Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thor‐Harald Ringsby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Evolutionary Biology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
52
|
Consistent scaling of inbreeding depression in space and time in a house sparrow metapopulation. Proc Natl Acad Sci U S A 2020; 117:14584-14592. [PMID: 32513746 DOI: 10.1073/pnas.1909599117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.
Collapse
|
53
|
Lamichhaney S, Han F, Webster MT, Grant BR, Grant PR, Andersson L. Female-biased gene flow between two species of Darwin’s finches. Nat Ecol Evol 2020; 4:979-986. [DOI: 10.1038/s41559-020-1183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
|
54
|
Chaturvedi S, Lucas LK, Buerkle CA, Fordyce JA, Forister ML, Nice CC, Gompert Z. Recent hybrids recapitulate ancient hybrid outcomes. Nat Commun 2020; 11:2179. [PMID: 32358487 PMCID: PMC7195404 DOI: 10.1038/s41467-020-15641-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Ecology Center, Utah State University, Logan, UT, 84322, USA
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - James A Fordyce
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Chris C Nice
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.
- Ecology Center, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
55
|
Hanson HE, Mathews NS, Hauber ME, Martin LB. The house sparrow in the service of basic and applied biology. eLife 2020; 9:e52803. [PMID: 32343224 PMCID: PMC7189751 DOI: 10.7554/elife.52803] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
From the northernmost tip of Scandinavia to the southernmost corner of Patagonia, and across six continents, house sparrows (Passer domesticus) inhabit most human-modified habitats of the globe. With over 7,000 articles published, the species has become a workhorse for not only the study of self-urbanized wildlife, but also for understanding life history and body size evolution, sexual selection and many other biological phenomena. Traditionally, house sparrows were studied for their adaptations to local biotic and climatic conditions, but more recently, the species has come to serve as a focus for studies seeking to reveal the genomic, epigenetic and physiological underpinnings of success among invasive vertebrate species. Here, we review the natural history of house sparrows, highlight what the study of these birds has meant to bioscience generally, and describe the many resources available for future work on this species.
Collapse
Affiliation(s)
- Haley E Hanson
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Noreen S Mathews
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Mark E Hauber
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Lynn B Martin
- Global and Planetary Health, University of South FloridaTampaUnited States
| |
Collapse
|
56
|
Li J, Milne RI, Ru D, Miao J, Tao W, Zhang L, Xu J, Liu J, Mao K. Allopatric divergence and hybridization withinCupressus chengiana(Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Mol Ecol 2020; 29:1250-1266. [DOI: 10.1111/mec.15407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| | - Dafu Ru
- State Key Laboratory of Grassland Agro‐Ecosystem Institute of Innovation Ecology Lanzhou University Lanzhou China
| | - Jibin Miao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Wenjing Tao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Lei Zhang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Jingjing Xu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Jianquan Liu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Kangshan Mao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| |
Collapse
|
57
|
Springer A, Gompert Z. Species collisions, admixture, and the genesis of biodiversity in poison frogs. Mol Ecol 2020; 29:1937-1940. [DOI: 10.1111/mec.15402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Amy Springer
- Department of Biology Utah State University Logan UT USA
| | - Zachariah Gompert
- Department of Biology Utah State University Logan UT USA
- Ecology Center Utah State University Logan UT USA
| |
Collapse
|
58
|
Sun YQ, Zhao W, Xu CQ, Xu Y, El-Kassaby YA, De La Torre AR, Mao JF. Genetic Variation Related to High Elevation Adaptation Revealed by Common Garden Experiments in Pinus yunnanensis. Front Genet 2020; 10:1405. [PMID: 32117429 PMCID: PMC7027398 DOI: 10.3389/fgene.2019.01405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Local adaptation, adaptation to specialized niches and environmental clines have been extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial for forest resource management and breeding, especially in the context of global climate change. Here, we utilized a Pinus yunnanensis common garden experiments established at high and low elevation sites to assess the differences in growth and survival among populations and between the two common garden sites. The studied traits showed significant variation between the two test sites and among populations, suggesting adaptive divergence. To detect genetic variation related to environment, we captured 103,608 high quality SNPs based on RNA sequencing, and used them to assess the genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes showing significant divergence in allelic frequency between survival populations of two sites. Functional categories associated with adaptation to high elevation were found to be related to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species, and membrane lipid metabolic process. Further investigation of the outlier genes showed overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may play a key role in P. yunnanensis adaptation to high elevation environments. The outlier genes identified, and their variants, provide a basic reference for advanced investigations.
Collapse
Affiliation(s)
- Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yulan Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
59
|
Nilsson P, Solbakken MH, Schmid BV, Orr RJS, Lv R, Cui Y, Song Y, Zhang Y, Baalsrud HT, Tørresen OK, Stenseth NC, Yang R, Jakobsen KS, Easterday WR, Jentoft S. The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biol Evol 2020; 12:3832-3849. [PMID: 31971556 PMCID: PMC7046166 DOI: 10.1093/gbe/evaa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome. Taking advantage of the recent genome assemblies of the sand rat (Psammomys obesus) and the Mongolian gerbil (Meriones unguiculatus), comparative immunogenomic analyses reveal shared gene losses within TLR gene families (i.e., TLR8, TLR10, and the entire TLR11-subfamily) for Gerbillinae, accompanied with signs of diversifying selection of TLR7 and TLR9. Most notably, we find a great gerbil-specific duplication of the MHCII DRB locus. In silico analyses suggest that the duplicated gene provides high peptide binding affinity for Yersiniae epitopes as well as Leishmania and Leptospira epitopes, putatively leading to increased capability to withstand infections by these pathogens. Our study demonstrates the power of whole-genome sequencing combined with comparative genomic analyses to gain deeper insight into the immunogenomic landscape of the great gerbil and its close relatives.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | | | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujiang Zhang
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Helle T Baalsrud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - William Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
60
|
Hagen IJ, Lien S, Billing AM, Elgvin TO, Trier C, Niskanen AK, Tarka M, Slate J, Sætre G, Jensen H. A genome‐wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome. Mol Ecol Resour 2020; 20:544-559. [DOI: 10.1111/1755-0998.13134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Ingerid J. Hagen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics Department of Animal and Aquacultural Sciences Faculty of Biosciences Norwegian University of Life Sciences Ås Norway
| | - Anna M. Billing
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tore O. Elgvin
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Cassandra Trier
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Maja Tarka
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Department of Biology Lund University Lund Sweden
| | - Jon Slate
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield UK
| | - Glenn‐Peter Sætre
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
61
|
Abstract
Interspecific hybridization is the process where closely related species mate and produce offspring with admixed genomes. The genomic revolution has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. Here we summarize how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Joana I. Meier
- St John's College, Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
62
|
Nieto Feliner G, Rosato M, Alegre G, San Segundo P, Rosselló JA, Garnatje T, Garcia S. Dissimilar molecular and morphological patterns in an introgressed peripheral population of a sand dune species (Armeria pungens, Plumbaginaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1072-1082. [PMID: 31349366 DOI: 10.1111/plb.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/23/2019] [Indexed: 05/26/2023]
Abstract
Introgression is a poorly understood evolutionary outcome of hybridisation because it may remain largely undetected whenever it involves the transfer of small parts of the genome from one species to another. Aiming to understand the early stages of this process, a putative case from the southernmost border of the Armeria pungens range from its congener A. macrophylla is revisited following the discovery of a subpopulation that does not show phenotypic signs of introgression and resembles typical A. pungens. We analysed morphometrics, nuclear ribosomal DNA ITS and plastid DNA (trnL-trnF) sequences, genome size, 45S and 5S rDNA loci-FISH data and nrDNA IGS sequences. Within the study site, most individuals match morphologies of either of the two hybridising species, particularly the new subpopulation, with intermediate phenotypes being scarce. This pattern does not fully fit molecular evidence revealing two ITS ribotypes co-occurring intragenomically in most plants from the study site and one single plastid haplotype. Genome size and structural features of the IGS sequences both indicate that A. pungens from the study site is genetically more similar to its sympatric congener than to the remainder of its conspecifics. Introgression of A. macrophylla into A. pungens and plastid capture explain all the evidence analysed. However, important features to understand the origin and fate of the introgressed population, such as the degree and direction of introgression, which are important for understanding early stages of hybridisation in plants with low reproductive barriers, should be addressed with new data.
Collapse
Affiliation(s)
| | - M Rosato
- Jardín Botánico, ICBIBE-Unidad Asociada CSIC, Universidad de Valencia, Valencia, Spain
| | - G Alegre
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| | | | - J A Rosselló
- Jardín Botánico, ICBIBE-Unidad Asociada CSIC, Universidad de Valencia, Valencia, Spain
| | - T Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| | - S Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| |
Collapse
|
63
|
Päckert M, Ait Belkacem A, Wolfgramm H, Gast O, Canal D, Giacalone G, Lo Valvo M, Vamberger M, Wink M, Martens J, Stuckas H. Genetic admixture despite ecological segregation in a North African sparrow hybrid zone (Aves, Passeriformes, Passer domesticus × Passer hispaniolensis). Ecol Evol 2019; 9:12710-12726. [PMID: 31788209 PMCID: PMC6875665 DOI: 10.1002/ece3.5744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early-breeding house sparrows and hybrids and rural late-breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z-chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land-use changes in a mosaic landscape.
Collapse
Affiliation(s)
- Martin Päckert
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Abdelkrim Ait Belkacem
- Laboratoire d'Exploration et de Valorisation des Écosystèmes SteppiquesFaculté des Sciences de la nature et de la vieUniversité de DjelfaDjelfaAlgeria
| | - Hannes Wolfgramm
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Oliver Gast
- Institute of Vertebrate Biology Brno & Masaryk University BrnoBrnoCzech Republic
| | - David Canal
- Department of Evolutionary EcologyEstación Biológica de Doñana—CSICSevilleSpain
- Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA‐UNLPam) & Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Santa RosaArgentina
| | | | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Melita Vamberger
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Michael Wink
- Department of BiologyInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Jochen Martens
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Heiko Stuckas
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| |
Collapse
|
64
|
Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci U S A 2019; 116:23216-23224. [PMID: 31659024 DOI: 10.1073/pnas.1913534116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptive radiations are prominent components of the world's biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin's finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations of Geospiza fortis and Geospiza scandens over a 30-y period. G. scandens showed more evidence of admixture than G. fortis Beaks of G. scandens became progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.
Collapse
|
65
|
Päckert M, Giacalone G, Lo Valvo M, Kehlmaier C. Mitochondrial heteroplasmy in an avian hybrid form ( Passer italiae: Aves, Passeriformes). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3809-3812. [PMID: 33366199 PMCID: PMC7707613 DOI: 10.1080/23802359.2019.1682477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial heteroplasmy is the result from biparental transmission of mitochondrial DNA (mtDNA) to the offspring. In such rare cases, maternal and paternal mtDNA is present in the same individual. Though recent studies suggested that mtDNA heteroplasmy might be more common than previously anticipated, that phenomenon is still poorly documented and was mostly detected in case studies on hybrid populations. The Italian sparrow, Passer italiae is a homoploid hybrid form that occurs all across the Italian Peninsula mostly under strict absence of either of its parent species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). In this study, we document a new case of mitochondrial heteroplasmy from two island populations of P. italiae (Ustica and Lipari). Our analysis was based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) that allows for a clear distinction between mitochondrial lineages of the two parental species. We amplified and sequenced the mitochondrial ND2 gene with specifically designed primer combinations for each of the two parental species. In two of our study populations, a single individual carried two different ND2 haplotypes from each of the two parental lineages. These findings contribute to current knowledge on the still poorly documented phenomenon of paternal leakage in vertebrates.
Collapse
Affiliation(s)
- Martin Päckert
- Senckenberg Naturhistorische Sammlungen, Dresden, Germany
| | | | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Universita degli Studi di Palermo, Palermo, Italy
| | | |
Collapse
|
66
|
A Multireference-Based Whole Genome Assembly for the Obligate Ant-Following Antbird, Rhegmatorhina melanosticta (Thamnophilidae). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current generation high-throughput sequencing technology has facilitated the generation of more genomic-scale data than ever before, thus greatly improving our understanding of avian biology across a range of disciplines. Recent developments in linked-read sequencing (Chromium 10×) and reference-based whole-genome assembly offer an exciting prospect of more accessible chromosome-level genome sequencing in the near future. We sequenced and assembled a genome of the Hairy-crested Antbird (Rhegmatorhina melanosticta), which represents the first publicly available genome for any antbird (Thamnophilidae). Our objectives were to (1) assemble scaffolds to chromosome level based on multiple reference genomes, and report on differences relative to other genomes, (2) assess genome completeness and compare content to other related genomes, and (3) assess the suitability of linked-read sequencing technology for future studies in comparative phylogenomics and population genomics studies. Our R. melanosticta assembly was both highly contiguous (de novo scaffold N50 = 3.3 Mb, reference based N50 = 53.3 Mb) and relatively complete (contained close to 90% of evolutionarily conserved single-copy avian genes and known tetrapod ultraconserved elements). The high contiguity and completeness of this assembly enabled the genome to be successfully mapped to the chromosome level, which uncovered a consistent structural difference between R. melanosticta and other avian genomes. Our results are consistent with the observation that avian genomes are structurally conserved. Additionally, our results demonstrate the utility of linked-read sequencing for non-model genomics. Finally, we demonstrate the value of our R. melanosticta genome for future researchers by mapping reduced representation sequencing data, and by accurately reconstructing the phylogenetic relationships among a sample of thamnophilid species.
Collapse
|
67
|
Ma Y, Wang J, Hu Q, Li J, Sun Y, Zhang L, Abbott RJ, Liu J, Mao K. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun Biol 2019; 2:213. [PMID: 31240251 PMCID: PMC6581913 DOI: 10.1038/s42003-019-0445-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Introgression may act as an important source of new genetic variation to facilitate the adaptation of organisms to new environments, yet how introgression might enable tree species to adapt to higher latitudes and elevations remains unclear. Applying whole-transcriptome sequencing and population genetic analyses, we present an example of ancient introgression from a cypress species (Cupressus gigantea) that occurs at higher latitude and elevation on the Qinghai-Tibet Plateau into a related species (C. duclouxiana), which has likely aided the latter species to extend its range by colonizing cooler and drier mountain habitats during postglacial periods. We show that 16 introgressed candidate adaptive loci could have played pivotal roles in response to diverse stresses experienced in a high-elevation environment. Our findings provide new insights into the evolutionary history of Qinghai-Tibet Plateau plants and the importance of introgression in the adaptation of species to climate change.
Collapse
Affiliation(s)
- Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Ji Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Yongshuai Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, P. R. China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Richard J. Abbott
- School of Biology, Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH UK
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| |
Collapse
|
68
|
Zhang BW, Xu LL, Li N, Yan PC, Jiang XH, Woeste KE, Lin K, Renner SS, Zhang DY, Bai WN. Phylogenomics Reveals an Ancient Hybrid Origin of the Persian Walnut. Mol Biol Evol 2019; 36:2451-2461. [PMID: 31163451 DOI: 10.1093/molbev/msz112] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/25/2023] Open
Abstract
Abstract
Persian walnut (Juglans regia) is cultivated worldwide for its high-quality wood and nuts, but its origin has remained mysterious because in phylogenies it occupies an unresolved position between American black walnuts and Asian butternuts. Equally unclear is the origin of the only American butternut, J. cinerea. We resequenced the whole genome of 80 individuals from 19 of the 22 species of Juglans and assembled the genome of its relatives Pterocarya stenoptera and Platycarya strobilacea. Using phylogenetic-network analysis of single-copy nuclear genes, genome-wide site pattern probabilities, and Approximate Bayesian Computation, we discovered that J. regia (and its landrace J. sigillata) arose as a hybrid between the American and the Asian lineages and that J. cinerea resulted from massive introgression from an immigrating Asian butternut into the genome of an American black walnut. Approximate Bayesian Computation modeling placed the hybrid origin in the late Pliocene, ∼3.45 My, with both parental lineages since having gone extinct in Europe.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin-Lin Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Nan Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Peng-Cheng Yan
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing, China
| | - Xin-Hua Jiang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Keith E Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Susanne S Renner
- Department of Biology, Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
69
|
Marques DA, Meier JI, Seehausen O. A Combinatorial View on Speciation and Adaptive Radiation. Trends Ecol Evol 2019; 34:531-544. [DOI: 10.1016/j.tree.2019.02.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 01/28/2023]
|
70
|
Hill GE. Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression. Integr Comp Biol 2019; 59:912-924. [DOI: 10.1093/icb/icz019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
The mitonuclear compatibility species concept defines a species as a population that is genetically isolated from other populations by uniquely coadapted mitochondrial (mt) and nuclear genes. A key prediction of this hypothesis is that the mt genotype of each species will be functionally distinct and that introgression of mt genomes will be prevented by mitonuclear incompatibilities that arise when heterospecific mt and nuclear genes attempt to cofunction to enable aerobic respiration. It has been proposed, therefore, that the observation of rampant introgression of mt genotypes from one species to another constitutes a strong refutation of the mitonuclear speciation. The displacement of a mt genotype from a nuclear background with which it co-evolved to a foreign nuclear background will necessarily lead to fitness loss due to mitonuclear incompatibilities. Here I consider two potential benefits of mt introgression between species that may, in some cases, overcome fitness losses arising from mitonuclear incompatibilities. First, the introgressed mt genotype may be better adapted to the local environment than the native mt genotype such that higher fitness is achieved through improved adaptation via introgression. Second, if the mitochondria of the recipient taxa carry a high mutational load, then introgression of a foreign, less corrupt mt genome may enable the recipient taxa to escape its mutational load and gain a fitness advantage. Under both scenarios, fitness gains from novel mt genotypes could theoretically compensate for the fitness that is lost via mitonuclear incompatibility. I also consider the role of endosymbionts in non-adaptive rampant introgression of mt genomes. I conclude that rampant introgression is not necessarily evidence against the idea of tight mitonuclear coadaptation or the mitonuclear compatibility species concept. Rampant mt introgression will typically lead to erasure of species but in some cases could lead to hybrid speciation.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA
| |
Collapse
|
71
|
Precht WF, Vollmer SV, Modys AB, Kaufman L. Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon. P BIOL SOC WASH 2019. [DOI: 10.2988/18-d-18-00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- William F. Precht
- (WFP) Dial Cordy and Associates, Inc., Marine and Coastal Programs, 1011 Ives Dairy Road, Suite 210, Miami, FL 33179
| | - Stephen V. Vollmer
- (SVV) Northeastern University, Department of Marine and Environmental Science, 430 Nahant Rd., Nahant, MA 01908
| | - Alexander B. Modys
- (ABM) Florida Atlantic University, Department of Geosciences, 777 Glades Road, Boca Raton, FL 33431
| | - Les Kaufman
- (LK) Boston University Marine Program, 5 Cummington Mall, Boston MA, 02215
| |
Collapse
|
72
|
Matsushima W, Brink K, Schroeder J, Miska EA, Gapp K. Mature sperm small-RNA profile in the sparrow: implications for transgenerational effects of age on fitness. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz007. [PMID: 31139435 PMCID: PMC6527922 DOI: 10.1093/eep/dvz007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 04/09/2019] [Indexed: 05/13/2023]
Abstract
Mammalian sperm RNA has recently received a lot of interest due to its involvement in epigenetic germline inheritance. Studies of epigenetic germline inheritance have shown that environmental exposures can induce effects in the offspring without altering the DNA sequence of germ cells. Most mechanistic studies were conducted in laboratory rodents and C.elegans while observational studies confirm the phenotypic phenomenon in wild populations of humans and other species including birds. Prominently, paternal age in house sparrows affects offspring fitness, yet the mechanism is unknown. This study provides a first reference of house sparrow sperm small RNA as an attempt to uncover their role in the transmission of the effects of paternal age on the offspring. In this small-scale pilot, we found no statistically significant differences between miRNA and tRNA fragments in aged and prime sparrow sperm. These results indicate a role of other epigenetic information carriers, such as distinct RNA classes, RNA modifications, DNA methylation and retained histones, and a clear necessity of future studies in wild populations.
Collapse
Affiliation(s)
- Wayo Matsushima
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Kristiana Brink
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Katharina Gapp
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
73
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
74
|
Barley AJ, Nieto-Montes de Oca A, Reeder TW, Manríquez-Morán NL, Arenas Monroy JC, Hernández-Gallegos O, Thomson RC. Complex patterns of hybridization and introgression across evolutionary timescales in Mexican whiptail lizards (Aspidoscelis). Mol Phylogenet Evol 2019; 132:284-295. [DOI: 10.1016/j.ympev.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
|
75
|
Andrew SC, Taylor MP, Lundregan S, Lien S, Jensen H, Griffith SC. Signs of adaptation to trace metal contamination in a common urban bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:679-686. [PMID: 30212697 DOI: 10.1016/j.scitotenv.2018.09.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Metals and metalloids at elevated concentrations can be toxic to both humans and wildlife. In particular, lead exposure can act as a stressor to wildlife and cause negative effects on fitness. Any ability to adapt to stress caused by the negative effects of trace metal exposure would be beneficial for species living in contaminated environments. However, mechanisms for responding adaptively to metal contamination are not fully understood in free-living organisms. The Australian populations of the house sparrow (Passer domesticus) provides an excellent opportunity to study potential adaptation to environmental lead contamination because they have a commensal relationship with humans and are distributed broadly across Australian settlements including many long-term mining and smelting communities. To examine the potential for an evolutionary response to long-term lead exposure, we collected genomic SNP data using the house sparrow 200 K SNP array, from 11 localities across the Australian distribution including two mining sites (Broken Hill and Mount Isa, which are two genetically independent populations) that have well-established elevated levels of lead contamination as well as trace metals and metalloids. We contrast these known contaminated locations to other lesser-contaminated environments. Using an ecological association genome scan method to identify genomic differentiation associated with estimates of lead contamination we identified 60 outlier loci across three tests. A total of 39 genes were found to be physically linked (within 20 kbps) of all outliers in the house sparrow reference genome. The linked candidate genes included 12 genes relevant to lead exposure, such as two metal transporters that can transport metals including lead and zinc across cell membranes. These candidate genes provide targets for follow up experiments comparing resilience to lead exposure between populations exposed to varied levels of lead contamination.
Collapse
Affiliation(s)
- Samuel C Andrew
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mark Patrick Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
76
|
Haenel Q, Roesti M, Moser D, MacColl ADC, Berner D. Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evol Lett 2019; 3:28-42. [PMID: 30788140 PMCID: PMC6369934 DOI: 10.1002/evl3.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
Genomic studies of parallel (or convergent) evolution often compare multiple populations diverged into two ecologically different habitats to search for loci repeatedly involved in adaptation. Because the shared ancestor of these populations is generally unavailable, the source of the alleles at adaptation loci, and the direction in which their frequencies were shifted during evolution, remain elusive. To shed light on these issues, we here use multiple populations of threespine stickleback fish adapted to two different types of derived freshwater habitats-basic and acidic lakes on the island of North Uist, Outer Hebrides, Scotland-and the present-day proxy of their marine ancestor. In a first step, we combine genome-wide pooled sequencing and targeted individual-level sequencing to demonstrate that ecological and phenotypic parallelism in basic-acidic divergence is reflected by genomic parallelism in dozens of genome regions. Exploiting data from the ancestor, we next show that the acidic populations, residing in ecologically more extreme derived habitats, have adapted by accumulating alleles rare in the ancestor, whereas the basic populations have retained alleles common in the ancestor. Genomic responses to selection are thus predictable from the ecological difference of each derived habitat type from the ancestral one. This asymmetric sorting of standing genetic variation at loci important to basic-acidic divergence has further resulted in more numerous selective sweeps in the acidic populations. Finally, our data suggest that the maintenance in marine fish of standing variation important to adaptive basic-acidic differentiation does not require extensive hybridization between the marine and freshwater populations. Overall, our study reveals striking genome-wide determinism in both the loci involved in parallel divergence, and in the direction in which alleles at these loci have been selected.
Collapse
Affiliation(s)
- Quiterie Haenel
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
| | - Marius Roesti
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
- Biodiversity Research Centre and Zoology DepartmentUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
- Current address: Institute of Ecology and EvolutionUniversity of Bern3012 BernSwitzerland
| | - Dario Moser
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
- Current address: Jagd‐ und Fischereiverwaltung Thurgau8510 FrauenfeldSwitzerland
| | | | - Daniel Berner
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
| |
Collapse
|
77
|
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 2019; 3:170-177. [DOI: 10.1038/s41559-018-0777-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
|
78
|
The Timing and Direction of Introgression Under the Multispecies Network Coalescent. Genetics 2019; 211:1059-1073. [PMID: 30670542 DOI: 10.1534/genetics.118.301831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Introgression is a pervasive biological process, and many statistical methods have been developed to infer its presence from genomic data. However, many of the consequences and genomic signatures of introgression remain unexplored from a methodological standpoint. Here, we develop a model for the timing and direction of introgression based on the multispecies network coalescent, and from it suggest new approaches for testing introgression hypotheses. We suggest two new statistics, D 1 and D 2, which can be used in conjunction with other information to test hypotheses relating to the timing and direction of introgression, respectively. D 1 may find use in evaluating cases of homoploid hybrid speciation (HHS), while D 2 provides a four-taxon test for polarizing introgression. Although analytical expectations for our statistics require a number of assumptions to be met, we show how simulations can be used to test hypotheses about introgression when these assumptions are violated. We apply the D 1 statistic to genomic data from the wild yeast Saccharomyces paradoxus-a proposed example of HHS-demonstrating its use as a test of this model. These methods provide new and powerful ways to address questions relating to the timing and direction of introgression.
Collapse
|
79
|
Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. BIOINFORMATICS AND PHYLOGENETICS 2019. [DOI: 10.1007/978-3-030-10837-3_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Westram AM, Ravinet M. Land ahoy? Navigating the genomic landscape of speciation while avoiding shipwreck. J Evol Biol 2018; 30:1522-1525. [PMID: 28786189 DOI: 10.1111/jeb.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- A M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - M Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
81
|
Ottenburghs J. Exploring the hybrid speciation continuum in birds. Ecol Evol 2018; 8:13027-13034. [PMID: 30619602 PMCID: PMC6308868 DOI: 10.1002/ece3.4558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
Hybridization is increasingly recognized as a creative evolutionary force contributing to adaptation and speciation. Homoploid hybrid speciation-the process in which hybridization results in a stable, fertile, and reproductively isolated hybrid lineage where there is no change in ploidy-has been documented in several taxa. Hybridization can directly contribute to reproductive isolation or reinforce it at a later stage. Alternatively, hybridization might not be related to the evolution of reproductive isolation. To account for these different scenarios, I propose to discriminate between two types of hybrid speciation: type I where reproductive isolation is a direct consequence of hybridization and type II where it is the by-product of other processes. I illustrate the applicability of this classification scheme with avian examples. To my knowledge, seven hybrid bird species have been proposed: Italian sparrow, Audubon's warbler, Genovesa mockingbird, Hawaiian duck, red-breasted goose, golden-crowned manakin, and a recent lineage of Darwin's finches on the island of Daphne Major ("Big Bird"). All studies provide convincing evidence for hybridization, but do not always confidently discriminate between scenarios of hybrid speciation and recurrent introgressive hybridization. The build-up of reproductive isolation between the hybrid species and their parental taxa is mainly driven by premating isolation mechanisms and comparable to classical speciation events. One hybrid species can be classified as type I ("Big Bird") while three species constitute type II hybrid species (Italian sparrow, Audubon's warbler, and golden-crowned manakin). The diversity in hybrid bird species across a range of divergence times also provides an excellent opportunity to study the evolution of hybrid genomes in terms of genome stabilization and adaptation.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Resource Ecology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
82
|
Uy JAC, Irwin DE, Webster MS. Behavioral Isolation and Incipient Speciation in Birds. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062646] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavioral changes, such as those involved in mating, foraging, and migration, can generate reproductive barriers between populations. Birds, in particular, are known for their great diversity in these behaviors, and so behavioral isolation is often proposed to be the major driver of speciation. Here, we review empirical evidence to evaluate the importance of behavioral isolation in the early stages of avian speciation. Experimentally measured mating preferences indicate that changes in mating behavior can result in premating barriers, with their strength depending on the extent of divergence in mating signals. Differences in migratory and foraging behavior also can play important roles in generating reproductive barriers in the early stages of speciation. However, because premating behavioral isolation is imperfect, extrinsic postzygotic barriers, in the form of selection against hybrids having intermediate phenotypes, also play an important role in avian diversification, especially in completing the speciation process.
Collapse
Affiliation(s)
- J. Albert C. Uy
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA
| | - Darren E. Irwin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael S. Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
83
|
Andrew SC, Jensen H, Hagen IJ, Lundregan S, Griffith SC. Signatures of genetic adaptation to extremely varied Australian environments in introduced European house sparrows. Mol Ecol 2018; 27:4542-4555. [DOI: 10.1111/mec.14897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Samuel C. Andrew
- Department of Biological Sciences; Macquarie University; Sydney New South Wales Australia
| | - Henrik Jensen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
| | - Ingerid J. Hagen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
- Norwegian Institute for Nature Research; Trondheim Norway
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
| | - Simon C. Griffith
- Department of Biological Sciences; Macquarie University; Sydney New South Wales Australia
| |
Collapse
|
84
|
Pacheco-Sierra G, Vázquez-Domínguez E, Pérez-Alquicira J, Suárez-Atilano M, Domínguez-Laso J. Ancestral Hybridization Yields Evolutionary Distinct Hybrids Lineages and Species Boundaries in Crocodiles, Posing Unique Conservation Conundrums. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
85
|
Walsh J, Kovach AI, Olsen BJ, Shriver WG, Lovette IJ. Bidirectional adaptive introgression between two ecologically divergent sparrow species. Evolution 2018; 72:2076-2089. [PMID: 30101975 DOI: 10.1111/evo.13581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
Natural hybrid zones can be used to dissect the mechanisms driving key evolutionary processes by allowing us to identify genomic regions important for establishing reproductive isolation and that allow for transfer of adaptive variation. We leverage whole-genome data in a system where two bird species, the saltmarsh (Ammospiza caudacuta) and Nelson's (A. nelsoni) sparrow, hybridize despite their relatively high background genetic differentiation and past ecological divergence. Adaptive introgression is plausible in this system because Nelson's sparrows are recent colonists of saltwater marshes, compared to the specialized saltmarsh sparrow that has a longer history of saltmarsh adaptation. Comparisons among whole-genome sequences of 34 individuals from allopatric and sympatric populations show that ongoing gene flow is shaping the genomic landscape, with allopatric populations exhibiting genome-wide FST estimates close to double of that observed in sympatry. We characterized patterns of introgression across the genome and identify regions that exhibit biased introgression into hybrids from one parental species. These regions offer compelling candidates for genes related to tidal marsh adaptations suggesting that adaptive introgression may be an important consequence of hybridization. These findings highlight the value of considering the landscapes of both genome-wide introgression and divergence when characterizing the evolutionary forces that drive speciation.
Collapse
Affiliation(s)
- Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York 14850.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824
| | - Brian J Olsen
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - W Gregory Shriver
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware 19716
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York 14850.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
86
|
Lundregan SL, Hagen IJ, Gohli J, Niskanen AK, Kemppainen P, Ringsby TH, Kvalnes T, Pärn H, Rønning B, Holand H, Ranke PS, Båtnes AS, Selvik LK, Lien S, Saether BE, Husby A, Jensen H. Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis. Mol Ecol 2018; 27:3498-3514. [DOI: 10.1111/mec.14811] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Ingerid J. Hagen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Norwegian Institute for Nature Research; Trondheim Norway
| | - Jostein Gohli
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Alina K. Niskanen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Department of Ecology and Genetics; University of Oulu; Oulu Finland
| | - Petri Kemppainen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Thor Harald Ringsby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Thomas Kvalnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Henrik Pärn
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Bernt Rønning
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Håkon Holand
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Peter S. Ranke
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Anna S. Båtnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Linn-Karina Selvik
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics; Department of Animal and Aquacultural Sciences; Faculty of Life Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Bernt-Erik Saether
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Arild Husby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
- Department of Ecology and Genetics; EBC; Uppsala University; Uppsala Sweden
| | - Henrik Jensen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
87
|
Ravinet M, Elgvin TO, Trier C, Aliabadian M, Gavrilov A, Sætre GP. Signatures of human-commensalism in the house sparrow genome. Proc Biol Sci 2018; 285:rspb.2018.1246. [PMID: 30089626 DOI: 10.1098/rspb.2018.1246] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
House sparrows (Passer domesticus) are a hugely successful anthrodependent species; occurring on nearly every continent. Yet, despite their ubiquity and familiarity to humans, surprisingly little is known about their origins. We sought to investigate the evolutionary history of the house sparrow and identify the processes involved in its transition to a human-commensal niche. We used a whole genome resequencing dataset of 120 individuals from three Eurasian species, including three populations of Bactrianus sparrows, a non-commensal, divergent house sparrow lineage occurring in the Near East. Coalescent modelling supports a split between house and Bactrianus sparrow 11 Kya and an expansion in the house sparrow at 6 Kya, consistent with the spread of agriculture following the Neolithic revolution. Commensal house sparrows therefore likely moved into Europe with the spread of agriculture following this period. Using the Bactrianus sparrow as a proxy for a pre-commensal, ancestral house population, we performed a comparative genome scan to identify genes potentially involved with adaptation to an anthropogenic niche. We identified potential signatures of recent, positive selection in the genome of the commensal house sparrow that are absent in Bactrianus populations. The strongest selected region encompasses two major candidate genes; COL11A-which regulates craniofacial and skull development and AMY2A, part of the amylase gene family which has previously been linked to adaptation to high-starch diets in humans and dogs. Our work examines human-commensalism in an evolutionary framework, identifies genomic regions likely involved in rapid adaptation to this new niche and ties the evolution of this species to the development of modern human civilization.
Collapse
Affiliation(s)
- Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Tore Oldeide Elgvin
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Cassandra Trier
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Andrey Gavrilov
- Institute of Zoology, Ministry of Education and Science of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
88
|
Runemark A, Fernández LP, Eroukhmanoff F, Sætre GP. Genomic Contingencies and the Potential for Local Adaptation in a Hybrid Species. Am Nat 2018; 192:10-22. [DOI: 10.1086/697563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
89
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
90
|
Reply to Rosenthal et al.: Both premating and postmating isolation likely contributed to manakin hybrid speciation. Proc Natl Acad Sci U S A 2018; 115:E4146-E4147. [PMID: 29669925 DOI: 10.1073/pnas.1804188115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
91
|
Doyle JM, Bell DA, Bloom PH, Emmons G, Fesnock A, Katzner TE, LaPré L, Leonard K, SanMiguel P, Westerman R, Andrew DeWoody J. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus). BMC Genomics 2018; 19:233. [PMID: 29618317 PMCID: PMC5885362 DOI: 10.1186/s12864-018-4615-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. Results We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population. Conclusions Our study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating population of prairie falcons across our sampling locations. Prairie falcons are highly mobile and relatively rare long-distance dispersal events may promote gene flow throughout the range. As such, California’s prairie falcons might be managed as a single population, indicating that management actions undertaken to benefit the species at the local level have the potential to influence the species as a whole. Electronic supplementary material The online version of this article (10.1186/s12864-018-4615-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.
| | - Douglas A Bell
- East Bay Regional Park District, 2950 Peralta Oaks Court, Oakland, CA, 94605, USA.,Department of Ornithology and Mammalogy, California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, CA, 94118, USA
| | - Peter H Bloom
- Bloom Research Inc., 1820 S. Dunsmuir, Los Angeles, CA, 90019, USA
| | - Gavin Emmons
- National Park Service, Pinnacles National Park, 5000 Highway 146, Paicines, CA, 95043, USA
| | - Amy Fesnock
- California State Office, Bureau of Land Management, 2800 Cottage Way, Suite W-1928, Sacramento, CA, 95825, USA
| | - Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, USA
| | - Larry LaPré
- Bureau of Land Management, California Desert District, 22835 Calle San Juan De Los Lagos, Moreno Valley, CA, 92553, USA
| | - Kolbe Leonard
- Department of Computer and Information Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA
| | - Phillip SanMiguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rick Westerman
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
92
|
Irwin DE. Sex chromosomes and speciation in birds and other ZW systems. Mol Ecol 2018; 27:3831-3851. [PMID: 29443419 DOI: 10.1111/mec.14537] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
93
|
Runemark A, Trier CN, Eroukhmanoff F, Hermansen JS, Matschiner M, Ravinet M, Elgvin TO, Sætre GP. Variation and constraints in hybrid genome formation. Nat Ecol Evol 2018; 2:549-556. [DOI: 10.1038/s41559-017-0437-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022]
|
94
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
96
|
Martin SH, Jiggins CD. Interpreting the genomic landscape of introgression. Curr Opin Genet Dev 2017; 47:69-74. [PMID: 28923541 DOI: 10.1016/j.gde.2017.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Introgression, the transfer of genetic material between species through hybridisation, occurs in many taxa and has important consequences. Genomic studies allow us to characterise the landscape of introgression across the genome, shedding light on both its adaptive benefits and the incompatibilities that help to maintain species barriers. Studies taking a genome-wide view suggest that adaptive introgression may be common, but that introgressed variation between many species is selected against throughout much of the genome. Confounding factors can complicate interpretations from these data, and computational simulations have proved vital to illustrate expected patterns under different scenarios. Future developments will move beyond correlative evidence to explicit models that account for how selection and genetic drift influence introgressed variation.
Collapse
Affiliation(s)
- Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
97
|
Ottenburghs J, Megens HJ, Kraus RHS, van Hooft P, van Wieren SE, Crooijmans RPMA, Ydenberg RC, Groenen MAM, Prins HHT. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol Biol 2017; 17:201. [PMID: 28830337 PMCID: PMC5568201 DOI: 10.1186/s12862-017-1048-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Background The impacts of hybridization on the process of speciation are manifold, leading to distinct patterns across the genome. Genetic differentiation accumulates in certain genomic regions, while divergence is hampered in other regions by homogenizing gene flow, resulting in a heterogeneous genomic landscape. A consequence of this heterogeneity is that genomes are mosaics of different gene histories that can be compared to unravel complex speciation and hybridization events. However, incomplete lineage sorting (often the outcome of rapid speciation) can result in similar patterns. New statistical techniques, such as the D-statistic and hybridization networks, can be applied to disentangle the contributions of hybridization and incomplete lineage sorting. We unravel patterns of hybridization and incomplete lineage sorting during and after the diversification of the True Geese (family Anatidae, tribe Anserini, genera Anser and Branta) using an exon-based hybridization network approach and taking advantage of discordant gene tree histories by re-sequencing all taxa of this clade. In addition, we determine the timing of introgression and reconstruct historical effective population sizes for all goose species to infer which demographic or biogeographic factors might explain the observed patterns of introgression. Results We find indications for ancient interspecific gene flow during the diversification of the True Geese and were able to pinpoint several putative hybridization events. Specifically, in the genus Branta, both the ancestor of the White-cheeked Geese (Hawaiian Goose, Canada Goose, Cackling Goose and Barnacle Goose) and the ancestor of the Brent Goose hybridized with Red-breasted Goose. One hybridization network suggests a hybrid origin for the Red-breasted Goose, but this scenario seems unlikely and it not supported by the D-statistic analysis. The complex, highly reticulated evolutionary history of the genus Anser hampered the estimation of ancient hybridization events by means of hybridization networks. The reconstruction of historical effective population sizes shows that most species showed a steady increase during the Pliocene and Pleistocene. These large effective population sizes might have facilitated contact between diverging goose species, resulting in the establishment of hybrid zones and consequent gene flow. Conclusions Our analyses suggest that the evolutionary history of the True Geese is influenced by introgressive hybridization. The approach that we have used, based on genome-wide phylogenetic incongruence and network analyses, will be a useful procedure to reconstruct the complex evolutionary histories of many naturally hybridizing species groups. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1048-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands.
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Robert H S Kraus
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg, 1D-78315, Radolfzell, Germany.,Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands
| | - Sipke E van Wieren
- Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ronald C Ydenberg
- Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands.,Centre for Wildlife Ecology, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Herbert H T Prins
- Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|