51
|
Baker A, Audit B, Yang SCH, Bechhoefer J, Arneodo A. Inferring where and when replication initiates from genome-wide replication timing data. PHYSICAL REVIEW LETTERS 2012; 108:268101. [PMID: 23005017 DOI: 10.1103/physrevlett.108.268101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Indexed: 06/01/2023]
Abstract
Based on an analogy between DNA replication and one dimensional nucleation-and-growth processes, various attempts to infer the local initiation rate I(x,t) of DNA replication origins from replication timing data have been developed in the framework of phase transition kinetics theories. These works have all used curve-fit strategies to estimate I(x,t) from genome-wide replication timing data. Here, we show how to invert analytically the Kolmogorov-Johnson-Mehl-Avrami model and extract I(x,t) directly. Tests on both simulated and experimental budding-yeast data confirm the location and firing-time distribution of replication origins.
Collapse
Affiliation(s)
- A Baker
- Université de Lyon, F-69000 Lyon, France, and Laboratoire de Physique, ENS de Lyon, CNRS, F-69007 Lyon, France
| | | | | | | | | |
Collapse
|
52
|
Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, Steinmann KE, Bochicchio J, Russ C, Regev A, Rando OJ, Nusbaum C, Niki H, Milos P, Weng Z, Rhind N. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 2012; 13:R27. [PMID: 22531001 PMCID: PMC3446301 DOI: 10.1186/gb-2012-13-4-r27] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 01/13/2023] Open
Abstract
Background DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood. Results We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions. Conclusions The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.
Collapse
Affiliation(s)
- Jia Xu
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Regulation of cell cycle progression by forkhead transcription factor FOXO3 through its binding partner DNA replication factor Cdt1. Proc Natl Acad Sci U S A 2012; 109:5717-22. [PMID: 22451935 DOI: 10.1073/pnas.1203210109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To ensure genome stability, DNA must be replicated once and only once during each cell cycle. Cdt1 is tightly regulated to make sure that cells do not rereplicate their DNA. Multiple regulatory mechanisms operate to ensure degradation of Cdt1 in S phase. However, little is known about the positive regulators of Cdt1 under physiological conditions. Here we identify FOXO3 as a binding partner of Cdt1. FOXO3 forms a protein complex with Cdt1, which in turn blocks its interaction with DDB1 and PCNA. Conversely, FOXO3 depletion facilitated the proteolysis of Cdt1 in unperturbed cells. Intriguingly, FOXO3 deficiency resulted in impaired S-phase entry and reduced cell proliferation. We provide data that FOXO3 knockdown mimics Cdt1 down-regulation and affects G1/S transitions. Our results demonstrate a unique role of FOXO3 in binding to Cdt1 and maintaining its level required for cell cycle progression.
Collapse
|
54
|
Stokke C, Flåtten I, Skarstad K. An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature. PLoS One 2012; 7:e30981. [PMID: 22348034 PMCID: PMC3278402 DOI: 10.1371/journal.pone.0030981] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/30/2011] [Indexed: 11/18/2022] Open
Abstract
Many studies are performed on chromosome replication and segregation in Escherichia coli and other bacteria capable of complex replication with C phases spanning several generations. For such investigations an understanding of the replication patterns, including copy numbers of origins and replication forks, is crucial for correct interpretation of the results.Flow cytometry is an important tool for generation of experimental DNA distributions of cell populations. Here, a Visual Basic based simulation program was written for the computation of theoretical DNA distributions for different choices of cell cycle parameters (C and D phase durations, doubling time etc). These cell cycle parameters can be iterated until the best fit between the experimental and theoretical DNA histograms is obtained. The Excel file containing the simulation software is attached as supporting information.Cultures of Escherichia coli were grown at twelve different media and temperature conditions, with following measurements by flow cytometry and simulation of the DNA distributions. A good fit was found for each growth condition by use of our simulation program. The resulting cell cycle parameters displayed clear inter-media differences in replication patterns, but indicated a high degree of temperature independence for each medium. The exception was the poorest medium (acetate), where the cells grew with overlapping replication cycles at 42 °C, but without at the lower temperatures.We have developed an easy-to-use tool for determination of bacteria's cell cycle parameters, and consequently the cells' chromosome configurations. The procedure only requires DNA distribution measurements by flow cytometry. Use of this simulation program for E. coli cultures shows that even cells growing quite slowly can have overlapping replication cycles. It is therefore always important not only to assume cells' replication patterns, but to actually determine the cell cycle parameters when changing growth conditions.
Collapse
Affiliation(s)
- Caroline Stokke
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
55
|
The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:794-801. [PMID: 22342530 DOI: 10.1016/j.bbagrm.2012.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/04/2023]
Abstract
The entire cellular genome must replicate during each cell cycle, but it is yet unclear how replication proceeds along with chromatin condensation and remodeling while ensuring the fidelity of the replicated genome. Mapping replication initiation sites can provide clues for the coordination of DNA replication and transcription on a whole-genome scale. Here we discuss recent insights obtained from genome-scale analyses of replication initiation sites and transcription in mammalian cells and ask how transcription and chromatin modifications affect the frequency of replication initiation events. We also discuss DNA sequences, such as insulators and replicators, which modulate replication and transcription of target genes, and use genome-wide maps of replication initiation sites to evaluate possible commonalities between replicators and chromatin insulators. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
56
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
57
|
Ortega MA, Sil P, Ward WS. Mammalian sperm chromatin as a model for chromatin function in DNA degradation and DNA replication. Syst Biol Reprod Med 2011; 57:43-9. [PMID: 21204750 DOI: 10.3109/19396368.2010.505679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reproductive biology is considered a specialty field, however, an argument can be made that it is instead generally applicable to many fields of biology. The one-cell embryo is presented here as a model system for the study of eukaryotic DNA replication, apoptotic DNA degradation, and signaling mechanisms between the cytoplasm and nucleus. Two unique aspects of this system combine to make it particularly useful for the study of chromatin function. First, the evolutionary pressure that lead to the extreme condensation of mammalian sperm DNA resulted in a cell with virtually inert chromatin, no DNA replication or transcription ongoing in the sperm cell, and all of the cells in a G(0) state. This chromatin is suddenly transformed into actively transcribing and replicating DNA upon fertilization. Therefore, the sperm chromatin is poised to become active but does not yet possess sufficient components present in somatic chromatin structure for all these processes. The second unique aspect of this system is that the one cell embryo houses two distinct nuclei, termed pronuclei, through the first round of DNA synthesis. This means the sperm cell can be experimentally manipulated to test the affects of the various treatments on the biological functions of interest. Experimental manipulations of the system have already revealed a certain level of plasticity in the coordination of both the timing of DNA synthesis in the two pronuclei and in the response to cellular signals by each pronucleus involved with the progression through the G1/S checkpoint, including the degradation of DNA in the paternal pronucleus. The fact that two nuclei in the same cytoplasm can undergo different responses infers a level of autonomy in the nuclear control of the cell cycle. Thus, the features of mammalian fertilization can provide unique insights for the normal biology of the cell cycle in somatic cells.
Collapse
Affiliation(s)
- Michael A Ortega
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, HI 96822, USA
| | | | | |
Collapse
|
58
|
Ott E, Norio P, Ritzi M, Schildkraut C, Schepers A. The dyad symmetry element of Epstein-Barr virus is a dominant but dispensable replication origin. PLoS One 2011; 6:e18609. [PMID: 21603652 PMCID: PMC3095595 DOI: 10.1371/journal.pone.0018609] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/07/2011] [Indexed: 01/13/2023] Open
Abstract
OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites.
Collapse
Affiliation(s)
- Elisabeth Ott
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Paolo Norio
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
| | - Marion Ritzi
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Carl Schildkraut
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AS); (CS)
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
- * E-mail: (AS); (CS)
| |
Collapse
|
59
|
Stokke C, Waldminghaus T, Skarstad K. Replication patterns and organization of replication forks in Vibrio cholerae. MICROBIOLOGY-SGM 2010; 157:695-708. [PMID: 21163839 DOI: 10.1099/mic.0.045112-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated the replication patterns of the two chromosomes of the bacterium Vibrio cholerae grown in four different media. By combining flow cytometry and quantitative real-time PCR with computer simulations, we show that in rich media, V. cholerae cells grow with overlapping replication cycles of both the large chromosome (ChrI) and the small chromosome (ChrII). In Luria-Bertani (LB) medium, initiation occurs at four copies of the ChrI origin and two copies of the ChrII origin. Replication of ChrII was found to occur at the end of the ChrI replication period in all four growth conditions. Novel cell-sorting experiments with marker frequency analysis support these conclusions. Incubation with protein synthesis inhibitors indicated that the potential for initiation of replication of ChrII was present at the same time as that of ChrI, but was actively delayed until much of ChrI was replicated. Investigations of the localization of SeqA bound to new DNA at replication forks indicated that the forks were co-localized in pairs when cells grew without overlapping replication cycles and in higher-order structures during more rapid growth. The increased degree of fork organization during rapid growth may be a means by which correct segregation of daughter molecules is facilitated.
Collapse
Affiliation(s)
- Caroline Stokke
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
60
|
Abstract
Chromatin consists of DNA and a large number of associated proteins. Filion et al. (2010) provide a genome-wide analysis of the location of 53 chromatin proteins in Drosophila, revealing important principles underlying chromatin regulation and providing colorful insights into their organization.
Collapse
Affiliation(s)
- Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
61
|
Flynn KM, Vohr SH, Hatcher PJ, Cooper VS. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol Evol 2010; 2:859-69. [PMID: 20978102 PMCID: PMC3000693 DOI: 10.1093/gbe/evq068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In bacterial chromosomes, the position of a gene relative to the single origin of replication generally reflects its replication timing, how often it is expressed, and consequently, its rate of evolution. However, because some archaeal genomes contain multiple origins of replication, bias in gene dosage caused by delayed replication should be minimized and hence the substitution rate of genes should associate less with chromosome position. To test this hypothesis, six archaeal genomes from the genus Sulfolobus containing three origins of replication were selected, conserved orthologs were identified, and the evolutionary rates (dN and dS) of these orthologs were quantified. Ortholog families were grouped by their consensus position and designated by their proximity to one of the three origins (O1, O2, O3). Conserved orthologs were concentrated near the origins and most variation in genome content occurred distant from the origins. Linear regressions of both synonymous and nonsynonymous substitution rates on distance from replication origins were significantly positive, the rates being greatest in the region furthest from any of the origins and slowest among genes near the origins. Genes near O1 also evolved faster than those near O2 and O3, which suggest that this origin may fire later in the cell cycle. Increased evolutionary rates and gene dispensability are strongly associated with reduced gene expression caused in part by reduced gene dosage during the cell cycle. Therefore, in this genus of Archaea as well as in many Bacteria, evolutionary rates and variation in genome content associate with replication timing.
Collapse
Affiliation(s)
- Kenneth M Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, USA
| | | | | | | |
Collapse
|
62
|
Chuang CH, Wallace MD, Abratte C, Southard T, Schimenti JC. Incremental genetic perturbations to MCM2-7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress. PLoS Genet 2010; 6:e1001110. [PMID: 20838603 PMCID: PMC2936539 DOI: 10.1371/journal.pgen.1001110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022] Open
Abstract
Mutations causing replication stress can lead to genomic instability (GIN). In vitro studies have shown that drastic depletion of the MCM2-7 DNA replication licensing factors, which form the replicative helicase, can cause GIN and cell proliferation defects that are exacerbated under conditions of replication stress. To explore the effects of incrementally attenuated replication licensing in whole animals, we generated and analyzed the phenotypes of mice that were hemizygous for Mcm2, 3, 4, 6, and 7 null alleles, combinations thereof, and also in conjunction with the hypomorphic Mcm4(Chaos3) cancer susceptibility allele. Mcm4(Chaos3/Chaos3) embryonic fibroblasts have ∼40% reduction in all MCM proteins, coincident with reduced Mcm2-7 mRNA. Further genetic reductions of Mcm2, 6, or 7 in this background caused various phenotypes including synthetic lethality, growth retardation, decreased cellular proliferation, GIN, and early onset cancer. Remarkably, heterozygosity for Mcm3 rescued many of these defects. Consistent with a role in MCM nuclear export possessed by the yeast Mcm3 ortholog, the phenotypic rescues correlated with increased chromatin-bound MCMs, and also higher levels of nuclear MCM2 during S phase. The genetic, molecular and phenotypic data demonstrate that relatively minor quantitative alterations of MCM expression, homeostasis or subcellular distribution can have diverse and serious consequences upon development and confer cancer susceptibility. The results support the notion that the normally high levels of MCMs in cells are needed not only for activating the basal set of replication origins, but also "backup" origins that are recruited in times of replication stress to ensure complete replication of the genome.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Marsha D. Wallace
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Christian Abratte
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Teresa Southard
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
63
|
Abstract
Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins.
Collapse
|
64
|
Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J 2010; 29:3260-71. [PMID: 20808282 DOI: 10.1038/emboj.2010.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022] Open
Abstract
DNA replication, repair, transcription and chromatin structure are intricately associated nuclear processes, but the molecular links between these events are often obscure. In this study, we have surveyed the protein complexes that bind at β-globin locus control region, and purified and characterized the function of one such multiprotein complex from human erythroleukemic K562 cells. We further validated the existence of this complex in human CD34+ cell-derived normal erythroid cells. This complex contains ILF2/ILF3 transcription factors, p300 acetyltransferase and proteins associated with DNA replication, transcription and repair. RNAi knockdown of ILF2, a DNA-binding component of this complex, abrogates the recruitment of the complex to its cognate DNA sequence and inhibits transcription, histone acetylation and usage of the origin of DNA replication at the β-globin locus. These results imply a direct link between mammalian DNA replication, transcription and histone acetylation mediated by a single multiprotein complex.
Collapse
Affiliation(s)
- Subhradip Karmakar
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
65
|
Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2010; 120:39-46. [DOI: 10.1007/s00412-010-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/22/2010] [Accepted: 07/17/2010] [Indexed: 01/22/2023]
|
66
|
Abstract
The discovery of the DNA double helix structure half a century ago immediately suggested a mechanism for its duplication by semi-conservative copying of the nucleotide sequence into two DNA daughter strands. Shortly after, a second fundamental step toward the elucidation of the mechanism of DNA replication was taken with the isolation of the first enzyme able to polymerize DNA from a template. In the subsequent years, the basic mechanism of DNA replication and its enzymatic machinery components were elucidated, mostly through genetic approaches and in vitro biochemistry. Most recently, the spatial and temporal organization of the DNA replication process in vivo within the context of chromatin and inside the intact cell are finally beginning to be elucidated. On the one hand, recent advances in genome-wide high throughput techniques are providing a new wave of information on the progression of genome replication at high spatial resolution. On the other hand, novel super-resolution microscopy techniques are just starting to give us the first glimpses of how DNA replication is organized within the context of single intact cells with high spatial resolution. The integration of these data with time lapse microscopy analysis will give us the ability to film and dissect the replication of the genome in situ and in real time.
Collapse
Affiliation(s)
- Vadim O Chagin
- Department of Biology, Technische Universität Darmstadt, Germany
| | | | | |
Collapse
|
67
|
Kong SG, Fan WL, Chen HD, Hsu ZT, Zhou N, Zheng B, Lee HC. Inverse symmetry in complete genomes and whole-genome inverse duplication. PLoS One 2009; 4:e7553. [PMID: 19898631 PMCID: PMC2771390 DOI: 10.1371/journal.pone.0007553] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/22/2009] [Indexed: 12/18/2022] Open
Abstract
The cause of symmetry is usually subtle, and its study often leads to a deeper understanding of the bearer of the symmetry. To gain insight into the dynamics driving the growth and evolution of genomes, we conducted a comprehensive study of textual symmetries in 786 complete chromosomes. We focused on symmetry based on our belief that, in spite of their extreme diversity, genomes must share common dynamical principles and mechanisms that drive their growth and evolution, and that the most robust footprints of such dynamics are symmetry related. We found that while complement and reverse symmetries are essentially absent in genomic sequences, inverse-complement plus reverse-symmetry is prevalent in complex patterns in most chromosomes, a vast majority of which have near maximum global inverse symmetry. We also discovered relations that can quantitatively account for the long observed but unexplained phenomenon of -mer skews in genomes. Our results suggest segmental and whole-genome inverse duplications are important mechanisms in genome growth and evolution, probably because they are efficient means by which the genome can exploit its double-stranded structure to enrich its code-inventory.
Collapse
Affiliation(s)
- Sing-Guan Kong
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China
| | - Wen-Lang Fan
- Department of Physics, National Central University, Chungli, Taiwan, Republic of China
| | - Hong-Da Chen
- Department of Physics, National Central University, Chungli, Taiwan, Republic of China
| | - Zi-Ting Hsu
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China
| | - Nengji Zhou
- Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang, China
- National Center for Theoretical Science, Shinchu, Taiwan, Republic of China
| | - Bo Zheng
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China
| | - Hoong-Chien Lee
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan, Republic of China
- Department of Physics, National Central University, Chungli, Taiwan, Republic of China
- Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang, China
- National Center for Theoretical Science, Shinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
68
|
Krude T, Christov CP, Hyrien O, Marheineke K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J Cell Sci 2009; 122:2836-45. [PMID: 19657016 DOI: 10.1242/jcs.047563] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-coding Y RNAs have recently been identified as essential novel factors for chromosomal DNA replication in mammalian cell nuclei, but mechanistic details of their function have not been defined. Here, we identify the execution point for Y RNA function during chromosomal DNA replication in a mammalian cell-free system. We determined the effect of degradation of Y3 RNA on replication origin activation and on fork progression rates at single-molecule resolution by DNA combing and nascent-strand analysis. Degradation of Y3 RNA inhibits the establishment of new DNA replication forks at the G1- to S-phase transition and during S phase. This inhibition is negated by addition of exogenous Y1 RNA. By contrast, progression rates of DNA replication forks are not affected by degradation of Y3 RNA or supplementation with exogenous Y1 RNA. These data indicate that Y RNAs are required for the establishment, but not for the elongation, of chromosomal DNA replication forks in mammalian cell nuclei. We conclude that the execution point for non-coding Y RNA function is the activation of chromosomal DNA replication origins.
Collapse
Affiliation(s)
- Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| | | | | | | |
Collapse
|
69
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
70
|
Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J, Bouhassira EE. Predictable dynamic program of timing of DNA replication in human cells. Genome Res 2009; 19:2288-99. [PMID: 19767418 DOI: 10.1101/gr.094060.109] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The organization of mammalian DNA replication is poorly understood. We have produced high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal, and embryonic stem (ES) cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy-number variations during S phase to produce replication timing profiles. We first obtained timing maps of 3% of the genome using high-density oligonucleotide tiling arrays and then extended the TimEX method genome-wide using massively parallel sequencing. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation, where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by single molecule analysis of replicated DNA (SMARD). Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarters of S phase. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue-specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid-firing origins are located near moderately expressed genes, and that late-firing origins are located far from genes.
Collapse
Affiliation(s)
- Romain Desprat
- Department of Medicine and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Stepankiw N, Kaidow A, Boye E, Bates D. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication. Mol Microbiol 2009; 74:467-79. [PMID: 19737351 DOI: 10.1111/j.1365-2958.2009.06877.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
72
|
Kumar D, Minocha N, Rajanala K, Saha S. The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani. MICROBIOLOGY-SGM 2009; 155:3748-3757. [PMID: 19729406 DOI: 10.1099/mic.0.033217-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA replication in eukaryotes is a highly conserved process marked by the licensing of multiple origins, with pre-replication complex assembly in G1 phase, followed by the onset of replication at these origins in S phase. The two strands replicate by different mechanisms, and DNA synthesis is brought about by the activity of the replicative DNA polymerases Pol delta and Pol epsilon. Proliferating cell nuclear antigen (PCNA) augments the processivity of these polymerases by serving as a DNA sliding clamp protein. This study reports the cloning of PCNA from the protozoan Leishmania donovani, which is the causative agent of the systemic disease visceral leishmaniasis. PCNA was demonstrated to be robustly expressed in actively proliferating L. donovani promastigotes. We found that the protein was present primarily in the nucleus throughout the cell cycle, and it was found in both proliferating procyclic and metacyclic promastigotes. However, levels of expression of PCNA varied through cell cycle progression, with maximum expression evident in G1 and S phases. The subnuclear pattern of expression of PCNA differed in different stages of the cell cycle; it formed distinct subnuclear foci in S phase, while it was distributed in a more diffuse pattern in G2/M phase and post-mitotic phase cells. These subnuclear foci are the sites of active DNA replication, suggesting that replication factories exist in Leishmania, as they do in higher eukaryotes, thus opening avenues for investigating other Leishmania proteins that are involved in DNA replication as part of these replication factories.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Neha Minocha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
73
|
Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. EUKARYOTIC CELL 2009; 8:1592-603. [PMID: 19717742 DOI: 10.1128/ec.00161-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In unicellular eukaryotes, such as Saccharomyces cerevisiae, and in multicellular organisms, the replication origin is recognized by the heterohexamer origin recognition complex (ORC) containing six proteins, Orc1 to Orc6, while in members of the domain Archaea, the replication origin is recognized by just one protein, Orc1/Cdc6; the sequence of Orc1/Cdc6 is highly related to those of Orc1 and Cdc6. Similar to Archaea, trypanosomatid genomes contain only one gene encoding a protein named Orc1. Since trypanosome Orc1 is also homologous to Cdc6, in this study we named the Orc1 protein from trypanosomes Orc1/Cdc6. Here we show that the recombinant Orc1/Cdc6 from Trypanosoma cruzi (TcOrc1/Cdc6) and from Trypanosoma brucei (TbOrc1/Cdc6) present ATPase activity, typical of prereplication machinery components. Also, TcOrc1/Cdc6 and TbOrc1/Cdc6 replaced yeast Cdc6 but not Orc1 in a phenotypic complementation assay. The induction of Orc1/Cdc6 silencing by RNA interference in T. brucei resulted in enucleated cells, strongly suggesting the involvement of Orc1/Cdc6 in DNA replication. Orc1/Cdc6 is expressed during the entire cell cycle in the nuclei of trypanosomes, remaining associated with chromatin in all stages of the cell cycle. These results allowed us to conclude that Orc1/Cdc6 is indeed a member of the trypanosome prereplication machinery and point out that trypanosomes carry a prereplication machinery that is less complex than other eukaryotes and closer to archaea.
Collapse
|
74
|
Gardiner TJ, Christov CP, Langley AR, Krude T. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA (NEW YORK, N.Y.) 2009; 15:1375-85. [PMID: 19474146 PMCID: PMC2704080 DOI: 10.1261/rna.1472009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Noncoding Y RNAs are required for the reconstitution of chromosomal DNA replication in late G1 phase template nuclei in a human cell-free system. Y RNA genes are present in all vertebrates and in some isolated nonvertebrates, but the conservation of Y RNA function and key determinants for its function are unknown. Here, we identify a determinant of Y RNA function in DNA replication, which is conserved throughout vertebrate evolution. Vertebrate Y RNAs are able to reconstitute chromosomal DNA replication in the human cell-free DNA replication system, but nonvertebrate Y RNAs are not. A conserved nucleotide sequence motif in the double-stranded stem of vertebrate Y RNAs correlates with Y RNA function. A functional screen of human Y1 RNA mutants identified this conserved motif as an essential determinant for reconstituting DNA replication in vitro. Double-stranded RNA oligonucleotides comprising this RNA motif are sufficient to reconstitute DNA replication, but corresponding DNA or random sequence RNA oligonucleotides are not. In intact cells, wild-type hY1 or the conserved RNA duplex can rescue an inhibition of DNA replication after RNA interference against hY3 RNA. Therefore, we have identified a new RNA motif that is conserved in vertebrate Y RNA evolution, and essential and sufficient for Y RNA function in human chromosomal DNA replication.
Collapse
Affiliation(s)
- Timothy J Gardiner
- Department of Zoology, University of Cambridge, Cambridge CB23EJ, United Kingdom
| | | | | | | |
Collapse
|
75
|
Multiple replication origins of Halobacterium sp. strain NRC-1: properties of the conserved orc7-dependent oriC1. J Bacteriol 2009; 191:5253-61. [PMID: 19502403 DOI: 10.1128/jb.00210-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryote-like DNA replication system of the model haloarchaeon Halobacterium NRC-1 is encoded within a circular chromosome and two large megaplasmids or minichromosomes, pNRC100 and pNRC200. We previously showed by genetic analysis that 2 (orc2 and orc10) of the 10 genes coding for Orc-Cdc6 replication initiator proteins were essential, while a third (orc7), located near a highly conserved autonomously replicating sequence, oriC1, was nonessential for cell viability. Here we used whole-genome marker frequency analysis (MFA) and found multiple peaks, indicative of multiple replication origins. The largest chromosomal peaks were located proximal to orc7 (oriC1) and orc10 (oriC2), and the largest peaks on the extrachromosomal elements were near orc9 (oriP1) in both pNRC100 and -200 and near orc4 (oriP2) in pNRC200. MFA of deletion strains containing different combinations of chromosomal orc genes showed that replication initiation at oriC1 requires orc7 but not orc6 and orc8. The initiation sites at oriC1 were determined by replication initiation point analysis and found to map divergently within and near an AT-rich element flanked by likely Orc binding sites. The oriC1 region, Orc binding sites, and orc7 gene orthologs were conserved in all sequenced haloarchaea. Serial deletion of orc genes resulted in the construction of a minimal strain containing not only orc2 and orc10 but also orc9. Our results suggest that replication in this model system is intriguing and more complex than previously thought. We discuss these results from the perspective of the replication strategy and evolution of haloarchaeal genomes.
Collapse
|
76
|
Selection for methotrexate resistance in mammalian cells bearing a Drosophila dihydrofolate reductase transgene: Methotrexate resistance in transgenic mammalian cells. Cell Biol Toxicol 2009; 26:117-26. [PMID: 19337845 DOI: 10.1007/s10565-009-9122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.
Collapse
|
77
|
Gilbert DM. [Establishment of spatial and temporal program for mammalian chromosome replication]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2009; 54:320-326. [PMID: 21089470 PMCID: PMC3057877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been 55 years since the elucidation of the structure of DNA, suggesting an elegantly simple means for its self-replication. Who would have dreamed in 1953 that it would take longer for us to understand DNA replication than it would for us to uncover the basic rules of animal development? Without question, the mechanisms regulating where and when DNA replication initiates in the cells of our own body is the greatest remaining fundamental mystery in molecular biology. Cis-acting sequences that function as replication origins in mammalian cells have not been identified and the mechanisms that regulate where and when origins will fire during S-phase remain elusive. Indeed, the problem has been so difficult that most researchers move on to more lucrative fields. In this essay, I will summarize my laboratory's humble attempts to make some progress in this area. In doing so, I hope that I can inspire a few young scientists to breath fresh energy into this challenging field.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, USA.
| |
Collapse
|
78
|
Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, Rhind N. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell 2008; 19:5550-8. [PMID: 18799612 PMCID: PMC2592646 DOI: 10.1091/mbc.e08-06-0645] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 11/11/2022] Open
Abstract
Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.
Collapse
Affiliation(s)
- Prasanta K. Patel
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Naveen Kommajosyula
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adam Rosebrock
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - Aaron Bensimon
- Genomes Stability Unit, Pasteur Institute, 75724 Paris, France; and
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Nicholas Rhind
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
79
|
Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schübeler D, Gilbert DM. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008; 6:e245. [PMID: 18842067 PMCID: PMC2561079 DOI: 10.1371/journal.pbio.0060245] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/27/2008] [Indexed: 01/20/2023] Open
Abstract
DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these “replicon clusters” coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call “replication domains,” separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. Microscopy studies have suggested that chromosomal DNA is composed of multiple, megabase-sized segments, each replicated at different times during S-phase of the cell cycle. However, a molecular definition of these coordinately replicated sequences and the stability of the boundaries between them has not been established. We constructed genome-wide replication-timing maps in mouse embryonic stem cells, identifying multimegabase coordinately replicated chromosome segments—“replication domains”—separated by remarkably distinct temporal boundaries. These domain boundaries were shared between several unrelated embryonic stem cell lines, including somatic cells reprogrammed to pluripotency (so-called induced pluripotent stem cells). However, upon differentiation to neural precursor cells, domains encompassing approximately 20% of the genome changed their replication timing, temporally consolidating into fewer, larger replication domains that were conserved between different neural precursor cell lines. Domains that changed replication timing showed a unique sequence composition, a strongly biased directionality for changes in resident gene expression, and altered radial positioning within the three-dimensional space in the cell nucleus, suggesting that changes in replication timing are related to the reorganization of higher-order chromosome structure and function during differentiation. Moreover, the property of smaller discordantly replicating domains may define a novel characteristic of pluripotency. Analyzing the temporal order of DNA replication across the genome during embryonic stem cell differentiation reveals stable boundaries between coordinately replicated regions that consolidate into fewer, larger domains during differentiation.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Tyrone Ryba
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Mari Itoh
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Tomoki Yokochi
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chia-Wei Chang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Yung Lyou
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
80
|
Yang SCH, Bechhoefer J. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041917. [PMID: 18999465 DOI: 10.1103/physreve.78.041917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Indexed: 05/27/2023]
Abstract
DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time ( approximately 25 min) . Surprisingly, although the typical replication time is about 20 min , in vivo experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this "random-completion problem." The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-completion times for a finite genome. We then argue that the biologists' first solution to the problem is not only consistent with experiment but also nearly optimizes the use of replicative proteins. We also show that spatial regularity in origin placement does not alter significantly the distribution of replication times and, thus, is not needed for the control of replication timing.
Collapse
Affiliation(s)
- Scott Cheng-Hsin Yang
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| | | |
Collapse
|
81
|
Keich U, Gao H, Garretson JS, Bhaskar A, Liachko I, Donato J, Tye BK. Computational detection of significant variation in binding affinity across two sets of sequences with application to the analysis of replication origins in yeast. BMC Bioinformatics 2008; 9:372. [PMID: 18786274 PMCID: PMC2566582 DOI: 10.1186/1471-2105-9-372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/12/2008] [Indexed: 11/17/2022] Open
Abstract
Background In analyzing the stability of DNA replication origins in Saccharomyces cerevisiae we faced the question whether one set of sequences is significantly enriched in the number and/or the quality of the matches of a particular position weight matrix relative to another set. Results We present SADMAMA, a computational solution to a address this problem. SADMAMA implements two types of statistical tests to answer this question: one type is based on simplified models, while the other relies on bootstrapping, and as such might be preferable to users who are averse to such models. The bootstrap approach incorporates a novel "site-protected" resampling procedure which solves a problem we identify with naive resampling. Conclusion SADMAMA's utility is demonstrated here by offering a plausible explanation to the differential ARS activity observed in our previous mcm1-1 mutant experiments [1], by suggesting the relevance of multiple weak ACS matches to efficient replication origin function in Saccharomyces cerevisiae, and by suggesting an explanation to the observed negative effect FKH2 has on chromatin silencing [2]. SADMAMA is available for download from .
Collapse
Affiliation(s)
- Uri Keich
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Stochastic hybrid modeling of DNA replication across a complete genome. Proc Natl Acad Sci U S A 2008; 105:12295-300. [PMID: 18713859 DOI: 10.1073/pnas.0805549105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in eukaryotic cells initiates from hundreds of origins along their genomes, leading to complete duplication of genetic information before cell division. The large number of potential origins, coupled with system uncertainty, dictates the need for new analytical tools to capture spatial and temporal patterns of DNA replication genome-wide. We have developed a stochastic hybrid model that reproduces DNA replication throughout a complete genome. The model can capture different modes of DNA replication and is applicable to various organisms. Using genome-wide data on the location and firing efficiencies of origins in the fission yeast, we show how the DNA replication process evolves during S-phase in the presence of stochastic origin firing. Simulations reveal small regions of the genome that extend S-phase to three times its reported duration. The low levels of late replication predicted by the model are below the detection limit of techniques used to measure S-phase length. Parameter sensitivity analysis shows that increased replication fork speeds genome-wide, or additional origins are not sufficient to reduce S-phase to its reported length. We model the redistribution of a limiting initiation factor during S-phase and show that it could shorten S-phase to the reported duration. Alternatively, S-phase may be extended, and what has traditionally been defined as G2 may be occupied by low levels of DNA synthesis with the onset of mitosis delayed by activation of the G2/M checkpoint.
Collapse
|
83
|
Expression and subcellular localization of ORC1 in Leishmania major. Biochem Biophys Res Commun 2008; 375:74-9. [PMID: 18680728 DOI: 10.1016/j.bbrc.2008.07.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 01/23/2023]
Abstract
The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.
Collapse
|
84
|
Gupta A, Mehra P, Dhar SK. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 2008; 69:646-65. [PMID: 18554328 PMCID: PMC2610387 DOI: 10.1111/j.1365-2958.2008.06316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2008] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.
Collapse
Affiliation(s)
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi 110067, India
| |
Collapse
|
85
|
Cuvier O, Stanojcic S, Lemaitre JM, Mechali M. A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition. Genes Dev 2008; 22:860-5. [PMID: 18381889 DOI: 10.1101/gad.445108] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Topoisomerase II (topo II) is required for chromosome segregation and for reprogramming replicons. Here, we show that topo II couples DNA replication termination with the clearing of replication complexes for resetting replicons at mitosis. Topo II inhibition impairs completion of DNA replication, accounting for replication protein A (RPA) stabilization onto ssDNA. Topo II inhibition does not affect the caffeine-sensitive ORC1 degradation found upon origin firing, but it impairs the cdk-dependent degradation/chromatin dissociation of an ORC1/2 reservoir at mitosis. Our results show that ORC1 degradation is rescued by Pin1 depletion and that this topo II-dependent clearing of ORC1/2 from chromatin involves the APC.
Collapse
Affiliation(s)
- Olivier Cuvier
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS), Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
86
|
Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 2008; 21:3331-41. [PMID: 18079179 DOI: 10.1101/gad.457807] [Citation(s) in RCA: 454] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In late mitosis and early G1, Mcm2-7 complexes are loaded onto DNA to license replication origins for use in the upcoming S phase. However, the amount of Mcm2-7 loaded is in significant excess over the number of origins normally used. We show here that in human cells, excess chromatin-bound Mcm2-7 license dormant replication origins that do not fire during normal DNA replication, in part due to checkpoint activity. Dormant origins were activated within active replicon clusters if replication fork progression was inhibited, despite the activation of S-phase checkpoints. After lowering levels of chromatin-bound Mcm2-7 in human cells by RNA interference (RNAi), the use of dormant origins was suppressed in response to replicative stress. Although cells with lowered chromatin-bound Mcm2-7 replicated at normal rates, when challenged with replication inhibitors they had dramatically reduced rates of DNA synthesis and reduced viability. These results suggest that the use of dormant origins licensed by excess Mcm2-7 is a new and physiologically important mechanism that cells utilize to maintain DNA replication rates under conditions of replicative stress. We propose that checkpoint kinase activity can preferentially suppress initiation within inactive replicon clusters, thereby directing new initiation events toward active clusters that are experiencing replication problems.
Collapse
Affiliation(s)
- Xin Quan Ge
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
87
|
Yokochi T, Gilbert DM. Replication labeling with halogenated thymidine analogs. ACTA ACUST UNITED AC 2008; Chapter 22:Unit 22.10. [PMID: 18228503 DOI: 10.1002/0471143030.cb2210s35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this unit, several basic protocols to identify sites of DNA replication utilizing incorporation of halogenated thymidine analogs into DNA, followed by immunofluorescent imaging are described. Antibodies specific for halogenated thymidine analogs such as bromodeoxyuridine (BrdU), chlorodeoxyuridine (CldU), and iododeoxyuridine (IdU) can provide a rapid, nonhazardous, and sensitive method for detecting DNA replication in single cells, in a manner analogous to the traditional use of tritiated thymidine. In combination with different techniques to prepare the DNA template, a variety of DNA replication-related events can be examined by conventional fluorescence-microscopic approaches. Because origin firing and the progression of replication forks are regulated in the context of subnuclear compartments through protein-protein interactions, chromatin modifications, and subnuclear localization of replication clusters, visualizing replication foci significantly facilitates understanding of nuclear dynamics during S-phase.
Collapse
Affiliation(s)
- Tomoki Yokochi
- Department of Biological Science Florida State University Tallahassee, Florida, USA
| | | |
Collapse
|
88
|
Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc Natl Acad Sci U S A 2008; 105:1692-7. [PMID: 18234858 DOI: 10.1073/pnas.0707260105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility group proteins, HMGA1a, can specifically target ORC to DNA. Coimmunoprecipitations and imaging studies demonstrate that HMGA1a interacts with different ORC subunits in vitro and in vivo. This interaction occurs mainly in AT-rich heterochromatic regions to which HMGA1a localizes. Fusion proteins of HMGA1a and the DNA-binding domain of the viral factor EBNA1 or the prokaryotic tetracycline repressor, TetR, can recruit ORC to cognate operator sites forming functional origins of DNA replication. When HMGA1a is targeted to plasmid DNA, the prereplicative complex is assembled during G(1) and the amount of ORC correlates with the local concentration of HMGA1a. Nascent-strand abundance assays demonstrate that DNA replication initiates at or near HMGA1a-rich sites. Our experiments indicate that chromatin proteins can target ORC to DNA, suggesting they might specify origins of DNA replication in metazoan cells.
Collapse
|
89
|
Audit B, Nicolay S, Huvet M, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A. DNA replication timing data corroborate in silico human replication origin predictions. PHYSICAL REVIEW LETTERS 2007; 99:248102. [PMID: 18233493 DOI: 10.1103/physrevlett.99.248102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Indexed: 05/25/2023]
Abstract
We develop a wavelet-based multiscale pattern recognition methodology to disentangle the replication- from the transcription-associated compositional strand asymmetries observed in the human genome. Comparing replication skew profiles to recent high-resolution replication timing data reveals that most of the putative replication origins that border the so-identified replication domains are replicated earlier than their surroundings whereas the central regions replicate late in the S phase. We discuss the implications of this first experimental confirmation of these replication origin predictions that are likely to be early replicating and active in most tissues.
Collapse
Affiliation(s)
- B Audit
- Laboratoire Joliot-Curie, ENS-Lyon, CNRS, France
| | | | | | | | | | | | | |
Collapse
|
90
|
Zellner E, Herrmann T, Schulz C, Grummt F. Site-specific interaction of the murine pre-replicative complex with origin DNA: assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res 2007; 35:6701-13. [PMID: 17916579 PMCID: PMC2175324 DOI: 10.1093/nar/gkm555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.
Collapse
Affiliation(s)
- Elisabeth Zellner
- Institute of Biochemistry, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
91
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|
92
|
Lucas I, Palakodeti A, Jiang Y, Young DJ, Jiang N, Fernald AA, Le Beau MM. High-throughput mapping of origins of replication in human cells. EMBO Rep 2007; 8:770-7. [PMID: 17668008 PMCID: PMC1978075 DOI: 10.1038/sj.embor.7401026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 05/18/2007] [Accepted: 06/04/2007] [Indexed: 11/08/2022] Open
Abstract
Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.
Collapse
Affiliation(s)
- Isabelle Lucas
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Aparna Palakodeti
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Yanwen Jiang
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - David J Young
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Nan Jiang
- NimbleGen Systems Inc, 1 Science Court, Madison, Wisconsin 53711, USA
| | - Anthony A Fernald
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
| | - Michelle M Le Beau
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 South Maryland Avenue, MC2115, Chicago, Illinois 60637, USA
- Tel: +1 773 702 0795; Fax: +1 773 702 9311; E-mail:
| |
Collapse
|
93
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
94
|
Costa S, Blow JJ. The elusive determinants of replication origins. EMBO Rep 2007; 8:332-4. [PMID: 17401406 PMCID: PMC1852751 DOI: 10.1038/sj.embor.7400954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Affiliation(s)
- Silvia Costa
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
| | - J Julian Blow
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
- Tel: +44 (0)1382 385797; Fax: +44 (0)1382 388072;
e-mail:
| |
Collapse
|
95
|
Conti C, Saccà B, Herrick J, Lalou C, Pommier Y, Bensimon A. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 2007; 18:3059-67. [PMID: 17522385 PMCID: PMC1949372 DOI: 10.1091/mbc.e06-08-0689] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spatial organization of replicons into clusters is believed to be of critical importance for genome duplication in higher eukaryotes, but its functional organization still remains to be fully clarified. The coordinated activation of origins is insufficient on its own to account for a timely completion of genome duplication when interorigin distances vary significantly and fork velocities are constant. Mechanisms coordinating origin distribution with fork progression are still poorly elucidated, because of technical difficulties of visualizing the process. Taking advantage of a single molecule approach, we delineated and compared the DNA replication kinetics at the genome level in human normal primary and malignant cells. Our results show that replication forks moving from one origin, as well as from neighboring origins, tend to exhibit the same velocity, although the plasticity of the replication program allows for their adaptation to variable interorigin distances. We also found that forks that emanated from closely spaced origins tended to move slower than those associated with long replicons. Taken together, our results indicate a functional role for origin clustering in the dynamic regulation of genome duplication.
Collapse
Affiliation(s)
- Chiara Conti
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Barbara Saccà
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - John Herrick
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Claude Lalou
- Institut National de la Santé et de la Recherche Médicale U532, Hôpital Saint-Louis, Paris 75010, France; and
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817
| | - Aaron Bensimon
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| |
Collapse
|
96
|
Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst) 2007; 6:1018-31. [PMID: 17379580 PMCID: PMC2989184 DOI: 10.1016/j.dnarep.2007.02.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hereditary breast and ovarian cancer predisposition genes, BRCA1 and BRCA2, participate in the repair of DNA double strand breaks by homologous recombination. Circumstantial evidence implicates these genes in recombinational responses to DNA polymerase stalling during the S phase of the cell cycle. These responses play a key role in preventing genomic instability and cancer. Here, we review the current literature implicating the BRCA pathway in HR at stalled replication forks and explore the hypothesis that BRCA1 and BRCA2 participate in the recombinational resolution of single stranded DNA lesions termed "daughter strand gaps", generated during replication across a damaged DNA template.
Collapse
Affiliation(s)
| | - Ralph Scully
- Corresponding author. Tel.: +1 617 667 4252; fax: +1 617 667 0980. (R. Scully)
| |
Collapse
|
97
|
Legouras I, Xouri G, Dimopoulos S, Lygeros J, Lygerou Z. DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast 2007; 23:951-62. [PMID: 17072888 DOI: 10.1002/yea.1416] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA replication, the process of duplication of a cell's genetic content, must be carried out with great precision every time the cell divides, so that genetic information is preserved. Control mechanisms must ensure that every base of the genome is replicated within the allocated time (S-phase) and only once per cell cycle, thereby safeguarding genomic integrity. In eukaryotes, replication starts from many points along the chromosome, termed origins of replication, and then proceeds continuously bidirectionally until an opposing moving fork is encountered. In contrast to bacteria, where a specific site on the genome serves as an origin in every cell division, in most eukaryotes origin selection appears highly stochastic: many potential origins exist, of which only a subset is selected to fire in any given cell, giving rise to an apparently random distribution of initiation events across the genome. Origin states change throughout the cell cycle, through the ordered formation and modification of origin-associated multisubunit protein complexes. State transitions are governed by fluctuations of cyclin-dependent kinase (CDK) activity and guards in these transitions ensure system memory. We present here DNA replication dynamics, emphasizing recent data from the fission yeast Schizosaccharomyces pombe, and discuss how robustness may be ensured in spite of (or even assisted by) system randomness.
Collapse
Affiliation(s)
- Ioannis Legouras
- School of Medicine, Laboratory of General Biology, University of Patras, Rio, Patras, Greece
| | | | | | | | | |
Collapse
|
98
|
Hayashi M, Katou Y, Itoh T, Tazumi M, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 2007; 26:1327-39. [PMID: 17304213 PMCID: PMC1817633 DOI: 10.1038/sj.emboj.7601585] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/08/2007] [Indexed: 12/11/2022] Open
Abstract
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2'-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Katou
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute Inc., Chiyoda-ku, Tokyo, Japan
| | - Mitsutoshi Tazumi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tatsuro Takahashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Katsuhiko Shirahige
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Center for Biological Resources and Informatics, Division of Gene Research, and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hisao Masukata
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
99
|
Meister P, Taddei A, Ponti A, Baldacci G, Gasser SM. Replication foci dynamics: replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO J 2007; 26:1315-26. [PMID: 17304223 PMCID: PMC1817620 DOI: 10.1038/sj.emboj.7601538] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/11/2006] [Indexed: 12/22/2022] Open
Abstract
Although the molecular enzymology of DNA replication is well characterised, how and why it occurs in discrete nuclear foci is unclear. Using fission yeast, we show that replication takes place in a limited number of replication foci, whose distribution changes with progression through S phase. These sites define replication factories which contain on average 14 replication forks. We show for the first time that entire foci are mobile, able both to fuse and re-segregate. These foci form distinguishable patterns during S phase, whose succession is reproducible, defining early-, mid- and late-S phase. In wild-type cells, this same temporal sequence can be detected in the presence of hydroxyurea (HU), despite the reduced rate of replication. In cells lacking the intra-S checkpoint kinase Cds1, replication factories dismantle on HU. Intriguingly, even in the absence of DNA damage, the replication foci in cds1 cells assume a novel distribution that is not present in wild-type cells, arguing that Cds1 kinase activity contributes to the spatio-temporal organisation of replication during normal cell growth.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
| | - Angela Taddei
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR218, CNRS/Institut Curie, 26 rue d'Ulm, Paris, France
| | - Aaron Ponti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Giuseppe Baldacci
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
- These authors contributed equally to this work
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- These authors contributed equally to this work
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. Tel.: +41 61 697 7255; Fax +41 61 697 6862; E-mail:
| |
Collapse
|
100
|
Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, Archambault J, Bohm A, Bullock PA. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81:4808-18. [PMID: 17287270 PMCID: PMC1900137 DOI: 10.1128/jvi.02451-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.
Collapse
Affiliation(s)
- Anuradha Kumar
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|