51
|
Gutiérrez-Medina B, Andreasson JOL, Greenleaf WJ, LaPorta A, Block SM. An optical apparatus for rotation and trapping. Methods Enzymol 2010; 475:377-404. [PMID: 20627165 PMCID: PMC2965466 DOI: 10.1016/s0076-6879(10)75015-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We present details of the design, construction, and testing of a single-beam optical tweezers apparatus capable of measuring and exerting torque, as well as force, on microfabricated, optically anisotropic particles (an "optical torque wrench"). The control of angular orientation is achieved by rotating the linear polarization of a trapping laser with an electro-optic modulator (EOM), which affords improved performance over previous designs. The torque imparted to the trapped particle is assessed by measuring the difference between left- and right-circular components of the transmitted light, and constant torque is maintained by feeding this difference signal back into a custom-designed electronic servo loop. The limited angular range of the EOM (+/-180 degrees ) is extended by rapidly reversing the polarization once a threshold angle is reached, enabling the torque clamp to function over unlimited, continuous rotations at high bandwidth. In addition, we developed particles suitable for rotation in this apparatus using microfabrication techniques. Altogether, the system allows for the simultaneous application of forces (approximately 0.1-100 pN) and torques (approximately 1-10,000 pN nm) in the study of biomolecules. As a proof of principle, we demonstrate how our instrument can be used to study the supercoiling of single DNA molecules.
Collapse
Affiliation(s)
| | | | | | - Arthur LaPorta
- Department of Physics, Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742
| | - Steven M. Block
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
52
|
|
53
|
Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping. Proc Natl Acad Sci U S A 2009; 106:17007-12. [PMID: 19805111 DOI: 10.1073/pnas.0907133106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin is a homodimeric motor with two catalytic heads joined to a stalk via short neck linkers (NLs). We measured the torsional properties of single recombinant molecules by tracking the thermal angular motions of fluorescently labeled beads bound to the C terminus of the stalk. When kinesin heads were immobilized on microtubules (MTs) under varied nucleotide conditions, we observed bounded or unbounded angular diffusion, depending on whether one or both heads were attached to the MT. Free rotation implies that NLs act as swivels. From data on constrained diffusion, we conclude that the coiled-coil stalk domains are approximately 30-fold stiffer than its flexible "hinge" regions. Surprisingly, while tracking processive kinesin motion at low ATP concentrations, we observed occasional abrupt reversals in the directional orientations of the stalk. Our results impose constraints on kinesin walking models and suggest a role for rotational freedom in cargo transport.
Collapse
|
54
|
Asenjo AB, Sosa H. A mobile kinesin-head intermediate during the ATP-waiting state. Proc Natl Acad Sci U S A 2009; 106:5657-62. [PMID: 19321748 PMCID: PMC2667011 DOI: 10.1073/pnas.0808355106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Indexed: 11/18/2022] Open
Abstract
Kinesin1 is a motor protein that uses the energy from ATP hydrolysis to move intracellular cargoes along microtubules. It contains 2 identical motor domains, or heads, that coordinate their mechano-chemical cycles to move processively along microtubules. The molecular mechanism of coordination between head domains remains unclear, partly because of the lack of structural information on critical intermediates of the kinesin1 mechano-chemical cycle. A point of controversy has been whether before ATP binding, in the so called ATP-waiting state, 1 or 2 motor domains are bound to the microtubule. To address this issue, here we use ensemble and single molecule fluorescence polarization microscopy (FPM) to determine the mobility and orientation of the kinesin1 heads at different ATP concentrations and in heterodimeric constructs with microtubule binding impaired in 1 head. We found evidence for a mobile head during the ATP-waiting state. We incorporate our results into a model for kinesin translocation that accounts well for many reported experimental results.
Collapse
Affiliation(s)
- Ana B. Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
55
|
Nath SS, Nath S. Energy transfer from adenosine triphosphate: quantitative analysis and mechanistic insights. J Phys Chem B 2009; 113:1533-7. [PMID: 19143490 DOI: 10.1021/jp809678n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-ADP thermodynamic cycle is the fundamental mode of energy exchange in oxidative phosphorylation, photophosphorylation, muscle contraction, and intracellular transport by various molecular motors and is therefore of vital importance in biological energy transduction and storage. Following a recent suggestion in the pages of this journal (Ross, J. J. Phys. Chem. B 2006, 110, 6987-6990), we have carried out a simple quantitative analysis of a direct molecular mechanism of energy transfer from adenosine triphosphate (ATP). The simulation provides new insights into the mechanistic events following terminal phosphorus-oxygen bond cleavage during ATP hydrolysis. This approach also allows for the division of the energy-transfer process into elementary steps and for the prediction of the distribution of the standard-state Gibbs free energy of the overall ATP hydrolysis process among the various steps of substrate binding, bond cleavage, and product release in the enzymatic cycle, which had proved very difficult to specify previously. These predictions are consistent with available experimental data on ATP hydrolysis by protein biomolecular machines. The fundamental biological implications arising from our results are also discussed in detail. The aspects considered in this work enable us to look at the entire process of ATP synthesis/hydrolysis and energy transduction and storage in various biological molecular machines in a logically consistent and unified way.
Collapse
Affiliation(s)
- Sarang S Nath
- Science Group, The Mother's International School, Sri Aurobindo Marg, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
56
|
Song W, He Q, Cui Y, Möhwald H, Diez S, Li J. Assembled capsules transportation driven by motor proteins. Biochem Biophys Res Commun 2009; 379:175-8. [DOI: 10.1016/j.bbrc.2008.11.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 11/17/2022]
|
57
|
Energetics of kinesin-1 stepping mechanism. FEBS Lett 2008; 582:3719-22. [PMID: 18948105 DOI: 10.1016/j.febslet.2008.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Kinesin-1 is a dimeric motor protein that transports cellular cargo along microtubules by using the energy released from ATP hydrolysis and moving processively in 8-nm steps. Recent novel studies at the single molecular level have provided extensive knowledge on how kinesin-1 converts the free energy of ATP hydrolysis and uses it for "walking" along microtubules. In this review, I have discussed the important topics pertaining to the energetics of kinesin-1 stepping mechanism and the consensus walking model.
Collapse
|
58
|
Thoresen T, Gelles J. Processive movement by a kinesin heterodimer with an inactivating mutation in one head. Biochemistry 2008; 47:9514-21. [PMID: 18702529 PMCID: PMC2586147 DOI: 10.1021/bi800747e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 07/24/2008] [Indexed: 11/29/2022]
Abstract
A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50% of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other.
Collapse
Affiliation(s)
- Todd Thoresen
- Biochemistry Department and Biophysics & Structural Biology Graduate Program, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Jeff Gelles
- Biochemistry Department and Biophysics & Structural Biology Graduate Program, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
59
|
Secondary structure and compliance of a predicted flexible domain in kinesin-1 necessary for cooperation of motors. Biophys J 2008; 95:5216-27. [PMID: 18775962 DOI: 10.1529/biophysj.108.132449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the mechanism by which a kinesin-1 molecule moves individually along a microtubule is quite well-understood, the way that many kinesin-1 motor proteins bound to the same cargo move together along a microtubule is not. We identified a 60-amino-acid-long domain, termed Hinge 1, in kinesin-1 from Drosophila melanogaster that is located between the coiled coils of the neck and stalk domains. Its deletion reduces microtubule gliding speed in multiple-motor assays but not single-motor assays. Hinge 1 thus facilitates the cooperation of motors by preventing them from impeding each other. We addressed the structural basis for this phenomenon. Video-microscopy of single microtubule-bound full-length motors reveals the sporadic occurrence of high-compliance states alternating with longer-lived, low-compliance states. The deletion of Hinge 1 abolishes transitions to the high-compliance state. Based on Fourier transform infrared, circular dichroism, and fluorescence spectroscopy of Hinge 1 peptides, we propose that low-compliance states correspond to an unexpected structured organization of the central Hinge 1 region, whereas high-compliance states correspond to the loss of that structure. We hypothesize that strain accumulated during multiple-kinesin motility populates the high-compliance state by unfolding helical secondary structure in the central Hinge 1 domain flanked by unordered regions, thereby preventing the motors from interfering with each other in multiple-motor situations.
Collapse
|
60
|
Nath S. The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease. Int J Mol Sci 2008; 9:1784-1840. [PMID: 19325832 PMCID: PMC2635747 DOI: 10.3390/ijms9091784] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022] Open
Abstract
Complete details of the thermodynamics and molecular mechanisms of ATP synthesis/hydrolysis and muscle contraction are offered from the standpoint of the torsional mechanism of energy transduction and ATP synthesis and the rotation-uncoiling-tilt (RUT) energy storage mechanism of muscle contraction. The manifold fundamental consequences and mechanistic implications of the unified theory for oxidative phosphorylation and muscle contraction are explained. The consistency of current mechanisms of ATP synthesis and muscle contraction with experiment is assessed, and the novel insights of the unified theory are shown to take us beyond the binding change mechanism, the chemiosmotic theory and the lever arm model. It is shown from first principles how previous theories of ATP synthesis and muscle contraction violate both the first and second laws of thermodynamics, necessitating their revision. It is concluded that the new paradigm, ten years after making its first appearance, is now perfectly poised to replace the older theories. Finally, applications of the unified theory in cell life and cell death are outlined and prospects for future research are explored. While it is impossible to cover each and every specific aspect of the above, an attempt has been made here to address all the pertinent details and what is presented should be sufficient to convince the reader of the novelty, originality, breakthrough nature and power of the unified theory, its manifold fundamental consequences and mechanistic implications, and its applications in health and disease.
Collapse
Affiliation(s)
- Sunil Nath
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
61
|
Hirokawa N, Noda Y. Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiol Rev 2008; 88:1089-118. [DOI: 10.1152/physrev.00023.2007] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules.
Collapse
|
62
|
Soto CM, Martin BD, Sapsford KE, Blum AS, Ratna BR. Toward single molecule detection of staphylococcal enterotoxin B: mobile sandwich immunoassay on gliding microtubules. Anal Chem 2008; 80:5433-40. [PMID: 18543949 DOI: 10.1021/ac800541x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An immunoassay based on gliding microtubules (MTs) is described for the detection of staphylococcal enterotoxin B. Detection is performed in a sandwich immunoassay format. Gliding microtubules carry the antigen-specific "capture" antibody, and bound analyte is detected using a fluorescent viral scaffold as the tracer. A detailed modification scheme for the MTs postpolymerization is described along with corresponding quantification by fluorescence spectroscopy. The resultant antibody-MTs maintain their morphology and gliding capabilities. We report a limit of detection down to 0.5 ng/mL during active transport in a 30 min assay time and down to 1 ng/mL on static surfaces. This study demonstrates the kinesin/MT-mediated capture, transport, and detection of the biowarfare agent SEB in a microfluidic format.
Collapse
Affiliation(s)
- Carissa M Soto
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA.
| | | | | | | | | |
Collapse
|
63
|
Abstract
In vivo studies suggest that centromeric protein E (CENP-E), a kinesin-7 family member, plays a key role in the movement of chromosomes toward the metaphase plate during mitosis. How CENP-E accomplishes this crucial task, however, is not clear. Here we present single-molecule measurements of CENP-E that demonstrate that this motor moves processively toward the plus end of microtubules, with an average run length of 2.6 +/- 0.2 mum, in a hand-over-hand fashion, taking 8-nm steps with a stall force of 6 +/- 0.1 pN. The ATP dependence of motor velocity obeys Michaelis-Menten kinetics with K(M,ATP) = 35 +/- 5 muM. All of these features are remarkably similar to those for kinesin-1-a highly processive transport motor. We, therefore, propose that CENP-E transports chromosomes in a manner analogous to how kinesin-1 transports cytoplasmic vesicles.
Collapse
|
64
|
Hwang W, Lang MJ, Karplus M. Force generation in kinesin hinges on cover-neck bundle formation. Structure 2008; 16:62-71. [PMID: 18184584 DOI: 10.1016/j.str.2007.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 11/17/2022]
Abstract
In kinesin motors, a fundamental question concerns the mechanism by which ATP binding generates the force required for walking. Analysis of available structures combined with molecular dynamics simulations demonstrates that the conformational change of the neck linker involves the nine-residue-long N-terminal region, the cover strand, as an element that is essential for force generation. Upon ATP binding, it forms a beta sheet with the neck linker, the cover-neck bundle, which induces the forward motion of the neck linker, followed by a latch-type binding to the motor head. The estimated stall force and anisotropic response to external loads calculated from the model agree with force-clamp measurements. The proposed mechanism for force generation by the cover-neck bundle formation appears to apply to several kinesin families. It also elucidates the design principle of kinesin as the smallest known processive motor.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
65
|
Munárriz J, Mazo JJ, Falo F. Model for hand-over-hand motion of molecular motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:031915. [PMID: 18517430 DOI: 10.1103/physreve.77.031915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Indexed: 05/26/2023]
Abstract
A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of two head molecular motors such as kinesin. Extensive Langevin simulations of the model are performed. Good qualitative agreement with the expected behavior is observed. We discuss different regimes of motion and efficiency depending on model parameters.
Collapse
Affiliation(s)
- J Munárriz
- Departemento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | |
Collapse
|
66
|
Balzani V, Credi A, Venturi M. Molecular Machines Working on Surfaces and at Interfaces. Chemphyschem 2008; 9:202-20. [DOI: 10.1002/cphc.200700528] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
67
|
Gennerich A, Carter AP, Reck-Peterson SL, Vale RD. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 2007; 131:952-65. [PMID: 18045537 PMCID: PMC2851641 DOI: 10.1016/j.cell.2007.10.016] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/24/2007] [Accepted: 10/08/2007] [Indexed: 12/21/2022]
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein, and the motor walks backward toward the microtubule plus end at loads above its stall force of 7 pN. Remarkably, in the absence of ATP, dynein steps processively along microtubules under an external load, with less force required for minus-end- than for plus-end-directed movement. This nucleotide-independent walking reveals that force alone can drive repetitive microtubule detachment-attachment cycles of dynein's motor domains. These results suggest a model for how dynein's two motor domains coordinate their activities during normal processive motility and provide new clues for understanding dynein-based motility in living cells.
Collapse
Affiliation(s)
- Arne Gennerich
- The Howard Hughes Medical Institute and the Department of Cellular and Molecular PharmacologyUniversity of California San Francisco, San Francisco, CA 94158-2200, USA
| | - Andrew P. Carter
- The Howard Hughes Medical Institute and the Department of Cellular and Molecular PharmacologyUniversity of California San Francisco, San Francisco, CA 94158-2200, USA
| | - Samara L. Reck-Peterson
- The Howard Hughes Medical Institute and the Department of Cellular and Molecular PharmacologyUniversity of California San Francisco, San Francisco, CA 94158-2200, USA
| | - Ronald D. Vale
- The Howard Hughes Medical Institute and the Department of Cellular and Molecular PharmacologyUniversity of California San Francisco, San Francisco, CA 94158-2200, USA
| |
Collapse
|
68
|
Komori Y, Iwane AH, Yanagida T. Myosin-V makes two brownian 90 degrees rotations per 36-nm step. Nat Struct Mol Biol 2007; 14:968-73. [PMID: 17891151 DOI: 10.1038/nsmb1298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/09/2007] [Indexed: 11/08/2022]
Abstract
Myosin-V processively walks on actin filaments in a hand-over-hand fashion. The identical structures of the heads predict a symmetric hand-over-hand mechanism where regular, unidirectional rotation occurs during a 36-nm step. We investigated this by observing how fixed myosin-V rotates actin filaments. Actin filaments randomly rotated 90 degrees both clockwise and counter-clockwise during each step. Furthermore, ATP-dependent rotations were regularly followed by ATP-independent ones. Kinetic analysis indicated that the two 90 degrees rotations relate to the coordinated unbinding and rebinding of the heads with actin. We propose a 'brownian rotation hand-over-hand' model, in which myosin-V randomly rotates by thermally twisting its elastic neck domains during the 36-nm step. The brownian rotation may be advantageous for cargo transport through a crowded actin meshwork and for carrying cargoes reliably via multiple myosin-V molecules in the cell.
Collapse
Affiliation(s)
- Yasunori Komori
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
69
|
Abstract
Studying the properties of individual events and molecules offers a host of advantages over taking only macroscopic measurements of populations. Here we review such advantages, as well as some pitfalls, focusing on examples from biological imaging. Examples include single proteins, their interactions in cells, organelles, and their interactions both with each other and with parts of the cell. Additionally, we discuss constraints that limit the study of single events, along with the criteria that must be fulfilled to determine whether single molecules or events are being detected.
Collapse
Affiliation(s)
- Stefan Wennmalm
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
70
|
Abstract
Molecular motors, which use energy from ATP hydrolysis to take nanometer-scale steps with run-lengths on the order of micrometers, have important roles in areas such as transport and mitosis in living organisms. New techniques have recently been developed to measure these small movements at the single-molecule level. In particular, fluorescence imaging has contributed to the accurate measurement of this tiny movement. We introduce three single-molecule fluorescence imaging techniques which can find the position of a fluorophore with accuracy in the range of a few nanometers. These techniques are named after Hollywood animation characters: Fluorescence Imaging with One Nanometer Accuracy (FIONA), Single-molecule High-REsolution Colocalization (SHREC), and Defocused Orientation and Position Imaging (DOPI). We explain new understanding of molecular motors obtained from measurements using these techniques.
Collapse
Affiliation(s)
- Hyokeun Park
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
71
|
Skowronek KJ, Kocik E, Kasprzak AA. Subunits interactions in kinesin motors. Eur J Cell Biol 2007; 86:559-68. [PMID: 17628208 DOI: 10.1016/j.ejcb.2007.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 12/30/2022] Open
Abstract
Kinesins form a large and diverse superfamily of proteins involved in numerous important cellular processes. The majority of them are molecular motors moving along microtubules. Conversion of chemical energy into mechanical work is accomplished in a sequence of events involving both biochemical and conformational alternation of the motor structure called the mechanochemical cycle. Different members of the kinesin superfamily can either perform their function in large groups or act as single molecules. Conventional kinesin, a member of the kinesin-1 subfamily, exemplifies the second type of motor which requires tight coordination of the mechanochemical cycle in two identical subunits to accomplish processive movement toward the microtubule plus end. Recent results strongly support an asymmetric hand-over-hand model of "walking" for this protein. Conformational strain between two subunits at the stage of the cycle where both heads are attached to the microtubule seems to be a major factor in intersubunit coordination, although molecular and kinetic details of this phenomenon are not yet deciphered. We discuss also current knowledge concerning intersubunit coordination in other kinesin subfamilies. Members of the kinesin-3 class use at least three different mechanisms of movement and can translocate in monomeric or dimeric forms. It is not known to what extent intersubunit coordination takes place in Ncd, a dimeric member of the kinesin-14 subfamily which, unlike conventional kinesin, exercises a power-stroke toward the microtubule minus end. Eg5, a member of the kinesin-5 subfamily is a homotetrameric protein with two kinesin-1-like dimeric halves controlled by their relative orientation on two microtubules. It seems that diversity of subunit organization, quaternary structures and cellular functions in the kinesin superfamily are reflected also by the divergent extent and mechanism of intersubunit coordination during kinesin movement along microtubules.
Collapse
Affiliation(s)
- Krzysztof J Skowronek
- Motor Proteins Laboratory, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
72
|
Leduc C, Ruhnow F, Howard J, Diez S. Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proc Natl Acad Sci U S A 2007; 104:10847-52. [PMID: 17569782 PMCID: PMC1891812 DOI: 10.1073/pnas.0701864104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stepping behavior of single kinesin-1 motor proteins has been studied in great detail. However, in cells, these motors often do not work alone but rather function in small groups when they transport cellular cargo. Until now, the cooperative interactions between motors in such groups were poorly understood. A fundamental question is whether two or more motors that move the same cargo step in synchrony, producing the same step size as a single motor, or whether the step size of the cargo movement varies. To answer this question, we performed in vitro gliding motility assays, where microtubules coated with quantum dots were driven over a glass surface by a known number of kinesin-1 motors. The motion of individual microtubules was then tracked with nanometer precision. In the case of transport by two kinesin-1 motors, we found successive 4-nm steps, corresponding to half the step size of a single motor. Dwell-time analysis did not reveal any coordination, in the sense of alternate stepping, between the motors. When three motors interacted in collective transport, we identified distinct forward and backward jumps on the order of 10 nm. The existence of the fractional steps as well as the distinct jumps illustrate a lack of synchronization and has implications for the analysis of motor-driven organelle movement investigated in vivo.
Collapse
Affiliation(s)
- Cécile Leduc
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Felix Ruhnow
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Jonathon Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Stefan Diez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
- *To whom correspondence should be addressed at:
Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. E-mail:
| |
Collapse
|
73
|
Crowley JD, Steele IM, Bosnich B. Protonmotive force: development of electrostatic drivers for synthetic molecular motors. Chemistry 2007; 12:8935-51. [PMID: 16823783 DOI: 10.1002/chem.200500519] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.
Collapse
Affiliation(s)
- James D Crowley
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
74
|
Kinosita K, Shiroguchi K, Ali MY, Adachi K, Itoh H. On the walking mechanism of linear molecular motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:369-84. [PMID: 17278380 DOI: 10.1007/978-4-431-38453-3_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Kazuhiko Kinosita
- Department of Physics, Faculty of Science and Technology, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
75
|
Affiliation(s)
- Steven M Block
- Department of Biological Sciences and Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
76
|
Xie P, Dou SX, Wang PY. Limping of Homodimeric Kinesin Motors. J Mol Biol 2007; 366:976-85. [PMID: 17188298 DOI: 10.1016/j.jmb.2006.10.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 11/16/2022]
Abstract
Conventional kinesin, a homodimeric motor protein that transports cargo in various cells, walks limpingly along microtubule. Here, based on our previously proposed partially coordinated hand-over-hand model, we present a new mechanism for the limping behaviors of both wild-type and mutant kinesin homodimers. The limping is caused by different vertical forces acting on the heads in two successive steps during the processive movement of the dimer. From the model, various theoretical results, such as the dependences of the mean dwell time and dwell time ratio on the coiled-coil length and on the external load as well as the effect of vertical force on velocity, are in good agreement with previous experimental results. We predict that a high degree of limping will correlate strongly with a high sensitivity of ATP turnover rate to upwards force.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
77
|
Abstract
Biochemistry and structural biology are undergoing a dramatic revolution. Until now, we have tried to study subtle and complex biological processes by crude in vitro techniques, looking at average behaviors of vast numbers of molecules under conditions usually remote from those existing in the cell. Researchers have realized the limitations of this approach, but none other has been available. Now, we can not only observe the nuances of the behaviors of individual molecules but prod and probe them as well. Perhaps most important is the emerging ability to carry out such observations and manipulations within the living cell. The long-awaited leap to an in vivo biochemistry is at last underway.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | |
Collapse
|
78
|
Nath S. A novel systems biology/engineering approach solves fundamental molecular mechanistic problems in bioenergetics and motility. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Tomishige M, Stuurman N, Vale RD. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 2006; 13:887-94. [PMID: 17013387 DOI: 10.1038/nsmb1151] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 09/05/2006] [Indexed: 11/08/2022]
Abstract
Kinesin-1 is a dimeric motor protein that moves cargo processively along microtubules. Kinesin motility has been proposed to be driven by the coordinated forward extension of the neck linker (a approximately 12-residue peptide) in one motor domain and the rearward positioning of the neck linker in the partner motor domain. To test this model, we have introduced fluorescent dyes selectively into one subunit of the kinesin dimer and performed 'half-molecule' fluorescence resonance energy transfer to measure conformational changes of the neck linker. We show that when kinesin binds with both heads to the microtubule, the neck linkers in the rear and forward heads extend forward and backward, respectively. During ATP-driven motility, the neck linkers switch between these conformational states. These results support the notion that neck linker movements accompany the 'hand-over-hand' motion of the two motor domains.
Collapse
Affiliation(s)
- Michio Tomishige
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | |
Collapse
|
80
|
Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD. Single-molecule analysis of dynein processivity and stepping behavior. Cell 2006; 126:335-48. [PMID: 16873064 PMCID: PMC2851639 DOI: 10.1016/j.cell.2006.05.046] [Citation(s) in RCA: 446] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/04/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022]
Abstract
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.
Collapse
Affiliation(s)
- Samara L. Reck-Peterson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Ahmet Yildiz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Andrew P. Carter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Arne Gennerich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Nan Zhang
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94158 USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| | - Ronald D. Vale
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94158 USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158 USA
| |
Collapse
|
81
|
O'Connell CB, Tyska MJ, Mooseker MS. Myosin at work: motor adaptations for a variety of cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:615-30. [PMID: 16904206 DOI: 10.1016/j.bbamcr.2006.06.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/22/2006] [Accepted: 06/30/2006] [Indexed: 12/30/2022]
Abstract
Cells have evolved multiple mechanisms to overcome the effects of entropy and diffusion to create a highly ordered environment. For cells to function properly, some components must be anchored to provide a framework or structure. Others must be rapidly transported over long distances to generate asymmetries in cell morphology and composition. To accomplish long-range transport, cells cannot rely on diffusion alone as many large organelles and macromolecular complexes are essentially immobilized by the dense meshwork of the cytosol. One strategy used by cells to overcome diffusion is to harness the free energy liberated by ATP hydrolysis through molecular motors. Myosins are a family of actin based molecular motors that have evolved a variety of ways to contribute to cellular organization through numerous modifications to the manner they convert that free energy into mechanical work.
Collapse
|
82
|
Abstract
We present here a simple theoretical model for conventional kinesin. The model reproduces the hand-over-hand mechanism for kinesin walking to the plus end of a microtubule. A large hindering force induces kinesin to walk slowly to the minus end, again by a hand-over-hand mechanism. Good agreement is obtained between the calculated and experimental results on the external force dependence of the walking speed, the forward/backward step ratio, and dwell times for both forward and backward steps. The model predicts that both forward and backward motions of kinesin take place at the same chemical state of the motor heads, with the front head being occupied by an ATP (or ADP,Pi) and the rear being occupied by an ADP. The direction of motion is a result of the competition between the power stroke produced by the front head and the external load. The other predictions include the external force dependence of the chemomechanical coupling ratio (e.g., the stepping distance/ATP ratio) and the walking speed of kinesin at force ranges that have not been tested by experiments. The model predicts that the chemomechanical coupling remains tight in a large force range. However, when the external force is very large (e.g., approximately 18 pN), kinesin slides in an inchworm fashion, and the translocation of kinesin becomes loosely coupled to ATP turnovers.
Collapse
Affiliation(s)
- Qiang Shao
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Yi Qin Gao
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U S A 2006; 103:5741-5. [PMID: 16585530 PMCID: PMC1424663 DOI: 10.1073/pnas.0508511103] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural differences between dynein and kinesin suggest a unique molecular mechanism of dynein motility. Measuring the mechanical properties of a single molecule of dynein is crucial for revealing the mechanisms underlying its movement. We measured the step size and force produced by single molecules of active cytoplasmic dynein by using an optical trap and fluorescence imaging with a high temporal resolution. The velocity of dynein movement, 800 nm/s, is consistent with that reported in cells. The maximum force of 7-8 pN was independent of the ATP concentration and similar to that of kinesin. Dynein exhibited forward and occasional backwards steps of approximately 8 nm, independent of load. It is suggested that the large dynein heads take 16-nm steps by using an overlapping hand-over-hand mechanism.
Collapse
Affiliation(s)
- Shiori Toba
- *Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; and
| | - Tomonobu M. Watanabe
- Biomedical and Engineering Research Organization, Engineering Research Laboratory Complex 901, Tohoku University, 6-6-11 Aramaki, Sendai 980-8579, Japan
| | - Lisa Yamaguchi-Okimoto
- *Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; and
| | - Yoko Yano Toyoshima
- *Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; and
| | - Hideo Higuchi
- Biomedical and Engineering Research Organization, Engineering Research Laboratory Complex 901, Tohoku University, 6-6-11 Aramaki, Sendai 980-8579, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
84
|
Yildiz A. How Molecular Motors Move. Science 2006. [DOI: 10.1126/science.1125068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ahmet Yildiz
- The author is in the Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
85
|
Kinosita K, Ali MY, Adachi K, Shiroguchi K, Itoh H. How two-foot molecular motors may walk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 565:205-18; discussion 218-9, 379-95. [PMID: 16106977 DOI: 10.1007/0-387-24990-7_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Kazuhiko Kinosita
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
86
|
Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 2005; 105:1377-400. [PMID: 15826015 DOI: 10.1021/cr030071r] [Citation(s) in RCA: 694] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazushi Kinbara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
87
|
Snyder GE, Sakamoto T, Hammer JA, Sellers JR, Selvin PR. Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys J 2005; 87:1776-83. [PMID: 15345556 PMCID: PMC1304582 DOI: 10.1529/biophysj.103.036897] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin V is a homodimeric motor protein involved in trafficking of vesicles in the cell. It walks bipedally along actin filaments, moving cargo approximately 37 nm per step. We have measured the step size of individual myosin heads by fusing an enhanced green fluorescent protein (eGFP) to the N-terminus of one head of the myosin dimer and following the motion with nanometer precision and subsecond resolution. We find the average step size to be 74.1 nm with 9.4 nm (SD) and 0.3 nm (SE). Our measurements demonstrate nanometer localization of single eGFPs, confirm the hand-over-hand model of myosin V procession, and when combined with previous data, suggest that there is a kink in the leading lever arm in the waiting state of myosin V. This kink, or "telemark skier" configuration, may cause strain, which, when released, leads to the powerstroke of myosin, throwing the rear head forward and leading to unidirectional motion.
Collapse
Affiliation(s)
- Gregory E Snyder
- Physics Department and Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
88
|
Tama F, Feig M, Liu J, Brooks CL, Taylor KA. The requirement for mechanical coupling between head and S2 domains in smooth muscle myosin ATPase regulation and its implications for dimeric motor function. J Mol Biol 2005; 345:837-54. [PMID: 15588830 DOI: 10.1016/j.jmb.2004.10.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/28/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
A combination of experimental structural data, homology modelling and elastic network normal mode analysis is used to explore how coupled motions between the two myosin heads and the dimerization domain (S2) in smooth muscle myosin II determine the domain movements required to achieve the inhibited state of this ATP-dependent molecular motor. These physical models rationalize the empirical requirement for at least two heptads of non-coiled alpha-helix at the junction between the myosin heads and S2, and the dependence of regulation on S2 length. The results correlate well with biochemical data regarding altered conformational-dependent solubility and stability. Structural models of the conformational transition between putative active states and the inhibited state show that torsional flexibility of the S2 alpha-helices is a key mechanical requirement for myosin II regulation. These torsional motions of the myosin heads about their coiled coil alpha-helices affect the S2 domain structure, which reciprocally affects the motions of the myosin heads. This inter-relationship may explain a large body of data on function of molecular motors that form dimers through a coiled-coil domain.
Collapse
Affiliation(s)
- Florence Tama
- Department of Molecular Biology, TPC6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
Molecular motors are a fascinating group of proteins that have vital roles in a huge variety of cellular processes. They all share the ability to produce force through the hydrolysis of adenosine triphosphate, and fall into classes groups: the kinesins, myosins and the dyneins. The kinesin superfamily itself can be split into three major groups depending on the position of the motor domain, which is localized N-terminally, C-terminally, or internally. This review focuses on the N-terminal kinesins, providing a brief overview of their roles within the cell, and illustrating recent key developments in our understanding of how these proteins function.
Collapse
Affiliation(s)
- Marcin J Wozniak
- University of Manchester, School of Biological Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
90
|
Kemp P, Gupta M, Molineux IJ. Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism. Mol Microbiol 2004; 53:1251-65. [PMID: 15306026 DOI: 10.1111/j.1365-2958.2004.04204.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a normal infection about 850 bp of the bacteriophage T7 genome is ejected into the cell, the remainder of the genome is internalized through transcription by Escherichia coli and then T7 RNA polymerase. Rates of T7 DNA internalization by the E. coli enzyme in vivo are constant across the whole genome. As expected for an enzyme-catalysed reaction, rates vary with temperature and can be fitted to Arrhenius kinetics. Phage virions containing a mutant gp16, a protein known to be ejected from the phage capsid into the cell at the initiation of infection, allow complete entry of the T7 genome in the absence of transcription. The kinetics of DNA ejection from such a mutant virion into the bacterial cytoplasm have also been measured at different temperatures in vivo. Between 15 and 43 degrees C the entire 40 kb T7 genome is translocated into the cell at a constant rate that is characteristic for each temperature, and the temperature-dependence of DNA translocation rates can be fitted to Arrhenius kinetics. The data are consistent with the idea that transcription-independent DNA translocation from the T7 virion is also enzyme-catalysed. The proton motive force is necessary for this mode of DNA translocation, because collapsing the membrane potential while the T7 genome is entering the cell abruptly halts further DNA transfer.
Collapse
Affiliation(s)
- Priscilla Kemp
- Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712-1095, USA
| | | | | |
Collapse
|
91
|
Wang Z. Bioinspired laser-operated molecular locomotive. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:031903. [PMID: 15524545 DOI: 10.1103/physreve.70.031903] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Indexed: 05/24/2023]
Abstract
Biomotors kinesin and dynein show us that robust track-walking is possible down to molecular scale. Here I design a laser-powered molecular locomotive that is able to do that on an easily constructed track. The core of the machine is its work cycle that periodically converts optical energy into mechanical work, which is further rectified into processive, directional motion. Thus the molecular locomotive is essentially beyond the famous design of molecular shuttles. Under automated laser operation, the locomotive can move a few mum per second comparable to its biological counterparts. However, this artificial motor is capable of conveniently switchable, dual directional motion in contrast to common unidirectionality of biomotors. The locomotive is also different from the big category of Brownian motors in the sense that move of the locomotive is not a result of biasing pre-existing fluctuations, rather it is directly and decisively driven by optomechanical strokes of the work cycle, generating a pulling force ten times greater than those of biomotors. Being a novel type of molecular motor as well as a powerful molecular engine, this machine will potentially enable automatic, forceful delivery of molecular building blocks with nanometer accuracy. Well within reach of established techniques, its implementation will be a significant advance in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Zhisong Wang
- Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA.
| |
Collapse
|
92
|
Peterman EJG, Sosa H, Moerner WE. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu Rev Phys Chem 2004; 55:79-96. [PMID: 15117248 DOI: 10.1146/annurev.physchem.55.091602.094340] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The methods of single-molecule fluorescence spectroscopy and microscopy have been recently utilized to explore the mechanism of action of several members of the kinesin and myosin biomolecular motor protein families. Whereas ensemble averaging is removed in single-molecule studies, heterogeneity in the behavior of individual motors can be directly observed, without synchronization. Observation of translocation by individual copies of motor proteins allows analysis of step size, rate, pausing, and other statistical properties of the process. Polarization microscopy as a function of nucleotide state has been particularly useful in revealing new and highly rotationally mobile forms of particular motors. These experiments complement X-ray and biochemical studies and provide a detailed view into the local dynamical behavior of motor proteins.
Collapse
Affiliation(s)
- Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands.
| | | | | |
Collapse
|
93
|
Higuchi H, Bronner CE, Park HW, Endow SA. Rapid double 8-nm steps by a kinesin mutant. EMBO J 2004; 23:2993-9. [PMID: 15257294 PMCID: PMC514923 DOI: 10.1038/sj.emboj.7600306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 06/11/2004] [Indexed: 11/08/2022] Open
Abstract
The mechanism by which conventional kinesin walks along microtubules is poorly understood, but may involve alternate binding to the microtubule and hydrolysis of ATP by the two heads. Here we report a single amino-acid change that affects stepping by the motor. Under low force or low ATP concentration, the motor moves by successive 8-nm steps in single-motor laser-trap assays, indicating that the mutation does not alter the basic mechanism of kinesin walking. Remarkably, under high force, the mutant motor takes successive 16-nm displacements that can be resolved into rapid double 8-nm steps with a short dwell between steps, followed by a longer dwell. The alternating short and long dwells under high force demonstrate that the motor stepping mechanism is inherently asymmetric, revealing an asymmetric phase in the kinesin walking cycle. Our findings support an asymmetric two-headed walking model for kinesin, with cooperative interactions between the two heads. The sensitivity of the 16-nm displacements to nucleotide and load raises the possibility that ADP release is a force-producing event of the kinesin cycle.
Collapse
Affiliation(s)
- Hideo Higuchi
- Department of Metallurgy and Center for Interdisciplinary Research, Tohoku University, Sendai, Japan
| | | | - Hee-Won Park
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharyn A Endow
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, 438 Jones Building, Research Drive, Durham, NC 27710, USA. Tel.: +1 919 684 4311; Fax: +1 919 684 8090; E-mail:
| |
Collapse
|
94
|
Ali MY, Homma K, Iwane AH, Adachi K, Itoh H, Kinosita K, Yanagida T, Ikebe M. Unconstrained steps of myosin VI appear longest among known molecular motors. Biophys J 2004; 86:3804-10. [PMID: 15189876 PMCID: PMC1304281 DOI: 10.1529/biophysj.103.037416] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 02/24/2004] [Indexed: 11/18/2022] Open
Abstract
Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.
Collapse
Affiliation(s)
- M Yusuf Ali
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Nishiyama M, Higuchi H, Ishii Y, Taniguchi Y, Yanagida T. Single molecule processes on the stepwise movement of ATP-driven molecular motors. Biosystems 2004; 71:145-56. [PMID: 14568215 DOI: 10.1016/s0303-2647(03)00122-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Movement is a fundamental characteristic of all living things. This biogenic function that is attributed to the molecular motors such as kinesin, dynein and myosin. Molecular motors generate forces by using chemical energy derived from the hydrolysis reaction of ATP molecules. Despite a large number of studies on this topic, the chemomechanical energy transduction mechanism is still unsolved. In this study, we have investigated the chemomechanical coupling of the ATPase cycle to the mechanical events of the molecular motor kinesin using single molecule detection (SMD) techniques. The SMD techniques allowed to detection of the movement of single kinesin molecules along a microtubule and showed that kinesin steps mainly in the forward direction, but occasionally in the backward. The stepping direction is determined by a certain load-dependent process, on which the stochastic behavior is well characterized by Feynman's thermal ratchet model. The driving force of the stepwise movement is essentially Brownian motion, but it is biased in the forward direction by using the free energy released from the hydrolysis of ATP.
Collapse
Affiliation(s)
- Masayoshi Nishiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
96
|
Dessinges MN, Lionnet T, Xi XG, Bensimon D, Croquette V. Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc Natl Acad Sci U S A 2004; 101:6439-44. [PMID: 15079074 PMCID: PMC404063 DOI: 10.1073/pnas.0306713101] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake.
Collapse
Affiliation(s)
- Marie-Noëlle Dessinges
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Unité Mixte de Recherche 8550, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
97
|
Abstract
We have identified dimeric kinesin mutants that become stalled on the microtubule after one ATP turnover, unable to bind and hydrolyze ATP at their second site. We have used these mutants to determine the regulatory signal that allows ATP to bind to the forward head, such that processive movement can continue. The results show that phosphate release occurs from the rearward head before detachment, and detachment triggers active-site accessibility for ATP binding at the forward head. This mechanism, in which the rearward head controls the behavior of the forward head, may be conserved among processive motors.
Collapse
Affiliation(s)
- Lisa M Klumpp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
98
|
|
99
|
Krebs A, Goldie KN, Hoenger A. Complex formation with kinesin motor domains affects the structure of microtubules. J Mol Biol 2004; 335:139-53. [PMID: 14659746 DOI: 10.1016/j.jmb.2003.10.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microtubules are highly dynamic components of the cytoskeleton. They are important for cell movement and they are involved in a variety of transport processes together with motor proteins, such as kinesin. The exact mechanism of these transport processes is not known and so far the focus has been on structural changes within the motor domains, but not within the underlying microtubule structure. Here we investigated the interaction between kinesin and tubulin and our experimental data show that microtubules themselves are changing structure during that process. We studied unstained, vitrified samples of microtubules composed of 15 protofilaments using cryo electron microscopy and helical image analysis. 3D maps of plain microtubules and microtubules decorated with kinesin have been reconstructed to approximately 17A resolution. The alphabeta-tubulin dimer could be identified and, according to our data, alpha- and beta-tubulin adopt different conformations in plain microtubules. Significant differences were detected between maps of plain microtubules and microtubule-kinesin complexes. Most pronounced is the continuous axial inter-dimer contact in the microtubule-kinesin complex, suggesting stabilized protofilaments along the microtubule axis. It seems, that mainly structural changes within alpha-tubulin are responsible for this observation. Lateral effects are less pronounced. Following our data, we believe, that microtubules play an active role in intracellular transport processes through modulations of their core structure.
Collapse
Affiliation(s)
- A Krebs
- European Molecular Biology Laboratory, Meyerhofstrasse1, 69117, Heidelberg, Germany.
| | | | | |
Collapse
|
100
|
Schief WR, Clark RH, Crevenna AH, Howard J. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc Natl Acad Sci U S A 2004; 101:1183-8. [PMID: 14734813 PMCID: PMC337027 DOI: 10.1073/pnas.0304369101] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motor protein kinesin couples a temporally periodic chemical cycle (the hydrolysis of ATP) to a spatially periodic mechanical cycle (movement along a microtubule). To distinguish between different models of such chemical-to-mechanical coupling, we measured the speed of movement of conventional kinesin along microtubules in in vitro motility assays over a wide range of substrate (ATP) and product (ADP and inorganic phosphate) concentrations. In the presence and absence of products, the dependence of speed on [ATP] was well described by the Michaelis-Menten equation. In the absence of products, the K(M) (the [ATP] required for half-maximal speed) was 28 +/- 1 microM, and the maximum speed was 904 nm/s. P(i) behaved as a competitive inhibitor with K(I) = 9 +/- 1 mM. ADP behaved approximately as a competitive inhibitor with K(I) = 35 +/- 2 microM. The data were compared to four-state kinetic models in which changes in nucleotide state are coupled to chemical and/or mechanical changes. We found that the deviation from competitive inhibition by ADP was inconsistent with models in which P(i) is released before ADP. This is surprising because all known ATPases (and GTPases) with high structural similarity to the motor domains of kinesin release P(i) before ADP (or GDP). Our result is therefore inconsistent with models, such as one-headed and inchworm mechanisms, in which the hydrolysis cycle takes place on one head only. However, it is simply explained by hand-over-hand models in which ADP release from one head precedes P(i) release from the other.
Collapse
Affiliation(s)
- William R Schief
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|