51
|
Wang Z, Yang F, Liu X, Han X, Li X, Huyan C, Liu D, Chen F. Hydrogen Bonds-Pinned Entanglement Blunting the Interfacial Crack of Hydrogel-Elastomer Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313177. [PMID: 38272488 DOI: 10.1002/adma.202313177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Anchoring a layer of amorphous hydrogel on an antagonistic elastomer holds potential applications in surface aqueous lubrication. However, the interfacial crack propagation usually occurs under continuous loads for amorphous hydrogel, leading to the failure of hydrogel interface. This work presents a universal strategy to passivate the interfacial cracks by designing a hydrogen bonds-pinned entanglement (Hb-En) structure of amorphous hydrogel on engineering elastomers. The unique Hb-En structure is created by pinning well-tailored entanglements via covalent-like hydrogen bonds, which can amplify the delocalization of interfacial stress concentration and elevate the necessary fracture energy barrier within hydrogel interface. Therefore, the interfacial crack propagation can be suppressed under single and cyclic loads, resulting in a high interfacial toughness over 1650 J m-2 and an excellent interfacial fatigue threshold of 423 J m-2. Such a strategy universally works on blunting the interfacial crack between hydrogel coating and various elastomer materials with arbitrary shapes. The superb fatigue-crack insensitivity at the interface allows for durable aqueous lubrication of hydrogel coating with low friction.
Collapse
Affiliation(s)
- Zibi Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Fahu Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xiaoxu Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xiang Han
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xinxin Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Chenxi Huyan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Dong Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
52
|
Zhou Y, Wang X, Lin X, Wang Z, Huang Z, Guo L, Xie H, Xu X, Dong F. Strong and tough poly(vinyl alcohol)/xanthan gum-based ionic conducting hydrogel enabled through the synergistic effect of ion cross-linking and salting out. Int J Biol Macromol 2024; 263:130511. [PMID: 38423443 DOI: 10.1016/j.ijbiomac.2024.130511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.
Collapse
Affiliation(s)
- Yiyang Zhou
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China
| | - Xiangyu Lin
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Zhen Huang
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China
| | - Lizhen Guo
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Hui Xie
- College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210037, Jiangsu Province, China.
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China.
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
53
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
54
|
Sijin Z, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. Exploring the versatility of carbohydrates in surimi and surimi products: novel applications and future perspectives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1874-1883. [PMID: 37885307 DOI: 10.1002/jsfa.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Sijin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- Wuhan Business University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
55
|
Bi Y, Sun M, Zhang Y, Sun F, Du Y, Wang J, Zhou M, Ma CB. Seconds Timescale Synthesis of Highly Stretchable Antibacterial Hydrogel for Skin Wound Closure and Epidermal Strain Sensor. Adv Healthc Mater 2024; 13:e2302810. [PMID: 37992675 DOI: 10.1002/adhm.202302810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Effective wound healing is critical for patient care, and the development of novel wound dressing materials that promote healing, prevent infection, and are user-friendly is of great importance, particularly in the context of point-of-care testing (POCT). This study reports the synthesis of a hydrogel material that can be produced in less than 10 s and possesses antibacterial activity against both gram-negative and gram-positive microorganisms, as well as the ability to inhibit the growth of eukaryotic cells, such as yeast. The hydrogel is formed wholly based on covalent-like hydrogen bonding interactions and exhibits excellent mechanical properties, with the ability to stretch up to more than 600% of its initial length. Furthermore, the hydrogel demonstrates ultra-fast self-healing properties, with fractures capable of being repaired within 10 s. This hydrogel can promote skin wound healing, with the added advantage of functioning as a strain sensor that generates an electrical signal in response to physical deformation. The strain sensor composed of a rubber shell realizes fast and responsive strain sensing. The findings suggest that this hydrogel has promising applications in the field of POCT for wound care, providing a new avenue for improved patient outcomes.
Collapse
Affiliation(s)
- Yanni Bi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, 530001, China
| | - Yuanyuan Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fuxin Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jingjuan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
56
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
57
|
Hui Z, Zhang Z, Wang Y, Zhang R, Liu X, Jiang M, Ju F, Hou W, Xia Z, Wang D, Wang P, Pei Y, Yan R, Zhang Y, Chen Q, Huang W, Sun G. Gradiently Foaming Ultrasoft Hydrogel with Stop Holes for Highly Deformable, Crack-Resistant and Sensitive Conformal Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314163. [PMID: 38423019 DOI: 10.1002/adma.202314163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hydrogels are considered as promising materials for human-machine interfaces (HMIs) owing to their merits of tailorable mechanical and electrical properties; nevertheless, it remains challenging to simultaneously achieve ultrasoftness, good mechanical robustness and high sensitivity, which are the pre-requisite requirements for wearable sensing applications. Herein, for the first time, this work proposes a universal phase-transition-induced bubbling strategy to fabricate ultrasoft gradient foam-shaped hydrogels (FSHs) with stop holes for high deformability, crack-resistance and sensitive conformal HMIs. As a typical system, the FSH based on polyacrylamide/sodium alginate system shows an ultralow Young's modulus (1.68 kPa), increased sustainable strain (1411%), enhanced fracture toughness (915.6 J m-2 ), improved tensile sensitivity (21.77), and compressive sensitivity (65.23 kPa-1 ). The FSHs are used for precisely acquiring and identifying gesture commands of the operator to remotely control a surgical robot for endoscopy and an electric ship in a first-person perspective for cruising, feeding crabs and monitoring the environmental change in real-time.
Collapse
Affiliation(s)
- Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhao Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Yurong Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Runrun Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Xin Liu
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Mingjie Jiang
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Feng Ju
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Wenteng Hou
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongming Xia
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Deya Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Pengfei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yangyang Pei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yan Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
58
|
Wang F, Ma R, Zhu J, Zhan J, Li J, Tian Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch-steviol glycoside composite hydrogels. Food Chem 2024; 434:137420. [PMID: 37696154 DOI: 10.1016/j.foodchem.2023.137420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Steviol glycosides possess Bola-form amphiphilic structure, which can solubilize hydrophobic phytochemicals and exert physical modification to the hydrophilic matrix. However, the effect of steviol glycosides on the starch hydrogel is still unclear. Herein, the physicochemical properties, in vitro digestibility, and release behavior of starch hydrogel in the presence of steviol glycosides were investigated. The results showed that the addition of steviol glycosides promoted the gelatinization and gelation of starch, and endowed the starch hydrogel with softer texture, larger volume, and higher water holding capacity. The hydrophobic curcumin was well integrated into hydrogel by steviol glycosides, providing the gel with improved colour brilliance. The introduction of steviol glycosides hardly affected the digestibility of starch gel, but it promoted the release rate of curcumin. Notably, this release behavior was pH dependent, which tended to target the alkaline intestine. This work provided some theoretical supports for the development of sugar-free starchy foods.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinling Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
59
|
Nie X, Tang Y, Wu T, Zhao X, Xu Z, Yang R, Sun Y, Wu B, Han Q, Hui J, Liu W. 3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration. Regen Biomater 2024; 11:rbae012. [PMID: 38454966 PMCID: PMC10918636 DOI: 10.1093/rb/rbae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide-modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. The growth factor and drug-loaded biomimetic bilayer hydrogel scaffold are customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma and inhibits cornea scarring in rabbit cornea keratoplasty.
Collapse
Affiliation(s)
- Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yong Tang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Ziyang Xu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Bin Wu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Quanhong Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Jingwen Hui
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
60
|
Hu J, Zhang D, Li W, Li Y, Shan G, Zuo M, Song Y, Wu Z, Ma L, Zheng Q, Du M. Construction of a Soft Antifouling PAA/PSBMA Hydrogel Coating with High Toughness and Low Swelling through the Dynamic Coordination Bonding Provided by Al(OH) 3 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6433-6446. [PMID: 38289030 DOI: 10.1021/acsami.3c17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Marine biofouling, resulting from the adhesion of marine organisms to ship surfaces, has long been a significant issue in the maritime industry. In this paper, we focused on utilizing soft and hydrophilic hydrogels as a potential approach for antifouling (AF) coatings. Acrylic acid (AA) with a polyelectrolyte effect and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) with an antipolyelectrolyte effect were selected as monomers. By adjusting the monomer ratio, we were able to create hydrogel coatings that exhibited low swelling ratio in both fresh water and seawater. The Al(OH)3 nanoparticle, as a physical cross-linker, provided better mechanical properties (higher tensile strength and larger elongation at break) than the chemical cross-linker through the dynamic coordination bonds and plentiful hydrogen bonds. Additionally, we incorporated trehalose into the hydrogel, enabling the repair of the hydrogel network through covalent-like hydrogen bonding. The zwitterion compound SBMA endowed the hydrogel with excellent AF performance. It was found that the highest SBMA content did not lead to the best antibacterial performance, as bacterial adhesion quantity was also influenced by the charge of the hydrogel. The hydrogel with appropriate SBMA content being close to electrical neutrality exhibits the strongest zwitterionic property of PSBMA chains, resulting in the best antibacterial adhesion performance. Furthermore, the pronounced hydrophilicity of SBMA enhanced the lubrication of the hydrogel surface, thereby reducing the friction resistance when applied to the hull surface during ship navigation.
Collapse
Affiliation(s)
- Jinpeng Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dezhi Zhang
- Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China
| | - Wenbao Li
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorong Shan
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
61
|
Xiong J, Wang X, Li L, Li Q, Zheng S, Liu Z, Li W, Yan F. Low-Hysteresis and High-Toughness Hydrogels Regulated by Porous Cationic Polymers: the Effect of Counteranions. Angew Chem Int Ed Engl 2024; 63:e202316375. [PMID: 37997003 DOI: 10.1002/anie.202316375] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Service life and range of polymer materials is heavily reliant on their elasticity and mechanical stability under long-term loading. Slippage of chain segments under load leads to significant hysteresis of the hydrogels, limiting its repeatability and mechanical stability. Achieving the desired elasticity exceeding that of rubber is a great challenge for hydrogels, particularly when subjected to large deformations. Here, low-hysteresis and high-toughness hydrogels were developed through controllable interactions of porous cationic polymers (PCPs) with adjustable counteranions, including reversible bonding of PCP frameworks/polymer segments (polyacrylamide, PAAm) and counteranions/PAAm. This strategy reduces chain segment slippage under load, endowing the PCP-based hydrogels (PCP-gels) with good elasticity under large deformations (7 % hysteresis at a strain ratio of 40). Furthermore, due to the enlarged chain segments entanglement by PCP, the PCP-gels exhibit large strain (13000 %), significantly enhanced toughness (68 MJ m-3 ), high fracture energy (43.1 kJ m-2 ), and fatigue resistance. The unique properties of these elastic PCP-gels have promising applications in the field of flexible sensors.
Collapse
Affiliation(s)
- Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
62
|
Wan H, Wu B, Hou L, Wu P. Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307290. [PMID: 37683287 DOI: 10.1002/adma.202307290] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.
Collapse
Affiliation(s)
- Hongbo Wan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
63
|
Zhang J, Wang Y, Wei Q, Li M, Chen X. 3D printable, stretchable, anti-freezing and rapid self-healing organogel-based sensors for human motion detection. J Colloid Interface Sci 2024; 653:1514-1525. [PMID: 37804619 DOI: 10.1016/j.jcis.2023.09.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Self-healing hydrogels have promising applications in sensors and wearable devices. However, self-healing hydrogels prepared with water as the dispersion medium inevitably freeze at sub-zero temperature, resulting in a loss of the self-healing and sensing ability. The black phosphorene / ethylene glycol / polyvinyl alcohol / sodium tetraborate / sodium alginate (BP/EG-SPB) organogels were prepared by 3D printing technology and solvent displacement method. The organogel exhibits high stretchability (1900 % strain), excellent self-healing property (25 s) and outstanding anti-freezing property (lower than -120 °C freezing point). Furthermore, the organogel can rapidly self-healed (150 s) at a low temperature (-80 °C) without any external stimulation. Additionally, this organogel-based flexible sensor possesses excellent sensitivity (gauge factor: 28.66 at 1900 % strain) and fast response capability, allowing for effective detection of human motion. This work provides a novel method for preparing multifunctional organogel-based sensors for use in harsh climates.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaohu Chen
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
64
|
Chen Q, Ke X, Cai Y, Wang H, Dong Z, Li X, Li J, Xu X, Luo J, Li J. A facile strategy to fabricate a skin-like hydrogel with adhesive and highly stretchable attributes through small molecule triggering toward flexible electronics. J Mater Chem B 2023; 11:11035-11043. [PMID: 37964679 DOI: 10.1039/d3tb02186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Polyacrylamide hydrogel is a promising matrix in biomedical applications due to its biocompatibility, transparency and flexibility. However, its implementation in skin-attachable applications is impeded by its inherent deficiency in surface-adaptive adhesion and inadequate mechanical conformity to skin tissues. Herein, tris, a biocompatible small molecule with a triple hydrogen bonding cluster in its molecule structure, is introduced for the first time into a polyacrylamide hydrogel. This incorporation is achieved via a facile one-pot strategy, resulting in a highly stretchable hydrogel with an impressive strain capacity (2574.75 ± 28.19%), a human dermis tissue-compatible Young's modulus (27.89 ± 2.05 kPa) and an intrinsically universal adhesion capacity (16.66 ± 0.32 N). These superior properties are attributed to the elevated hydrogen bonding density and the plasticizing effect induced by tris, without compromising the hydrogel's excellent transparency (>90% transmittance). Moreover, by incorporating calcium ions into the resulting soft adhesive hydrogel, we demonstrate its utility in skin-like sensors, leading to a substantial enhancement in strain sensitivity and electrical conductivity, in conjunction with the plasticizing influence exerted by tris. This work offers a facile and environmentally friendly solution to fabricate ultra-stretchable adhesive polyacrylamide hydrogel matrixes for dynamic surfaces, even under large deformation, which can broaden their potential applications in integrated bioelectronics.
Collapse
Affiliation(s)
- Qi Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yusong Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinlong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jinlin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
65
|
Jiang Y, Zhan D, Zhang M, Zhu Y, Zhong H, Wu Y, Tan Q, Dong X, Zhang D, Hadjichristidis N. Strong and Ultra-tough Ionic Hydrogel Based on Hyperbranched Macro-Cross-linker: Influence of Topological Structure on Properties. Angew Chem Int Ed Engl 2023; 62:e202310832. [PMID: 37646238 DOI: 10.1002/anie.202310832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The application of hydrogels often suffers from their inherent limitation of poor mechanical properties. Here, a carboxyl-functionalized and acryloyl-terminated hyperbranched polycaprolactone (PCL) was synthesized and used as a macro-cross-linker to fabricate a super strong and ultra-tough ionic hydrogel. The terminal acryloyl groups of hyperbranched PCL are chemically incorporated into the network to form covalent cross-links, which contribute to robust networks. Meanwhile, the hydrophobic domains formed by the spontaneous aggregation of PCL chains and coordination bonds between Fe3+ and COO- groups serve as dynamic non-covalent cross-links, which enhance the energy dissipation ability. Especially, the influence of the hyperbranched topological structure of PCL on hydrogel properties has been well investigated, exhibiting superior strengthening and toughening effects compared to the linear one. Moreover, the hyperbranched PCL cross-linker also endowed the ionic hydrogel with higher sensitivity than the linear one when used as a strain sensor. As a result, this well-designed ionic hydrogel possesses high mechanical strength, superior toughness, and well ionic conductivity, exhibiting potential applications in the field of flexible strain sensors.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Dezhi Zhan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Meng Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ying Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Huiqing Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yangfei Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Qinwen Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Xinhua Dong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemical Science Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
66
|
Yang L, Wang Y, Zhang W, Liu X. One-Pot Preparation of Skin-Inspired Multifunctional Hybrid Hydrogel with Robust Wound Healing Capacity. ACS Biomater Sci Eng 2023; 9:5855-5870. [PMID: 37748138 DOI: 10.1021/acsbiomaterials.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bioinspired hydrogels have demonstrated multiple superiorities over traditional wound dressings for wound healing applications. However, the fabrication of bioinspired hydrogel-based wound dressings with desired functionalities always requires multiple successive steps, time-consuming processes, and/or sophisticated protocols, plaguing their clinical applications. Here, a facile one-pot strategy is developed to prepare a skin-inspired multifunctional hydrogel within 30 min by incorporating elastin (an essential functional component of the dermal extracellular matrix), tannic acid, and chitosan into the covalently cross-linked poly(acrylamide) network through noncovalent interactions. The resulting hydrogel exhibits a Young's modulus (ca. 36 kPa) comparable to that of human skin, a high elongation-at-break (ca. 1550%), a satisfactory tensile strength (ca. 61 kPa), and excellent elastic self-restorability, enabling the hydrogel to synchronously and conformally deform with human skin when used as wound dressings. Importantly, the hydrogel displays a self-adhesive property to skin tissues with an appropriate bonding strength (ca. 55 kPa measured on intact porcine skin), endowing the hydrogel with the ability to rapidly self-adhere to intact human skin, sealing the wound surface and also easily being removed without residue left or trauma caused to the skin. The hydrogel also possesses remarkable antibacterial activity, antioxidant capability, and hemocompatibility. All of these collective beneficial properties enable the hydrogel to significantly accelerate the wound healing process, outperforming the commercial wound dressings.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
67
|
Li H, Ren Y, Zhu Y, Tian J, Sun X, Sheng C, He P, Guo S, Zhou H. A Bio-Inspired Trehalose Additive for Reversible Zinc Anodes with Improved Stability and Kinetics. Angew Chem Int Ed Engl 2023; 62:e202310143. [PMID: 37578683 DOI: 10.1002/anie.202310143] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
The moderate reversibility of Zn anodes, as a long-standing challenge in aqueous zinc-ion batteries, promotes the exploration of suitable electrolyte additives continuously. It is crucial to establish the absolute predominance of smooth deposition within multiple interfacial reactions for stable zinc anodes, including suppressing side parasitic reactions and facilitating Zn plating process. Trehalose catches our attention due to the reported mechanisms in sustaining biological stabilization. In this work, the inter-disciplinary application of trehalose is reported in the electrolyte modification for the first time. The pivotal roles of trehalose in suppressed hydrogen evolution and accelerated Zn deposition have been investigated based on the principles of thermodynamics as well as reaction kinetics. The electrodeposit changes from random accumulation of flakes to dense bulk with (002)-plane exposure due to the unlocked crystal-face oriented deposition with trehalose addition. As a result, the highly reversible Zn anode is obtained, exhibiting a high average CE of 99.8 % in the Zn/Cu cell and stable cycling over 1500 h under 9.0 % depth of discharge in the Zn symmetric cell. The designing principles and mechanism analysis in this study could serve as a source of inspiration in exploring novel additives for advanced Zn anodes.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Yu Ren
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiaming Tian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Xinyi Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| | - Chuanchao Sheng
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| | - Ping He
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
68
|
Wang S, Dong Y, Li Y, Ryu K, Dong Z, Chen J, Dai Z, Ke Y, Yin J, Long Y. A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. MATERIALS HORIZONS 2023; 10:4243-4250. [PMID: 37555343 DOI: 10.1039/d3mh00671a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The energy efficiency of buildings has become a critical issue due to their substantial contribution to global energy consumption. Windows, in particular, are often the least efficient component of the building envelope, and conventional smart windows focus solely on regulating solar transmittance while overlooking radiative cooling. Although several recent designs achieved dual-control of solar and radiative cooling, these windows still face limitations in terms of durability, limited modulation ability and energy-saving performance. To address these challenges, we propose a novel dual-control smart window design consisting of a reconfigurable kirigami structure and polydimethylsiloxane-laminated thermochromic hydrogel coated with silver nanowires. In summer, the thermochromic hydrogel turns translucent to suppress the solar heat gain, while the high emissivity kirigami structure covers the exterior surface of the window, promoting radiative cooling. In winter, the hydrogel becomes transparent to allow for solar transmission. Additionally, the kirigami structure undergoes an out-of-plane structural change, opening towards the outside environment to expose the underlying low-emissivity silver nanowires and suppress heat radiation. Our design achieves a promising solar transmittance modulation ability of ∼24% and a good long-wave infrared emissivity regulation ability of 0.5. Furthermore, it exhibits significantly improved durability, which is nine times longer than the lifespan of conventional smart hydrogels. Our novel approach offers a promising solution for constructing energy-efficient and durable smart windows and outperforms existing state-of-the-art solar/radiative cooling dual-regulation smart windows in the literature.
Collapse
Affiliation(s)
- Shancheng Wang
- Department of Electrical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yuting Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Keunhyuk Ryu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhili Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jian Chen
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhendong Dai
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Yi Long
- Department of Electrical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability (IEES), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
69
|
Cui Z, Liu C, Fang S, Xu J, Zhao Z, Fang J, Shen Z, Cong Z, Niu J. Bio-Inspired Conductive Hydrogels with High Toughness and Ultra-Stability as Wearable Human-Machine Interfaces for all Climates. Macromol Rapid Commun 2023; 44:e2300324. [PMID: 37462222 DOI: 10.1002/marc.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Drawing inspiration from Salicornia, a plant with the remarkable ability to thrive in harsh environments, a conductive hydrogel with high toughness and ultra-stability is reported. Specifically, the strategy of pre-cross-linking followed by secondary soaking in saturated salt solutions is introduced to prepare the PAAM-alginate conductive hydrogel with dual cross-linked dual network structure. It allows the alginate network to achieve complete cross-linking, fully leveraging the structural advantages of the PAAM-alginate conductive hydrogel. The highest tensile strength of the obtained conductive hydrogel is 697.3 kPa and the fracture energy can reach 69.59 kJ m-2 , significantly higher than human cartilage and natural rubbers. Specially, by introducing saturated salt solutions within the hydrogel, the colligative properties endow the PAAM-alginate conductive hydrogel with excellent water retention and anti-freezing properties. The prepared conductive hydrogels can work stably in an ambient environment for more than 7 days and still maintain good mechanical behavior and ionic conductivity at -50 °C. Benefiting from the excellent comprehensive performance of conductive hydrogels, wearable human-machine interfaces that can withstand large joint movements and are adapted for extreme environments are prepared to achieve precise control of robots and prostheses, respectively.
Collapse
Affiliation(s)
- Zeyu Cui
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chen Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shiqiang Fang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Junbin Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhi Zhao
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jiaquan Fang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zehao Shen
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Cong
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Niu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
70
|
Lu H, Li X, Tian T, Yang H, Quan G, Zhang Y, Huang H. The pH-responsiveness carrier of sanxan gel beads crosslinked with CaCl 2 to control drug release. Int J Biol Macromol 2023; 250:126298. [PMID: 37573917 DOI: 10.1016/j.ijbiomac.2023.126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Natural polysaccharide-based gel carriers have been widely studied for their potential to provide slow and controlled release. Sanxan is an edible polysaccharide produced by Sphingomonas sanxanigenens. In this study, gel beads were prepared using the extrusion dripping method with sanxan as the carrier material and HCl and CaCl2 as the fixing solution. The molecular structure, texture profile, and microstructure of the bead were analyzed. And the swelling characterization and in vitro release of beads were evaluated. The results of Fourier-transform infrared analysis indicate that Ca2+ was used to create an ionically crosslinked structure of sanxan. Texture analyzer and scanning electron microscope studies showed that the acid‑calcium gel exhibited physical resistance and resilience, as well as a distinct gel pore structure. The swelling, dissolution, and drug release of the beads decreased as the amount of CaCl2 increased. Compared to the control (without CaCl2), the release of sanxan beads when 0.5 CaCl2 was added (sanxan carboxyl/Ca2+, by the number of moles M/M) in the stomach and small intestine release decreased by 40.9 % and 49.5 %, respectively. This study indicates that the fabrication of sanxan-Ca2+ crosslinked gel had sustained release characteristics, indicating that sanxan carriers have great potential for gradual and regulated medication delivery.
Collapse
Affiliation(s)
- Hegang Lu
- Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Li
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Tian Tian
- Tianjin Agricultural University, Tianjin 300392, China
| | - Hongpeng Yang
- Tianjin Agricultural University, Tianjin 300392, China
| | - Guizhi Quan
- Tianjin Agricultural University, Tianjin 300392, China
| | - Yi Zhang
- Tianjin Agricultural University, Tianjin 300392, China
| | - Haidong Huang
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
71
|
Chen L, Ye J, Gao C, Deng F, Liu W, Zhang Q. Design and fabrication of gelatin-based hydrogel loaded with modified amniotic extracellular matrix for enhanced wound healing. Heliyon 2023; 9:e20521. [PMID: 37790967 PMCID: PMC10543223 DOI: 10.1016/j.heliyon.2023.e20521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Trauma can damage the structural integrity of skin leading to its function being affected. There is an urgent clinical need for innovative therapeutic wound dressings. However, several challenges persist despite the current demands. The development and application of functional dressings offer a novel approach to address skin and subcutaneous soft tissue defects. Amniotic membrane as an ideal biological multifunctional material covering wound surface has been reported in clinic. However, current clinical applications of amniotic membrane still have limitations, such as thinness and mechanically weak. In this paper, we employed decellularized human amniotic membrane (dHAM) as a bioactive extracellular matrix (ECM) and modified it through methacrylate (MA) grafting for engineering purposes, resulting in the photosensitive dECMMA. Subsequently, we utilized a photosensitizer to achieve photopolymerization of dECMMA with GelMA hydrogel, successfully creating a novel composite hydrogel termed dECMMA/GelMA. This composite hydrogel not only inherits the favorable physicochemical properties of hydrogels but also maintains comparable levels of bioactivity to dHAM itself, supporting cell proliferation, migration, angiogenesis, and retaining significant anti-inflammatory capacity. Additionally, we evaluated the reparative effect of the designed dECMMA/GelMA composite hydrogel on rabbit wound defects. We demonstrated that the dECMMA/GelMA promoted wound healing and re-epithelization. These findings highlight the substantial benefits and therapeutic potential of the dECMMA/GelMA composite hydrogel as a practical solution for clinical applications in the treatment of soft tissue damage. Furthermore, this research provides a new strategy for designing and manufacturing bioactive dressings with exceptional clinical efficacy in the future.
Collapse
Affiliation(s)
- Lifa Chen
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - JueLan Ye
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Chong Gao
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Fei Deng
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Wei Liu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian, Jiangsu, 223812, PR China
| | - Qiang Zhang
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
72
|
Qiao C, Fu L, Lv X, Wang S, Ling Y, Xu C, Lin B, Wei Y. Hybrid cross-linked sodium carboxymethyl starch/polyacrylamide flexible sensing hydrogels with adhesion, antimicrobial properties and multiple responses. Int J Biol Macromol 2023; 249:126020. [PMID: 37516221 DOI: 10.1016/j.ijbiomac.2023.126020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Ionic hydrogels used as ideal and flexible strain sensor materials should have excellent mechanical, adhesive and antimicrobial properties. However, it is challenging to achieve these multifunctional requirements simultaneously. Herein, we designed and prepared a multifunctional ionic hydrogel with a multi-length tentacle bentonite backbone to initiate the free radical polymerization of acrylic acid bentonite (AABT) and acrylamide (AAm). The interactions of covalent cross-linking, hydrogen bonding cross-linking, charge interactions and physical entanglement between hybrid polyacrylamide-AABT (PAAm-AABT), sodium carboxymethyl starch (SCMS) and PAAm form an multi-in-one hybrid supramolecular network hydrogel (CABZ). This CABZ ion-conductive hydrogel is capable of detecting weak deformation with a detection limit of 1 % strain, high tensile properties of 995 %, excellent strength of 254.5 kPa, fast response (≈0.21 s), high sensitivity of 0.86 and high conductivity of 0.37 S/m. In addition, this CABZ ion-conductive hydrogel has impressive adhesion properties with shear adhesion strength up to 50.78 kPa and broad-spectrum antibacterial properties achieved by AABT-loaded ZnO nanoparticles. Through special AABT hybrid cross-linking, the CABZ ion-conductive hydrogel achieves stable mechanical properties, highly sensitive signal response and antimicrobial properties, which will make it a good choice for flexible wearable sensor materials.
Collapse
Affiliation(s)
- Changyu Qiao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xiaohua Lv
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuxiao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yufei Ling
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
73
|
Hafeez S, Decarli MC, Aldana A, Ebrahimi M, Ruiter FAA, Duimel H, van Blitterswijk C, Pitet LM, Moroni L, Baker MB. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301242. [PMID: 37370137 DOI: 10.1002/adma.202301242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Agustina Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mahsa Ebrahimi
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology- Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging Institute, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
74
|
Chen Z, Liu H, Lin X, Mei X, Lyu W, Liao Y. Competitive proton-trapping strategy enhanced anti-freezing organohydrogel fibers for high-strain-sensitivity wearable sensors. MATERIALS HORIZONS 2023; 10:3569-3581. [PMID: 37306627 DOI: 10.1039/d3mh00459g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable organohydrogel fibers are attracting considerable interest for next-generation flexible and wearable soft strain sensors due to their excellent stability in harsh environments. However, due to the uniformly distributed ions and reduced number of carriers in the whole material, the sensitivity of organohydrogel fibers under subzero temperature is not desirable, which significantly hinders their practical application. Herein, a newly competitive proton-trapping strategy was designed to obtain anti-freezing organohydrogel fibers for high-performance wearable strain sensors via a simple freezing-thawing process, in which tetraaniline (TANI), serving as the proton trapper, and representing the shortest repeated structural unit of polyaniline (PANI), was physically crosslinked with polyvinyl alcohol (PVA) (PTOH). The as-prepared PTOH fiber exhibited an outstanding sensing performance at -40 °C due to the unevenly distributed ion carriers and the highly breakable proton-migration pathways, with a high gauge factor of 24.6 at a strain of 200-300%. Moreover, the existence of hydrogen bonds between the TANI and PVA chains endowed PTOH with a high tensile strength (1.96 MPa) and toughness (8.0 MJ m-3). Accordingly, strain sensors made from PTOH fibers and knitted textiles could monitor human motions rapidly and sensitively, demonstrating their potential as wearable anti-freezing anisotropic strain sensors.
Collapse
Affiliation(s)
- Zhujun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xinyiming Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xianming Mei
- Tengfei Technology Limited Company, Kunshan, 215000, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
75
|
Wang Y, Yang M, Zhao Z. Facile fabrication of self-healing, injectable and antimicrobial cationic guar gum hydrogel dressings driven by hydrogen bonds. Carbohydr Polym 2023; 310:120723. [PMID: 36925248 DOI: 10.1016/j.carbpol.2023.120723] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Developing self-healing polysaccharide hydrogels offers a promising strategy for the healing of full-thickness skin wounds. However, the green and facile fabrication of self-healing polysaccharide hydrogel dressings is challenging. Herein, a novel hydrogen-bonded polysaccharide hydrogel consisting only of cationic guar gum (CG) and CuCl2 was developed by simply mixing CG and Cu2+ solution. A strong enough intermolecular hydrogen bonding could be formed between ipsilateral hydroxyl groups to induce rapid gelation. Benefiting from dynamic and reversible linkages, cationic guar gum-Cu2+ (CG-Cu) hydrogels exhibited self-healing, injectable and self-adaption. The CG-Cu hydrogels possessed favorable mechanical strength (compression strength: 50-89 kPa), excellent biocompatibility (cell viability: >95 %; hemolysis ratio: < 5 %) and satisfying antibacterial ability. In vivo degradation tests showed that the CG-Cu hydrogels could be completely degraded after 21 days. Furthermore, in-situ injected CG-Cu hydrogel dressings could perfectly cover wounds to reduce risk of infection and accelerated full-thickness skin generation. In conclusion, this study may provide a new simple and straightforward strategy to prepare self-healing polysaccharide hydrogels based on hydrogen bonding to expand its application in the field of biomedicine and tissue regeneration.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mingrui Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| |
Collapse
|
76
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
77
|
Hou LX, Ju H, Hao XP, Zhang H, Zhang L, He Z, Wang J, Zheng Q, Wu ZL. Intrinsic Anti-Freezing and Unique Phosphorescence of Glassy Hydrogels with Ultrahigh Stiffness and Toughness at Low Temperatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300244. [PMID: 36821869 DOI: 10.1002/adma.202300244] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Indexed: 05/26/2023]
Abstract
Most hydrogels become frozen at subzero temperatures, leading to degraded properties and limited applications. Cryoprotectants are massively employed to improve anti-freezing property of hydrogels; however, there are accompanied disadvantages, such as varied networks, reduced mechanical properties, and the risk of cryoprotectant leakage in aqueous conditions. Reported here is the glassy hydrogel having intrinsic anti-freezing capacity and excellent optical and mechanical properties at ultra-low temperatures. Supramolecular hydrogel of poly(acrylamide-co-methacrylic acid) with moderate water content (≈50 wt.%) and dense hydrogen-bond associations is in a glassy state at room temperature. Since hydrogen bonds become strengthened as the temperature decreases, this gel becomes stronger and stiffer, yet still ductile, with Young's modulus of 900 MPa, tensile strength of 30 MPa, and breaking strain of 35% at -45 °C. This gel retains high transparency even in liquid nitrogen. It also exhibits unique phosphorescence due to presence of carbonyl clusters, which is further enhanced at subzero temperatures. Further investigations elucidate that the intrinsic anti-freezing property is related to a fact that most water molecules are tightly bound and confined in the glassy matrix and become non-freezable. This correlation, as validated in several systems, provides a roadmap to develop intrinsic anti-freezing hydrogels for widespread applications at extreme conditions.
Collapse
Affiliation(s)
- Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Huaqiang Ju
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haoke Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Zhang
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhiyuan He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianjun Wang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
78
|
Li Q, He C, Wang C, Huang Y, Yu J, Wang C, Li W, Zhang X, Zhang F, Qing G. Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207932. [PMID: 37052499 DOI: 10.1002/smll.202207932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Self-assembly of cellulose nanocrystals (CNCs) is invaluable for the development of sustainable optics and photonics. However, the functional failure of CNC-derived materials in humid or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices. Here, a facile and robust method to fabricate insoluble hydrogels in a self-assembled CNC-polyvinyl alcohol (PVA) system is reported. Due to the reconstruction of inter- or intra-molecular hydrogen bond interactions, thermal dehydration makes an optimized CNC/PVA photonic film form a stable hydrogel network in an aqueous solution rather than dissolve. Notably, the resulting hydrogel exhibits superb mechanical performance (stress up to 3.3 Mpa and tough up to 0.73 MJ m-3 ) and reversible conversion between dry and wet states, enabling it convenient for specific functionalization. Sodium alginate (SA) can be adsorbed into the CNC photonic structure by swelling dry CNC/PVA film in a SA solution. The prepared hydrogel showcases the comprehensive properties of freezing resistance (-20°C), strong adhesion, satisfactory biocompatibility, and highly sensitive and selective Ca2+ sensing. The material could act as a portable wearable patch on the skin for the continuous analysis of calcium trends during different physical exercises, facilitating their development in precision nutrition and health monitoring.
Collapse
Affiliation(s)
- Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenchen He
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuxiao Huang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiaqi Yu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chunbo Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
79
|
Zeng X, Xu L, Xia X, Bai X, Zhong C, Fan J, Ren L, Sun R, Zeng X. The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207409. [PMID: 36683211 DOI: 10.1002/smll.202207409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Elastomers are regarded as one of the best candidates for the matrix material of soft electronics, yet they are susceptible to fracture due to the inevitable flaws generated during applications. Introducing microstructures, sacrificial bonds, and sliding cross-linking has been recognized as an effective way to improve the flaw insensitivity rate (Rinsen ). However, these elastomers still prone to failure under tensile loads with the presence of even small flaws. Here, this work reports a polybutadiene elastomer with unprecedented Rinsen via the synergy of hydrogen bond and entanglement. The resulting polybutadiene elastomer exhibits a Rinsen ≈1.075, which is much higher than those of reported elastomers. By molecular chain interaction and molecular chain conformation analysis, this work demonstrates that the synergistic effect of hydrogen bond dissociation and entanglement slip in the polybutadiene elastomers during stretching leads to the high Rinsen . Using polybutadiene elastomer as matrix of thermal interface materials, this work demonstrates effective heat transfer for strain sensor and electronic devices. In addition, cytocompatibility of the elastomers is verified by cell proliferation and live/dead viability assays. The combination of outstanding biocompatible and excellent mechanical properties of the elastomers creates new opportunities for their applications in electronic skin.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Xue Bai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cheng Zhong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
80
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
81
|
Xu L, Qiao Y, Qiu D. Coordinatively Stiffen and Toughen Hydrogels with Adaptable Crystal-Domain Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209913. [PMID: 36628947 DOI: 10.1002/adma.202209913] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Conventional hydrogels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications as load-bearing materials. Herein, an adaptable crystal-domain cross-linking design is reported to overcome this inherent trade-off for hydrogels by taking full advantage of both deformation-resisting and energy-dissipating capacities of cross-linking points. Through solvent exchange to homogenize the polymer network, followed by salting out to foster crystallization, a class of sal-exogels with high number densities of uniform crystalline domains embedded in homogeneous networks is constructed. During the deformation, those adaptive crystalline domains initially survive to arrest deformation, while later gradually disentangle to efficiently dissipate energy, crucial to the realization of the desirable compatibility between stiffness and toughness. The resultant sal-exogel achieves coordinatively enhanced stiffness (52.3 ± 2.7 MPa) and toughness (120.7 ± 11.7 kJ m-2 ), reconciling the challenging trade-off between them. This finding provides a practical and universal route to design stiff and tough hydrogels and has a profound impact on many applications requiring hydrogels with such combined mechanical properties.
Collapse
Affiliation(s)
- Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
82
|
Tian H, Wang C, Chen Y, Zheng L, Jing H, Xu L, Wang X, Liu Y, Hao J. Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. SCIENCE ADVANCES 2023; 9:eadd6950. [PMID: 36791203 PMCID: PMC9931204 DOI: 10.1126/sciadv.add6950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Ion-conductive hydrogels, with ions as signal carriers, have become promising candidates to construct functional ionotronics for sensing, actuating, and robotics engineering. However, rational modulation of ionic migration to mimic biological information processing, including learning and memory, remains challenging to be realized in hydrogel materials. Here, we develop a hybrid hydrogel with optically modulated ionic conductivity to emulate the functions of a biological synapse. Through a responsive supramolecular approach, optical stimuli can trigger the release of mobile ions for tuning the conductivity of the hydrogel, which is analogous to the modulation of synaptic plasticity. As a proof of concept, this hydrogel can be used as an information processing unit to perceive different optical stimuli and regulate the grasping motion of a robotic hand, performing logical motion feedback with "learning-experience" function. Our ionic hydrogel provides a valuable strategy toward developing bioinspired ionotronic systems and pushes forward the functional applications of hydrogel materials.
Collapse
Affiliation(s)
- Huasheng Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Chen Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | - Yuwei Chen
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | - Liping Zheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Lin Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Xuanqi Wang
- School of Software, Shandong University, Jinan, Shandong, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
83
|
Abstract
Soft materials fail by crack propagation under external loads. While fracture toughness of a soft material can be enhanced by orders of magnitude, its fatigue threshold remains insusceptible. In this work, we demonstrate a crack tip softening (CTS) concept to simultaneously improve the toughness and threshold of a single polymeric network. Polyacrylamide hydrogels have been selected as a model material. The polymer network is cured by two kinds of crosslinkers: a normal crosslinker and a light-degradable crosslinker. We characterize the pristine sample and light-treated sample by shear modulus, fracture toughness, fatigue threshold, and fractocohesive length. Notably, we apply light at the crack tip of a sample so that the light-sensitive crosslinkers degrade, resulting in a CTS sample with a softer and elastic crack tip. The pristine sample has a fracture toughness of 748.3 ± 15.19 J/m2 and a fatigue threshold of 9.3 J/m2. By comparison, the CTS sample has a fracture toughness of 2,774.6 ± 127.14 J/m2 and a fatigue threshold of 33.8 J/m2. Both fracture toughness and fatigue threshold have been enhanced by about four times. We attribute this simultaneous enhancement to stress de-concentration and elastic shielding at the crack tip. Different from the "fiber/matrix composite" concept and the "crystallization at the crack tip" concept, the CTS concept in the present work provides another option to simultaneously enhance the toughness and threshold, which improves the reliability of soft devices during applications.
Collapse
|
84
|
Dong L, Wang M, Wu J, Zhang C, Shi J, Oh K, Yao L, Zhu C, Morikawa H. Fully biofriendly, biodegradable and recyclable hydrogels based on covalent-like hydrogen bond engineering towards multimodal transient electronics. CHEMICAL ENGINEERING JOURNAL 2023; 457:141276. [DOI: 10.1016/j.cej.2023.141276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
85
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
86
|
Duan S, Shi Q, Hong J, Zhu D, Lin Y, Li Y, Lei W, Lee C, Wu J. Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. ACS NANO 2023; 17:1355-1371. [PMID: 36629247 DOI: 10.1021/acsnano.2c09851] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electronic skin (e-skin), mimicking the physical-chemical and sensory properties of human skin, is promising to be applied as robotic skins and skin-attachable wearables with multisensory functionalities. To date, most e-skins are dedicated to sensory function development to mimic human skins in one or several aspects, yet advanced e-skin covering all the hyper-attributes (including both the sensory and physical-chemical properties) of human skins is seldom reported. Herein, a water-modulated biomimetic hyper-attribute-gel (Hygel) e-skin with reversible gel-solid transition is proposed, which exhibits all the desired skin-like physical-chemical properties (stretchability, self-healing, biocompatibility, biodegradability, weak acidity, antibacterial activities, flame retardance, and temperature adaptivity), sensory properties (pressure, temperature, humidity, strain, and contact), function reconfigurability, and evolvability. Then the Hygel e-skin is applied as an on-robot e-skin and skin-attached wearable to demonstrate its highly skin-like attributes in capturing multiple sensory information, reconfiguring desired functions, and excellent skin compatibility for real-time gesture recognition via deep learning. This Hygel e-skin may find more applications in advanced robotics and even skin-replaceable artificial skin.
Collapse
Affiliation(s)
- Shengshun Duan
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Qiongfeng Shi
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Jianlong Hong
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Di Zhu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Yucheng Lin
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Yinghui Li
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Wei Lei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608
| | - Jun Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
87
|
A novel strategy to reinforce double network hydrogels with enhanced mechanical strength and swelling ratio by nano cement hydrates. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
88
|
Zhang G, Guan H, Li J, Li M, Sui X, Tian B, Dong H, Liu B, He Z, Li N, Zhao M, Fu Q. Roles of effective stabilizers in improving oral bioavailability of naringenin nanocrystals: maintenance of supersaturation generated upon dissolution by inhibition of drug dimerization. Asian J Pharm Sci 2022; 17:741-750. [DOI: 10.1016/j.ajps.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022] Open
|
89
|
Wei J, Zhang B, Zhang P, Wei H, Yu Y. Bifunctional Phenol-enabled Sequential Polymerization Strategy for Printable Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200419. [PMID: 35748664 DOI: 10.1002/marc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are promising material candidates in engineering soft robotics, mechanical sensors, biomimetic regenerative medicine, etc. However, developing multinetwork hydrogels with high mechanical properties and excellent printability is still challenging. Here, we report a bifunctional phenol-enabled sequential polymerization (BPSP) strategy to fabricate high-performance multinetwork hydrogels under the orthogonal catalysis of efficient ruthenium photochemistry. Benefiting from this bifunctional design, phenols can sequentially polymerize with typical monomers and themselves to fabricate various phenol-containing polymers (Ph-Ps) and Ph-Ps-based multinetwork tough hydrogels, respectively. The as-prepared hydrogels have maximum stress of 0.75 MPa and toughness of 2.2 MJ/m3 under the critical strain of 800%. These property parameters are a maximum of 16 times higher than that of the phenol-postmodified and phenol-free hydrogels. Moreover, the rapid coupling polymerization of phenols can shorten the gelation times of hydrogels to as low as ∼4 s, which enables its printable property for customizable applications. As a proof of concept, a 3D scaffold-like structure is optimized as highly sensitive mechanical sensors for detecting various human motions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiayi Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
90
|
Preparation of Ion 2+-COS/SA Multifunctional Gel Films for Skin Wound Healing by an In Situ Spray Method. Mar Drugs 2022; 20:md20060401. [PMID: 35736204 PMCID: PMC9227795 DOI: 10.3390/md20060401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
The rapid preparation of safe and efficient wound dressings that meet the needs of the entire repair process remains a major challenge for effective therapeutic wound healing. Natural, sprayable Ion2+-COS/SA multifunctional dual-network gel films created by the in situ coordination of chitooligosaccharide (COS), metal ions and sodium alginate (SA) using casting and an in-situ spray method were synthesized. The gel films exhibited excellent physicochemical properties such as swelling, porosity and plasticity at a COS mass fraction of 3%. Furthermore, at this mass fraction, the addition of bimetallic ions led to the display of multifunctional properties, including significant antioxidant, antibacterial and cytocompatibility properties. In addition, experiments in a total skin defect model showed that this multifunctional gel film accelerates wound healing and promotes skin regeneration. These results suggest that the sprayable Ion2+-COS/SA multifunctional pro-healing gel film may be a promising candidate for the clinical treatment of allodermic wounds.
Collapse
|
91
|
Yao S, Zhao Y, Xu Y, Jin B, Wang M, Yu C, Guo Z, Jiang S, Tang R, Fang X, Fan S. Injectable Dual-Dynamic-Bond Cross-Linked Hydrogel for Highly Efficient Infected Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2200516. [PMID: 35537701 DOI: 10.1002/adhm.202200516] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Indexed: 11/06/2022]
Abstract
Diabetic wound is a significant challenge for clinical treatment with high morbidity and mortality. Plenty of hydrogels with good biocompatibility have been widely used in diabetic wound healing. However, most of them cannot be directly absorbed and utilized by the wounds, which prolongs the regeneration time. Here a new type of healing hydrogel is developed that is based on histidine, a natural dietary essential amino acid that is significant for tissue formation. The amino acid is cross-linked with zinc ions (Zn2+ ) and sodium alginate (SA) via dynamic coordinate and hydrogen bonds, respectively, forming a histidine-SA-Zn2+ (HSZH) hydrogel with good injectable, adhesive, biocompatible, and antibacterial properties. Application of this dual-dynamic-bond cross-linked HSZH hydrogel accelerates the migration and angiogenesis of skin-related cells in vitro. Furthermore, it significantly promotes the healing of infected diabetic wounds in vivo and uniquely allows a full repair of wounds within ≈13 days, while ≈27 days are required for the healing process of the control group. This work provides a new strategy for designing wound dressing materials, that weakly cross-linked material based on tissue-friendly micromolecules can heal the wounds more efficiently than highly cross-linked materials based on long-chain polymers.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Biao Jin
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Monian Wang
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| | - Congcong Yu
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| | - Zhengxi Guo
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shengnan Jiang
- Department of Infectious Diseases Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| | - Shunwu Fan
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang 310016 China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Hangzhou Zhejiang 310016 China
| |
Collapse
|
92
|
Xue W, Yang R, Liu S, Pu Y, Wang P, Zhang W, Tan X, Chi B. Ascidian-inspired aciduric hydrogels with high stretchability and adhesiveness promote gastric hemostasis and wound healing. Biomater Sci 2022; 10:2417-2427. [PMID: 35393995 DOI: 10.1039/d2bm00183g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesives for gastric hemorrhage are of great clinical significance. However, it remains a major challenge in clinics due to its poor stability under acidic environments and low adhesion to wet tissues. Herein, inspired by the high adhesiveness of the ascidian secretory protein, we designed a series of aciduric bionic hydrogel adhesives (PDTAs) based on poly(γ-glutamic acid) (γ-PGA) and tannic acid (TA). The formation of hydrogel adhesives was attributed to the abundant hydrogen bonds between amide groups of PGA-DA and polyphenol groups of TA. These hydrogel adhesives exhibited enhanced wet tissue adhesion (400%), higher stretchability (800% elongation), and aciduric stability (7 days) compared with commercial fibrin glue. Rodent wound models indicated that the hydrogel adhesives demonstrated significant healing promotion due to ameliorating collagen deposition and angiogenesis. These hydrogel adhesives show great potential in treating gastric hemorrhages and promoting wound healing.
Collapse
Affiliation(s)
- Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|