51
|
Hussain B, Fang C, Huang X, Feng Z, Yao Y, Wang Y, Chang J. Endothelial β-Catenin Deficiency Causes Blood-Brain Barrier Breakdown via Enhancing the Paracellular and Transcellular Permeability. Front Mol Neurosci 2022; 15:895429. [PMID: 35615065 PMCID: PMC9125181 DOI: 10.3389/fnmol.2022.895429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 01/24/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) causes or contributes to neuronal dysfunction and several central nervous system (CNS) disorders. Wnt/β-catenin signaling is essential for maintaining the integrity of the adult BBB in physiological and pathological conditions, including stroke. However, how the impairment of the endothelial Wnt/β-catenin signaling results in BBB breakdown remains unclear. Furthermore, the individual contributions of different BBB permeability-inducing mechanisms, including intercellular junction damage, endothelial transcytosis, and fenestration, remains unexplored. Here, we induced β-catenin endothelial-specific conditional knockout (ECKO) in adult mice and determined its impact on BBB permeability and the underlying mechanism. β-catenin ECKO reduced the levels of active β-catenin and the mRNA levels of Wnt target genes in mice, indicating downregulation of endothelial Wnt/β-catenin signaling. β-catenin ECKO mice displayed severe and widespread leakage of plasma IgG and albumin into the cerebral cortex, which was absent in wild-type controls. Mechanistically, both the paracellular and transcellular transport routes were disrupted in β-catenin ECKO mice. First, β-catenin ECKO reduced the tight junction protein levels and disrupted the intercellular junction ultrastructure in the brain endothelium. Second, β-catenin ECKO substantially increased the number of endothelial vesicles and caveolae-mediated transcytosis through downregulating Mfsd2a and upregulating caveolin-1 expression. Interestingly, fenestration and upregulated expression of the fenestration marker Plvap were not observed in β-catenin ECKO mice. Overall, our study reveals that endothelial Wnt/β-catenin signaling maintains adult BBB integrity via regulating the paracellular as well as transcellular permeability. These findings may have broad applications in understanding and treatment of CNS disorders involving BBB disruption.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaowen Huang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziying Feng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Yao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
52
|
De A, Morales JE, Chen Z, Sebastian S, McCarty JH. The β8 integrin cytoplasmic domain activates extracellular matrix adhesion to promote brain neurovascular development. Development 2022; 149:274538. [PMID: 35217866 PMCID: PMC8977100 DOI: 10.1242/dev.200472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin β8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the β8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the β8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFβs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFβ-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/β-catenin signaling. These results reveal that the β8 integrin cytoplasmic domain is essential for the regulation of TGFβ-dependent gene expression in endothelial cells and suggest that cross-talk between TGFβs and Wnt pathways is crucial for neurovascular development.
Collapse
Affiliation(s)
- Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - John E Morales
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Zhihua Chen
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Sumod Sebastian
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Joseph H McCarty
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
53
|
Bryant D, Pauzuolyte V, Ingham NJ, Patel A, Pagarkar W, Anderson LA, Smith KE, Moulding DA, Leong YC, Jafree DJ, Long DA, Al-Yassin A, Steel KP, Jagger DJ, Forge A, Berger W, Sowden JC, Bitner-Glindzicz M. The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention. JCI Insight 2022; 7:148586. [PMID: 35132964 PMCID: PMC8855802 DOI: 10.1172/jci.insight.148586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.
Collapse
Affiliation(s)
- Dale Bryant
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Valda Pauzuolyte
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Waheeda Pagarkar
- Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Lucy A Anderson
- UCL Ear Institute, University College London, London, United Kingdom
| | - Katie E Smith
- UCL Ear Institute, University College London, London, United Kingdom
| | - Dale A Moulding
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Yeh C Leong
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Daniyal J Jafree
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David A Long
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Amina Al-Yassin
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| | - Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zürich, Schlieren, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Maria Bitner-Glindzicz
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
54
|
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J Pers Med 2022; 12:jpm12020148. [PMID: 35207637 PMCID: PMC8876566 DOI: 10.3390/jpm12020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
Collapse
Affiliation(s)
- Thomas L. Maurissen
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
| | - Colette Bichsel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Roche Pharma Research and Early Development, Institute for Translational Bioengineering, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA
- Correspondence: (R.D.K.); (H.R.)
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence: (R.D.K.); (H.R.)
| |
Collapse
|
55
|
Yemanyi F, Bora K, Blomfield AK, Wang Z, Chen J. Wnt Signaling in Inner Blood-Retinal Barrier Maintenance. Int J Mol Sci 2021; 22:11877. [PMID: 34769308 PMCID: PMC8584977 DOI: 10.3390/ijms222111877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood-retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological balance is fundamental to visual function by facilitating the delivery of nutrients and oxygen and for protection from blood-borne toxins. The inner BRB (iBRB), composed mostly of inner retinal vasculature, controls substance exchange mainly via transportation processes between (paracellular) and through (transcellular) the retinal microvascular endothelium. Disruption of iBRB, characterized by retinal edema, is observed in many eye diseases and disturbs the physiological quiescence in the retina's extracellular space, resulting in vision loss. Consequently, understanding the mechanisms of iBRB formation, maintenance, and breakdown is pivotal to discovering potential targets to restore function to compromised physiological barriers. These unraveled targets can also inform potential drug delivery strategies across the BRB and the blood-brain barrier into retinas and brain tissues, respectively. This review summarizes mechanistic insights into the development and maintenance of iBRB in health and disease, with a specific focus on the Wnt signaling pathway and its regulatory role in both paracellular and transcellular transport across the retinal vascular endothelium.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.Y.); (K.B.); (A.K.B.); (Z.W.)
| |
Collapse
|
56
|
Wang J, Xia Y, Lu A, Wang H, Davis DR, Liu P, Beanlands RS, Liang W. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Sci Rep 2021; 11:17722. [PMID: 34489488 PMCID: PMC8421412 DOI: 10.1038/s41598-021-97176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling is activated in the heart after myocardial infarction (MI). This study aims to investigate if β-catenin deletion affects post-MI ion channel gene alterations and ventricular tachycardias (VT). MI was induced by permanent ligation of left anterior descending artery in wild-type (WT) and cardiomyocyte-specific β-catenin knockout (KO) mice. KO mice showed reduced susceptibility to VT (18% vs. 77% in WT) at 8 weeks after MI, associated with reduced scar size and attenuated chamber dilation. qPCR analyses of both myocardial tissues and purified cardiomyocytes demonstrated upregulation of Wnt pathway genes in border and infarct regions after MI, including Wnt ligands (such as Wnt4) and receptors (such as Fzd1 and Fzd2). At 1 week after MI, cardiac sodium channel gene (Scn5a) transcript was reduced in WT but not in KO hearts, consistent with previous studies showing Scn5a inhibition by Wnt/β-catenin signaling. At 8 weeks after MI when Wnt genes have declined, Scn5a returned to near sham levels and K+ channel gene downregulations were not different between WT and KO mice. This study demonstrated that VT susceptibility in the chronic phase after MI is reduced in mice with cardiomyocyte-specific β-catenin deletion primarily through attenuated structural remodeling, but not ion channel gene alterations.
Collapse
Affiliation(s)
- Jerry Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aizhu Lu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hongwei Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Peter Liu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rob S Beanlands
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
57
|
Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34542556 PMCID: PMC8458780 DOI: 10.1167/iovs.62.12.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Investigate the contribution of the Wnt pathway to vascular endothelial growth factor (VEGF)/anti-VEGF-mediated control of endothelial cell permeability. Methods High glucose-treated primary human retinal endothelial cells (HRECs) were exposed to either VEGF, or VEGF and then anti-VEGF. Changes in gene expression were assayed by RNAseq and qRT-PCR. Permeability was monitored by electrical cell-substrate impedance sensing (ECIS). Approaches to activate the Wnt pathway included treatment with LiCl and overexpression of constitutively activated β-catenin. β-catenin-dependent transcriptional activity was monitored in HRECs stably expressing a TCF/LEF-driven reporter. Results VEGF/anti-VEGF altered expression of genes encoding many members of the Wnt pathway. A subset of these genes was regulated in a way that is likely to contribute to control of the endothelial cell barrier. Namely, the VEGF-induced alteration of expression of such genes was reversed by anti-VEGF, and such adjustments occurred at times corresponding to changes in barrier function. While pharmacological and molecular approaches to activate the Wnt pathway had no effect on basal permeability, they suppressed VEGF-induced relaxation. Furthermore, anti-VEGF-mediated restoration of barrier function was unaffected by activation of the Wnt pathway. Conclusions VEGF/anti-VEGF engages multiple members of the Wnt pathway, and activating this pathway enforces the endothelial barrier by attenuating VEGF-induced relaxation. These data suggest that FDA-approved agents such as LiCl may be an adjuvant to anti-VEGF therapy for patients afflicted with blinding conditions including diabetic retinopathy.
Collapse
Affiliation(s)
- Yueru Li
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Basma Baccouche
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Olamide Olayinka
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Anara Serikbaeva
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Andrius Kazlauskas
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States.,Department of Physiology and Biophysics, Chicago, IL, United States
| |
Collapse
|
58
|
Zhang CL, Wang HL, Li PC, Hong CD, Chen AQ, Qiu YM, Zeng AP, Zhou YF, Hu B, Li YN. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res 2021; 171:105755. [PMID: 34229049 DOI: 10.1016/j.phrs.2021.105755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is one of the common complications in diabetic patients. Nowadays, VEGF pathway is subject to extensive research. However, about 27% of the patients have a poor visual outcome, with 50% still having edema after two years' treatment of diabetic macular edema (DME) with ranibizumab. Docosahexaenoic acid (DHA), the primary ω-3 long-chain polyunsaturated fatty acid (LC-PUFA), reduces abnormal neovascularization and alleviates neovascular eye diseases. A study reported that fish oil reduced the incidence of retinopathy of prematurity (ROP) by about 27.5% in preterm infants. Although ω-3 LC-PUFAs protects against pathological retinal neovascularization, the treatment effectiveness is low. It is interesting to investigate why DHA therapy fails in some patients. In human vitreous humor samples, we found that the ratio of DHA and DHA-derived metabolites to total fatty acids was higher in vitreous humor from DR patients than that from macular hole patients; however, the ratio of DHA metabolites to DHA and DHA-derived metabolites was lower in the diabetic vitreous humor. The expression of Mfsd2a, the LPC-DHA transporter, was reduced in the oxygen-induced retinopathy (OIR) model and streptozotocin (STZ) model. In vitro, Mfsd2a overexpression inhibited endothelial cell proliferation, migration and vesicular transcytosis. Moreover, Mfsd2a overexpression in combination with the DHA diet obviously reduced abnormal retinal neovascularization and vascular leakage, which is more effective than Mfsd2a overexpression alone. These results suggest that DHA therapy failure in some DR patients is linked to low expression of Mfsd2a, and the combination of Mfsd2a overexpression and DHA therapy may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan-Mei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai-Ping Zeng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
59
|
Zarkada G, Howard JP, Xiao X, Park H, Bizou M, Leclerc S, Künzel SE, Boisseau B, Li J, Cagnone G, Joyal JS, Andelfinger G, Eichmann A, Dubrac A. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 2021; 56:2237-2251.e6. [PMID: 34273276 PMCID: PMC9951594 DOI: 10.1016/j.devcel.2021.06.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-β signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-β receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-β signaling could improve retinal revascularization and neural function in ischemic retinopathy.
Collapse
Affiliation(s)
- Georgia Zarkada
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel P. Howard
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,These authors contributed equally
| | - Xue Xiao
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada,These authors contributed equally
| | - Hyojin Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mathilde Bizou
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Severine Leclerc
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Steffen E. Künzel
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Blanche Boisseau
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Jinyu Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Gael Cagnone
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | | | | | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
60
|
Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021; 22:7710. [PMID: 34299328 PMCID: PMC8307585 DOI: 10.3390/ijms22147710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Tuuli-Maria Sonninen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Sanni Peltonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
61
|
Chidiac R, Abedin M, Macleod G, Yang A, Thibeault PE, Blazer LL, Adams JJ, Zhang L, Roehrich H, Jo H, Seshagiri S, Sidhu SS, Junge HJ, Angers S. A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Mol Med 2021; 13:e13977. [PMID: 34105895 PMCID: PMC8261507 DOI: 10.15252/emmm.202113977] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The FZD4:LRP5:TSPAN12 receptor complex is activated by the secreted protein Norrin in retinal endothelial cells and leads to βcatenin-dependent formation of the blood-retina-barrier during development and its homeostasis in adults. Mutations disrupting Norrin signaling have been identified in several congenital diseases leading to hypovascularization of the retina and blindness. Here, we developed F4L5.13, a tetravalent antibody designed to induce FZD4 and LRP5 proximity in such a way as to trigger βcatenin signaling. Treatment of cultured endothelial cells with F4L5.13 rescued permeability induced by VEGF in part by promoting surface expression of junction proteins. Treatment of Tspan12-/- mice with F4L5.13 restored retinal angiogenesis and barrier function. F4L5.13 treatment also significantly normalized neovascularization in an oxygen-induced retinopathy model revealing a novel therapeutic strategy for diseases characterized by abnormal angiogenesis and/or barrier dysfunction.
Collapse
Affiliation(s)
- Rony Chidiac
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | - Md. Abedin
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Graham Macleod
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | - Andy Yang
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | | | | | | | - Lingling Zhang
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Ha‐Neul Jo
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | | | - Sachdev S Sidhu
- AntlerA TherapeuticsFoster CityCAUSA
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Harald J Junge
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Stephane Angers
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
- AntlerA TherapeuticsFoster CityCAUSA
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| |
Collapse
|
62
|
Cui Y, Wang Y, Song X, Ning H, Zhang Y, Teng Y, Wang J, Yang X. Brain endothelial PTEN/AKT/NEDD4-2/MFSD2A axis regulates blood-brain barrier permeability. Cell Rep 2021; 36:109327. [PMID: 34233198 DOI: 10.1016/j.celrep.2021.109327] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
The low level of transcytosis is a unique feature of cerebrovascular endothelial cells (ECs), ensuring restrictive blood-brain barrier (BBB) permeability. Major facilitator superfamily domain-containing 2a (MFSD2A) is a key regulator of the BBB function by suppressing caveolae-mediated transcytosis. However, the mechanisms regulating MFSD2A at the BBB have been barely explored. Here, we show that cerebrovascular EC-specific deletion of Pten (phosphatase and tensin homolog) results in a dramatic increase in vesicular transcytosis by the reduction of MFSD2A, leading to increased transcellular permeability of the BBB. Mechanistically, AKT signaling inhibits E3 ubiquitin ligase NEDD4-2-mediated MFSD2A degradation. Consistently, cerebrovascular Nedd4-2 overexpression decreases MFSD2A levels, increases transcytosis, and impairs BBB permeability, recapitulating the phenotypes of Pten-deficient mice. Furthermore, Akt deletion decreases phosphorylated NEDD4-2 levels, restores MFSD2A levels, and normalizes BBB permeability in Pten-mutant mice. Altogether, our work reveals the essential physiological function of the PTEN/AKT/NEDD4-2/MFSD2A axis in the regulation of BBB permeability.
Collapse
Affiliation(s)
- Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanxiao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huimin Ning
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
63
|
ShamsEldeen AM, Mehesen MN, Aboulhoda BE, Rashed LA, Elsebaie MM, Mohamed EA, Gamal MM. Prenatal intake of omega-3 promotes Wnt/β-catenin signaling pathway, and preserves integrity of the blood-brain barrier in preeclamptic rats. Physiol Rep 2021; 9:e14925. [PMID: 34174018 PMCID: PMC8234480 DOI: 10.14814/phy2.14925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preeclampsia is a systemic, multi-organ endotheliopathy, associated with oxidative injury to the blood-brain barrier (BBB). Preeclampsia initiates a cascade of events that include neuroinflammation. Recently, it was documented that Wnt/β-catenin signaling pathway exerts neuroprotective effects and maintain BBB integrity. We investigate the protective effect of omega-3 against neurovascular complication of preeclampsia and its relation to Wnt/β-catenin signaling pathway. METHODOLOGY After confirmation of day 0 pregnancy (G0), 24 adult pregnant female Wistar rats were divided into four groups control pregnant, pregnant supplemented with omega-3, preeclampsia (PE); female rats received N (ω)-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg/day SC from day 7 to day 16 of pregnancy for induction of preeclampsia) and PE rats supplemented with omega-3. The intake of omega-3 started on day zero (0) of pregnancy until the end of the study (144 mg/kg\day orally). RESULTS We found that omega-3 supplementation significantly improved cognitive functions and EEG amplitude, decreased blood pressure, water contents of brain tissues, sFlt-1, oxidative stress, proteinuria, and enhanced Wnt\β-catenin proteins. Histological examination showed improved cerebral microangiopathy, increased expression of claudin-1 and -3, CD31, and VEGF in the cerebral cortical microvasculature and choroid plexus in PE rats treated with omega-3. A positive correlation between protein expression level of Wnt \β-catenin and cognitive functions, and a negative correlation between claudin-5 relative expression, claudin-1 and -3 area % from one side and water content of the brain tissues from the other side were observed. CONCLUSION Wnt/β-catenin signaling pathway suspected to have an important role to improve BBB integrity. Neuroprotective, antioxidant, and anti-inflammatory effects of omega-3 were observed and can be suggested as protective supplementation for preeclampsia.
Collapse
Affiliation(s)
| | - Marwa Nagi Mehesen
- Department of Medical PharmacologyFaculty of MedicineCairo UniversityCairoEgypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and EmbryologyFaculty of MedicineCairo UniversityCairoEgypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular BiologyFaculty of MedicineCairo UniversityCairoEgypt
| | | | | | | |
Collapse
|
64
|
Gurley JM, Gmyrek GB, McClellan ME, Hargis EA, Hauck SM, Dozmorov MG, Wren JD, Carr DJJ, Elliott MH. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33079993 PMCID: PMC7585394 DOI: 10.1167/iovs.61.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The immune-privileged environment and complex organization of retinal tissue support the retina's essential role in visual function, yet confound inquiries into cell-specific inflammatory effects that lead to dysfunction and degeneration. Caveolin-1 (Cav1) is an integral membrane protein expressed in several retinal cell types and is implicated in immune regulation. However, whether Cav1 promotes or inhibits inflammatory processes in the retina (as well as in other tissues) remains unclear. Previously, we showed that global-Cav1 depletion resulted in reduced retinal inflammatory cytokine production but paradoxically elevated retinal immune cell infiltration. We hypothesized that these disparate responses are the result of differential cell-specific Cav1 functions in the retina. Methods We used Cre/lox technology to deplete Cav1 specifically in the neural retinal (NR) compartment to clarify the role NR-specific Cav1 (NR-Cav1) in the retinal immune response to intravitreal inflammatory challenge induced by activation of Toll-like receptor-4 (TLR4). We used multiplex protein suspension array and flow cytometry to evaluate innate immune activation. Additionally, we used bioinformatics assessment of differentially expressed membrane-associated proteins to infer relationships between NR-Cav1 and immune response pathways. Results NR-Cav1 depletion, which primarily affects Müller glia Cav1 expression, significantly altered immune response pathway regulators, decreased retinal inflammatory cytokine production, and reduced retinal immune cell infiltration in response to LPS-stimulated inflammatory induction. Conclusions Cav1 expression in the NR compartment promotes the innate TLR4-mediated retinal tissue immune response. Additionally, we have identified novel potential immune modulators differentially expressed with NR-Cav1 depletion. This study further clarifies the role of NR-Cav1 in retinal inflammation.
Collapse
Affiliation(s)
- Jami M Gurley
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Elizabeth A Hargis
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, Virginia, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| |
Collapse
|