51
|
Wunschel D, Tulman E, Engelmann H, Clowers BH, Geary S, Robinson A, Liao X. Forensic proteomics of poxvirus production. Analyst 2013; 138:6385-97. [PMID: 23979794 DOI: 10.1039/c3an00711a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signatures of their production system. Here we have explored a proteomic analysis of vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins. Several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.
Collapse
Affiliation(s)
- David Wunschel
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Cummins J, Casey PG, Joyce SA, Gahan CGM. A mariner transposon-based signature-tagged mutagenesis system for the analysis of oral infection by Listeria monocytogenes. PLoS One 2013; 8:e75437. [PMID: 24069416 PMCID: PMC3771922 DOI: 10.1371/journal.pone.0075437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
Collapse
Affiliation(s)
- Joanne Cummins
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Pat G. Casey
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Susan A. Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
53
|
Abstract
This month's Genome Watch looks back over the past 10 years and highlights how the incredible advances in sequencing technologies have transformed research into microbial genomes.
Collapse
Affiliation(s)
- Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
54
|
Jung KH, Kim SH, Kim SK, Cho SY, Chai JC, Lee YS, Kim JC, Kim SJ, Oh HB, Chai YG. Genetic populations of Bacillus anthracis isolates from Korea. J Vet Sci 2013; 13:385-93. [PMID: 23271180 PMCID: PMC3539124 DOI: 10.4142/jvs.2012.13.4.385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacillus (B.) anthracis is the pathogen that causes fatal anthrax. Strain-specific detection of this bacterium using molecular approaches has enhanced our knowledge of microbial population genetics. In the present study, we employed molecular approaches including multiple-locus variable-number tandem repeat analysis (MLVA) and canonical single-nucleotide polymorphism (canSNP) analysis to perform molecular typing of B. anthracis strains isolated in Korea. According to the MLVA, 17 B. anthracis isolates were classified into A3a, A3b, and B1 clusters. The canSNP analyses subdivided the B. anthracis isolates into two of the three previously recognized major lineages (A and B). B. anthracis isolates from Korea were found to belong to four canSNP sub-groups (B.Br.001/2, A.Br.005/006, A.Br.001/002, and A.Br.Ames). The A.Br.001/002 and A.Br.Ames sub-lineages are closely related genotypes frequently found in central Asia and most isolates were. On the other hand, B. anthracis CH isolates were analyzed that belonged to the B.Br.001/002 sub-group which found in southern Africa, Europe and California (USA). B.Br.001/002 genotype is new lineage of B. anthracis in Korea that was not found before. This discovery will be helpful for the creation of marker systems and might be the result of human activity through the development of agriculture and increased international trade in Korea.
Collapse
Affiliation(s)
- Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan 426-791, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Dziga D, Wasylewski M, Wladyka B, Nybom S, Meriluoto J. Microbial degradation of microcystins. Chem Res Toxicol 2013; 26:841-52. [PMID: 23621464 DOI: 10.1021/tx4000045] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatotoxic microcystins that are produced by freshwater cyanobacteria pose a risk to public health. These compounds may be eliminated by enzymatic degradation. Here, we review the enzymatic pathways for the degradation of these hepatotoxins, some of which are newly discovered processes. The efficiencies of microcystin biodegradation pathways are documented in several papers and are compared here. Additionally, a comprehensive description of the microcystin enzymatic degradation scheme has been supplemented with a proposal for a new biodegradation pathway. Critical comments on less documented hypotheses are also included. The genetic aspects of biodegradation activity are discussed in detail. We also describe some methods that are useful for studying the biological decomposition of microcystins, including screening for microcystin degraders and detecting microcystin degradation products, with an emphasis on mass spectrometric methodology.
Collapse
Affiliation(s)
- Dariusz Dziga
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | |
Collapse
|
56
|
Draft genome sequence of Bacillus anthracis UR-1, isolated from a German heroin user. J Bacteriol 2013; 194:5997-8. [PMID: 23045504 DOI: 10.1128/jb.01410-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequence of Bacillus anthracis UR-1, isolated from a fatal case of injectional anthrax in a German heroin user. Analysis of the genome sequence of strain UR-1 may aid in describing phylogenetic relationships between virulent heroin-associated isolates of B. anthracis isolated in the United Kingdom, Germany, and other European countries.
Collapse
|
57
|
Korlach J. Single Molecule, Real-Time DNA Sequencing Yields a Clearer Picture of Biological Complexity: Helps Scientists Close Genomes, Study Linked Variants, and Detect Base Modifications. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.1546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
58
|
Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. J Bacteriol 2012; 194:4116-7. [PMID: 22815438 DOI: 10.1128/jb.00159-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus anthracis H9401 (NCCP 12889) is an isolate from a Korean patient with gastrointestinal anthrax. The whole genome of H9401 was sequenced. It is a circular chromosome containing 5,480 open reading frames (ORFs) and two plasmids, pXO1 containing 202 ORFs and pXO2 containing 110 ORFs. H9401 shows high pathogenicity and genome sequence similarity to Ames Ancestor.
Collapse
|
59
|
Abstract
A pan-genome describes the full complement of genes in species. It is a superset of all the genes in all the individuals of a species, which is composed of a 'core genome' containing genes present in all individuals, and a 'dispensable genome' containing genes present only in some individuals and individual-specific genes. From pan-genome sight, 30 finished genomes from Escherichia coli were employed to analyze their gene and genome compositions and evaluation in this study. The results indicated that the core genes accounted for about 50% of the total number of genes, while about 146 strain-specific genes existed in the each strain tested. The data suggests that the E. coli pan-genome is vast, and unique genes will continue to be identified when more E. coli genomes are sequenced. After analyzing relationships of the gene conservation, GC content and selection pressure in different strains tested, we found that more conserved genes had a nar-row range of GC content, and they also bear more selection pressure. These results will be helpful for better understanding of the evolution profile of E. coli genome, and the dynamic changes of its gene compositions. The E. coli pan-genome pro-vides useful information for prevention and control of the diseases caused by pathogenic E. coli, and also provides a para-digm for the large-scale analysis of pathogenic bacteria genomes.
Collapse
|
60
|
Fournier PE, Raoult D. Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 2012; 65:169-88. [PMID: 21639792 DOI: 10.1146/annurev-micro-090110-102922] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of genome sequences has revolutionized the fields of microbiology and infectious diseases. Indeed, more than 1,000 bacterial genomes and 3,000 viral genomes, including representatives of all significant human pathogens, have been sequenced to date. Owing to this tremendous amount of data, genomes are regarded as chimeras of sequence fragments from various origins. Coupled with novel proteomic analyses, genome sequencing has also resulted in unprecedented advances in pathogen diagnosis and genotyping and in the detection of virulence and antibiotic resistance. Herein, we review current achievements of genomics and proteomics and discuss potential developments for clinical microbiology laboratories.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Université de la Méditerranée, Marseille Cedex 5, 13385 France.
| | | |
Collapse
|
61
|
Cliff JB, Kreuzer HW, Ehrhardt CJ, Wunschel DS. The Microbe: The Basics of Structure, Morphology, and Physiology as They Relate to Microbial Characterization and Attribution. CHEMICAL AND PHYSICAL SIGNATURES FOR MICROBIAL FORENSICS 2012. [PMCID: PMC7123343 DOI: 10.1007/978-1-60327-219-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter is meant to (1) review classical methods used to characterize and classify microbes and (2) introduce new molecular methods used in microbial characterization. The fundamental composition of microbes is discussed as well as their importance in classification of microbes into genus and species. Classical microbiological methods in general seek to define the common features of specific bacterial groups as a means of classification and identification of microbes. Thus, the focus was to describe the common features which discriminated closely related groups of organisms. In contrast, the newer molecular methods often seek to expand the classification of microbes not only as a means to organize microbial phylogeny but also to differentiate signatures between microbes identified within a species in greater detail. Molecular biology tools are used both as an adjunct to established methods and as replacement for classical methods for detection, discrimination, or identification of bacterial and viral species.
Collapse
Affiliation(s)
- John B. Cliff
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, 6009 West Australia Australia
| | - Helen W. Kreuzer
- Chemical and Biological Signature Scienc, Pacific Northwest National Laboratory, PO Box 999, MS P7-50, Richland, 99352 Washington USA
| | - Christopher J. Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, 1020 W. Main Street, Richmond, 23284 Virginia USA
| | - David S. Wunschel
- Chemical and Biological Signature Scienc, Pacific Northwest National Laboratory, PO Box 999, MS P7-50, Richland, 99352 Washington USA
| |
Collapse
|
62
|
Hu B, Xie G, Lo CC, Starkenburg SR, Chain PSG. Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Brief Funct Genomics 2011; 10:322-33. [DOI: 10.1093/bfgp/elr042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
63
|
Derzelle S, Laroche S, Le Flèche P, Hauck Y, Thierry S, Vergnaud G, Madani N. Characterization of genetic diversity of Bacillus anthracis in France by using high-resolution melting assays and multilocus variable-number tandem-repeat analysis. J Clin Microbiol 2011; 49:4286-92. [PMID: 21998431 PMCID: PMC3232934 DOI: 10.1128/jcm.05439-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
Using high-resolution melting (HRM) analysis, we developed a cost-effective method to genotype a set of 13 phylogenetically informative single-nucleotide polymorphisms (SNPs) within the genome of Bacillus anthracis. SNP discrimination assays were performed in monoplex or duplex and applied to 100 B. anthracis isolates collected in France from 1953 to 2009 and a few reference strains. HRM provided a reliable and cheap alternative to subtype B. anthracis into one of the 12 major sublineages or subgroups. All strains could be correctly positioned on the canonical SNP (canSNP) phylogenetic tree, except the divergent Pasteur vaccine strain ATCC 4229. We detected the cooccurrence of three canSNP subgroups in France. The dominant B.Br.CNEVA sublineage was found to be prevalent in the Alps, the Pyrenees, the Auvergne region, and the Saône-et-Loire department. Strains affiliated with the A.Br.008/009 subgroup were observed throughout most of the country. The minor A.Br.001/002 subgroup was restricted to northeastern France. Multiple-locus variable-number tandem-repeat analysis using 24 markers further resolved French strains into 60 unique profiles and identified some regional patterns. Diversity found within the A.Br.008/009 and B.Br.CNEVA subgroups suggests that these represent old, ecologically established clades in France. Phylogenetic relationships with strains from other parts of the world are discussed.
Collapse
Affiliation(s)
- S Derzelle
- Bacterial Zoonosis Unit, Maisons-Alfort Laboratory for Animal Health, ANSES, 23 Avenue du Général de Gaulle, 94706 Maisons Alfort cedex, France.
| | | | | | | | | | | | | |
Collapse
|
64
|
Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2011; 13:36-46. [PMID: 22124482 DOI: 10.1038/nrg3117] [Citation(s) in RCA: 1122] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Repetitive DNA sequences are abundant in a broad range of species, from bacteria to mammals, and they cover nearly half of the human genome. Repeats have always presented technical challenges for sequence alignment and assembly programs. Next-generation sequencing projects, with their short read lengths and high data volumes, have made these challenges more difficult. From a computational perspective, repeats create ambiguities in alignment and assembly, which, in turn, can produce biases and errors when interpreting results. Simply ignoring repeats is not an option, as this creates problems of its own and may mean that important biological phenomena are missed. We discuss the computational problems surrounding repeats and describe strategies used by current bioinformatics systems to solve them.
Collapse
|
65
|
Genetic variation and linkage disequilibrium in Bacillus anthracis. Sci Rep 2011; 1:169. [PMID: 22355684 PMCID: PMC3240990 DOI: 10.1038/srep00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022] Open
Abstract
We performed whole-genome amplification followed by hybridization of custom-designed resequencing arrays to resequence 303 kb of genomic sequence from a worldwide panel of 39 Bacillus anthracis strains. We used an efficient algorithm contained within a custom software program, UniqueMER, to identify and mask repetitive sequences on the resequencing array to reduce false-positive identification of genetic variation, which can arise from cross-hybridization. We discovered a total of 240 single nucleotide variants (SNVs) and showed that B. anthracis strains have an average of 2.25 differences per 10,000 bases in the region we resequenced. Common SNVs in this region are found to be in complete linkage disequilibrium. These patterns of variation suggest there has been little if any historical recombination among B. anthracis strains since the origin of the pathogen. This pattern of common genetic variation suggests a framework for recognizing new or genetically engineered strains.
Collapse
|
66
|
Berglund EC, Kiialainen A, Syvänen AC. Next-generation sequencing technologies and applications for human genetic history and forensics. INVESTIGATIVE GENETICS 2011; 2:23. [PMID: 22115430 PMCID: PMC3267688 DOI: 10.1186/2041-2223-2-23] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/24/2011] [Indexed: 12/24/2022]
Abstract
Rapid advances in the development of sequencing technologies in recent years have enabled an increasing number of applications in biology and medicine. Here, we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next-generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics.
Collapse
Affiliation(s)
- Eva C Berglund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Kiialainen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
67
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
68
|
Strain Typing Using Multiple “Variable Number of Tandem Repeat” Analysis and Genetic Element CRISPR. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
69
|
Genome sequencing and analysis of Yersina pestis KIM D27, an avirulent strain exempt from select agent regulation. PLoS One 2011; 6:e19054. [PMID: 21559501 PMCID: PMC3084740 DOI: 10.1371/journal.pone.0019054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/23/2011] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes.
Collapse
|
70
|
Brodzik AK, Francoeur J. A new approach to in silico SNP detection and some new SNPs in the Bacillus anthracis genome. BMC Res Notes 2011; 4:114. [PMID: 21477306 PMCID: PMC3094368 DOI: 10.1186/1756-0500-4-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/08/2011] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus anthracis is one of the most monomorphic pathogens known. Identification of polymorphisms in its genome is essential for taxonomic classification, for determination of recent evolutionary changes, and for evaluation of pathogenic potency. Findings In this work three strains of the Bacillus anthracis genome are compared and previously unpublished single nucleotide polymorphisms (SNPs) are revealed. Moreover, it is shown that, despite the highly monomorphic nature of Bacillus anthracis, the SNPs are (1) abundant in the genome and (2) distributed relatively uniformly across the sequence. Conclusions The findings support the proposition that SNPs, together with indels and variable number tandem repeats (VNTRs), can be used effectively not only for the differentiation of perfect strain data, but also for the comparison of moderately incomplete, noisy and, in some cases, unknown Bacillus anthracis strains. In the case when the data is of still lower quality, a new DNA sequence fingerprinting approach based on recently introduced markers, based on combinatorial-analytic concepts and called cyclic difference sets, can be used.
Collapse
|
71
|
Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillippy AM, Salzberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Liggett CM, Ravel J. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 2011; 108:5027-32. [PMID: 21383169 PMCID: PMC3064363 DOI: 10.1073/pnas.1016657108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.
Collapse
Affiliation(s)
- David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Patricia L. Worsham
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011
| | - Terry G. Abshire
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011
| | - Scott T. Stanley
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - Jason D. Bannan
- Federal Bureau of Investigation Laboratory, Quantico, VA 22134-5163
| | - Mark R. Wilson
- Federal Bureau of Investigation Laboratory, Quantico, VA 22134-5163
| | - Richard J. Langham
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - R. Scott Decker
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - Lingxia Jiang
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Timothy D. Read
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Adam M. Phillippy
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Steven L. Salzberg
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Mihai Pop
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Matthew N. Van Ert
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Leo J. Kenefic
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Paul S. Keim
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Claire M. Fraser-Liggett
- Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
72
|
Fox K, Fox A, Rose J, Walla M. Speciation of coagulase negative staphylococci, isolated from indoor air, using SDS page gel bands of expressed proteins followed by MALDI TOF MS and MALDI TOF-TOF MS-MS analysis of tryptic peptides. J Microbiol Methods 2011; 84:243-50. [DOI: 10.1016/j.mimet.2010.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/18/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
73
|
Janse I, Hamidjaja RA, Bok JM, van Rotterdam BJ. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification. BMC Microbiol 2010; 10:314. [PMID: 21143837 PMCID: PMC3016324 DOI: 10.1186/1471-2180-10-314] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022] Open
Abstract
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum
Collapse
Affiliation(s)
- Ingmar Janse
- National Institute for Public Health and the Environment, Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
74
|
den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 2010; 11:688. [PMID: 21126366 PMCID: PMC3019230 DOI: 10.1186/1471-2164-11-688] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains.
Collapse
Affiliation(s)
- Henk C den Bakker
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol 2010; 28:611-8. [PMID: 20961641 DOI: 10.1016/j.tibtech.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/14/2023]
Abstract
New sequencing technologies have made the production of bacterial genome sequences increasingly easy, and it can be confidently forecasted that vast genomic databases will be generated in the next few years. Here, we detail how collections of bacterial genomes from a particular species (population genomics libraries) have already been used to improve the design of several diagnostic assays for bacterial pathogens. Genome sequencing itself is also becoming more commonly used for epidemiological, forensic and clinical investigations. There is an opportunity for the further development of bioinformatic tools to bring even further value to bacterial diagnostic genomics.
Collapse
|
76
|
Cummings CA, Bormann Chung CA, Fang R, Barker M, Brzoska P, Williamson PC, Beaudry J, Matthews M, Schupp J, Wagner DM, Birdsell D, Vogler AJ, Furtado MR, Keim P, Budowle B. Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing. INVESTIGATIVE GENETICS 2010; 1:5. [PMID: 21092340 PMCID: PMC2988479 DOI: 10.1186/2041-2223-1-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 09/01/2010] [Indexed: 12/16/2022]
Abstract
Background In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization. Results To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats. Conclusions The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.
Collapse
|
77
|
Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 2010; 5:e10986. [PMID: 20634886 PMCID: PMC2901330 DOI: 10.1371/journal.pone.0010986] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Collapse
Affiliation(s)
- Silke R Klee
- Centre for Biological Security (ZBS), Robert Koch-Institut, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Valdivia-Granda WA. Bioinformatics for biodefense: challenges and opportunities. Biosecur Bioterror 2010; 8:69-77. [PMID: 20230234 DOI: 10.1089/bsp.2009.0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intentional release of traditional or combinatorial bioweapons remains one of the most important challenges that will continue to shape homeland security. The misuse of dual-use and how-to methods and techniques in the fields of molecular, synthetic, and computational biology can lessen the technical barriers for launching attacks, even for small groups or individuals. Bioinformatics is guiding the implementation of several biodefense countermeasures. However, existing algorithms have not effectively translated available pathogen genomic data into standardized diagnostics, rational vaccine development, or broad spectrum therapeutics. Despite its potential, bioinformatics has a limited impact on forensic and intelligence operations. More than 12 biodefense databases and information exchange architectures lack interoperability and a common layer that restricts scalability and the development of biodefense enterprises. Therefore, in order to use next-generation genome sequencing for medical intelligence, forensic operations, biothreat awareness, and mitigation, the attention has to be redirected toward the development of computational biology applications. This article debates some of the challenges that the bioinformatics field confronts in terms of biodefense problems and proposes potential opportunities to use pathogen genomic data. Issues related to the analysis of pathogen genomes and emerging methods including genomic barcoding, active curation, and knowledge management and their impact on intelligence, forensics, and policymaking are discussed.
Collapse
|
79
|
Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species. J Clin Microbiol 2010; 48:2821-9. [PMID: 20554827 DOI: 10.1128/jcm.00137-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.
Collapse
|
80
|
Lewis T, Loman NJ, Bingle L, Jumaa P, Weinstock GM, Mortiboy D, Pallen MJ. High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 2010; 75:37-41. [PMID: 20299126 DOI: 10.1016/j.jhin.2010.01.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
Shared care of military and civilian patients has resulted in transmission of multidrug-resistant Acinetobacter baumannii (MDR-Aci) from military casualties to civilians. Current typing technologies have been useful in revealing relationships between isolates of A. baumannii but they are unable to resolve differences between closely related isolates from small-scale outbreaks, where chains of transmission are often unclear. In a recent hospital outbreak in Birmingham, six patients were colonised with MDR-Aci isolates indistinguishable using standard techniques. We used whole-genome sequencing to identify single nucleotide polymorphisms in these isolates, allowing us to discriminate between alternative epidemiological hypotheses in this setting.
Collapse
Affiliation(s)
- T Lewis
- Department of Medical Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
81
|
Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob Agents Chemother 2010; 54:2787-92. [PMID: 20385868 DOI: 10.1128/aac.01405-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance of Bacillus anthracis is a serious concern in the fields of biodefense and bioterrorism since FQs are very effective antibiotics and are recommended as first-line treatment against this lethal bacterium. In this study, we obtained 2 strains of B. anthracis showing resistance or intermediate resistance to ciprofloxacin (CIP) by a stepwise selection procedure with increasing CIP concentrations. Fifteen genetic variations were identified between the parental and CIP-resistant strains by next-generation sequencing. Nonsynonymous mutations in the quinolone resistance-determining region (QRDR) of type II DNA topoisomerase were identified in the resistant strain but not in the intermediate-resistant strain. The GBAA0834 (TetR-type transcriptional regulator) locus was also revealed to be a novel "mutation hot spot" that leads to the increased expression of multidrug efflux systems for CIP resistance. As an initial step of CIP resistance in B. anthracis, such disruptive mutations of GBAA0834 appear to be more easily acquired than those in an essential gene, such as that encoding type II DNA topoisomerase. Such an intermediate-resistant phenotype could increase a cell population under CIP-selective pressure and might promote the emergence of highly resistant isolates. Our findings reveal, in addition to QRDR, crucial genetic targets for the investigation of intermediate resistance of B. anthracis to FQs.
Collapse
|
82
|
Sainath Rao S, Mohan KVK, Nguyen N, Abraham B, Abdouleva G, Zhang P, Atreya CD. Peptides panned from a phage-displayed random peptide library are useful for the detection of Bacillus anthracis surrogates B. cereus 4342 and B. anthracis Sterne. Biochem Biophys Res Commun 2010; 395:93-8. [PMID: 20350526 DOI: 10.1016/j.bbrc.2010.03.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Recent use of Bacillus anthracis as a bioweapon has highlighted the need for a sensitive monitoring system. Current bacterial detection tests use antibodies as bio-molecular recognition elements which have limitations with regard to time, specificity and sensitivity, creating the need for new and improved cost-effective high-affinity detection probes. In this study, we screened a commercially available bacteriophage-displayed random peptide library using Bacillus cereus 4342 cells as bait to identify peptides that could be used for detection of Bacillus. The method enabled us to identify two 12-amino acid consensus peptide sequences that specifically bind to B. cereus 4342 and B. anthracis Sterne, the nonpathogenic surrogates of B. anthracis strain. The two Bacillus-binding peptides (named BBP-1 and BBP-2) were synthesized with biotin tag to confirm their binding by four independent detection assays. Dot-blot analysis revealed that the peptides bind specifically to B. cereus 4342 and B. anthracis Sterne. Quantitative analysis of this interaction by ELISA and fluorometry demonstrated a detection sensitivity of 10(2) colony forming U/ml (CFU/ml) by both assays. When the peptides were used in combination with Qdots, the sensitivity was enhanced further by enabling detection of even a single bacterium by fluorescence microscopy. Immunoblot analysis and protein sequencing showed that BBP-1 and BBP-2 bound to the S-layer protein of B. anthracis Sterne. Overall, our findings validate the usefulness of synthetic versions of phage-derived peptides in combination with Qdot-liquid nanocrystals as high sensitivity bioprobes for various microbial detection platforms.
Collapse
Affiliation(s)
- Shilpakala Sainath Rao
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Raman spectroscopy-compatible inactivation method for pathogenic endospores. Appl Environ Microbiol 2010; 76:2895-907. [PMID: 20208030 DOI: 10.1128/aem.02481-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed.
Collapse
|
84
|
Garofolo G, Ciammaruconi A, Fasanella A, Scasciamacchia S, Adone R, Pittiglio V, Lista F. SNR analysis: molecular investigation of an anthrax epidemic. BMC Vet Res 2010; 6:11. [PMID: 20187980 PMCID: PMC2837646 DOI: 10.1186/1746-6148-6-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/28/2010] [Indexed: 11/15/2022] Open
Abstract
Background In Italy, anthrax is endemic but occurs sporadically. During the summer of 2004, in the Pollino National Park, Basilicata, Southern Italy, an anthrax epidemic consisting of 41 outbreaks occurred; it claimed the lives of 124 animals belonging to different mammal species. This study is a retrospective molecular epidemiological investigation carried out on 53 isolates collected during the epidemic. A 25-loci Multiple Locus VNTR Analysis (MLVA) MLVA was initially performed to define genetic relationships, followed by an investigation of genetic diversity between epidemic strains through Single Nucleotide Repeat (SNR) analysis. Results 53 Bacillus anthracis strains were isolated. The 25-loci MLVA analysis identified all of them as belonging to a single genotype, while the SNR analysis was able to detect the existence of five subgenotypes (SGTs), allowing a detailed epidemic investigation. SGT-1 was the most frequent (46/53); SGTs 2 (4/53), 3 (1/53) 4 (1/53) and 5 (1/53) were detected in the remaining seven isolates. Conclusions The analysis revealed the prevalent spread, during this epidemic, of a single anthrax clone. SGT-1 - widely distributed across the epidemic area and present throughout the period in question - may, thus, be the ancestral form. SGTs 2, 3 and 4 differed from SGT-1 at only one locus, suggesting that they could have evolved directly from the latter during the course of this epidemic. SGT-5 differed from the other SGTs at 2-3 loci. This isolate, thus, appears to be more distantly related to SGT-1 and may not be a direct descendant of the lineage responsible for the majority of cases in this epidemic. These data confirm the importance of molecular typing and subtyping methods for in-depth epidemiological analyses of anthrax epidemics.
Collapse
Affiliation(s)
- Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy-Foggia, Italy.
| | | | | | | | | | | | | |
Collapse
|
85
|
Saraf M, Jha CK, Patel D. The Role of ACC Deaminase Producing PGPR in Sustainable Agriculture. PLANT GROWTH AND HEALTH PROMOTING BACTERIA 2010. [DOI: 10.1007/978-3-642-13612-2_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Kern J, Schneewind O. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 2010; 75:324-32. [PMID: 19906175 PMCID: PMC2828814 DOI: 10.1111/j.1365-2958.2009.06958.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbial pathogens use adhesive surface proteins to bind to and interact with host tissues, events that are universal for the pathogenesis of infectious diseases. A surface adhesin of Bacillus anthracis, the causative agent of anthrax, required to mediate these steps has not been discovered. Previous work identified BslA, an S-layer protein, to be necessary and sufficient for adhesion of the anthrax vaccine strain, Bacillus anthracis Sterne, to host cells. Here we asked whether encapsulated bacilli require BslA for anthrax pathogenesis in guinea pigs. Compared with the highly virulent parent strain B. anthracis Ames, bslA mutants displayed a dramatic increase in the lethal dose and in mean time-to-death. Whereas all tissues of animals infected with B. anthracis Ames contained high numbers of bacilli, only few vegetative forms could be recovered from internal organs of animals infected with the bslA mutant. Surface display of BslA occurred at the poles of encapsulated bacilli and enabled the binding of vegetative forms to host cells. Together these results suggest that BslA functions as the surface adhesin of the anthrax pathogen B. anthracis strain Ames.
Collapse
Affiliation(s)
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
87
|
Abstract
Public health preparedness requires effective surveillance of and rapid response to infectious disease outbreaks. Inclusion of research activities within the outbreak setting provides important opportunities to maximize limited resources, to enhance gains in scientific knowledge, and ultimately to increase levels of preparedness. With rapid advances in laboratory technologies, banking and analysis of human genomic specimens can be conducted as part of public health investigations, enabling valuable research well into the future.
Collapse
Affiliation(s)
- Nicole F Dowling
- Office of Public Health Genomics, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Marta Gwinn
- Office of Public Health Genomics, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Alison Mawle
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
88
|
Okutani A, Sekizuka T, Boldbaatar B, Yamada A, Kuroda M, Inoue S. Phylogenetic typing of Bacillus anthracis isolated in Japan by multiple locus variable-number tandem repeats and the comprehensive single nucleotide polymorphism. J Vet Med Sci 2009; 72:93-7. [PMID: 19915334 DOI: 10.1292/jvms.09-0213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Twelve strains of Bacillus anthracis isolated in Japan were subjected to multiple locus variable-number tandem repeats analysis using 25 marker loci (MLVA25). The results showed that Japanese strains could be divided into two distinct genetic clusters, A3a and A3b. By using newly devised comprehensive single nucleotide polymorphisms (SNPs) analysis, Japanese strains were also divided into two groups. The results obtained by the MLVA25 and plasmids SNP analysis well coincided, indicating that both methods were highly sensitive to discriminate B. anthracis strains. These results suggested that MLVA25 had sufficient discrimination power to identify B. anthracis at the strain level, and that MLVA25 as well as comprehensive SNPs analysis could facilitate further studies of B. anthracis strains including Japanese and other Asian strains.
Collapse
Affiliation(s)
- Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
89
|
Kolstø AB, Tourasse NJ, Økstad OA. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 2009; 63:451-76. [PMID: 19514852 DOI: 10.1146/annurev.micro.091208.073255] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus anthracis is the cause of anthrax, and two large plasmids are essential for toxicity: pXO1, which contains the toxin genes, and pXO2, which encodes a capsule. B. anthracis forms a highly monomorphic lineage within the B. cereus group, but strains of Bacillus thuringiensis and B. cereus exist that are genetically closely related to the B. anthracis cluster. During the past five years B. cereus strains that contain the pXO1 virulence plasmid were discovered, and strains with both pXO1 and pXO2 have been isolated from great apes in Africa. Therefore, the presence of pXO1 and pXO2 no longer principally separates B. anthracis from other Bacilli. The B. anthracis lineage carries a specific mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in B. cereus and B. thuringiensis. Coevolution of the B. anthracis chromosome with its plasmids may be the basis for the successful development and uniqueness of the B. anthracis lineage.
Collapse
Affiliation(s)
- Anne-Brit Kolstø
- Laboratory for Microbial Dynamics and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo 0316, Norway.
| | | | | |
Collapse
|
90
|
Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J, McKernan K, Ranade S, Shea TP, Williams L, Young S, Nusbaum C, Jaffe DB. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 2009; 10:R103. [PMID: 19796385 PMCID: PMC2784318 DOI: 10.1186/gb-2009-10-10-r103] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/20/2009] [Accepted: 10/01/2009] [Indexed: 11/10/2022] Open
Abstract
Allpaths2, a method for accurately assembling small genomes with high continuity using short paired reads. We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).
Collapse
Affiliation(s)
- Iain Maccallum
- Broad Institute of MIT and Harvard, Charles Street, Cambridge, MA 02141, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hong C, Tewfik AH. Heuristic reusable dynamic programming: efficient updates of local sequence alignment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2009; 6:570-582. [PMID: 19875856 DOI: 10.1109/tcbb.2009.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.
Collapse
Affiliation(s)
- Changjin Hong
- Department of Electrical Engineering, University of Minnesota, 4-192 EE/CSCI Building, 200 Union St. SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
92
|
Barrick JE, Lenski RE. Genome-wide mutational diversity in an evolving population of Escherichia coli. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 74:119-29. [PMID: 19776167 DOI: 10.1101/sqb.2009.74.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The level of genetic variation in a population is the result of a dynamic tension between evolutionary forces. Mutations create variation, certain frequency-dependent interactions may preserve diversity, and natural selection purges variation. New sequencing technologies offer unprecedented opportunities to discover and characterize the diversity present in evolving microbial populations on a whole-genome scale. By sequencing mixed-population samples, we have identified single-nucleotide polymorphisms (SNPs) present at various points in the history of an Escherichia coli population that has evolved for almost 20 years from a founding clone. With 50-fold genome coverage, we were able to catch beneficial mutations as they swept to fixation, discover contending beneficial alleles that were eliminated by clonal interference, and detect other minor variants possibly adapted to a new ecological niche. Additionally, there was a dramatic increase in genetic diversity late in the experiment after a mutator phenotype evolved. Still finer-resolution details of the structure of genetic variation and how it changes over time in microbial evolution experiments will enable new applications and quantitative tests of population genetic theory.
Collapse
Affiliation(s)
- J E Barrick
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
93
|
Goss EM, Larsen M, Chastagner GA, Givens DR, Grünwald NJ. Population genetic analysis infers migration pathways of Phytophthora ramorum in US nurseries. PLoS Pathog 2009; 5:e1000583. [PMID: 19774068 PMCID: PMC2736564 DOI: 10.1371/journal.ppat.1000583] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/23/2009] [Indexed: 12/15/2022] Open
Abstract
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens.
Collapse
Affiliation(s)
- Erica M. Goss
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, Oregon, United States of America
| | - Meg Larsen
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, Oregon, United States of America
| | - Gary A. Chastagner
- Washington State University Research and Extension Center, Puyallup, Washington, United States of America
| | - Donald R. Givens
- USDA APHIS PPQ, Fort Collins, Colorado, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
94
|
Couñago RM, Davlieva M, Strych U, Hill RE, Krause KL. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC STRUCTURAL BIOLOGY 2009; 9:53. [PMID: 19695097 PMCID: PMC2743695 DOI: 10.1186/1472-6807-9-53] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/20/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames) alanine racemase (AlrBax), an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation. RESULTS B. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine) of 101 U/mg. The crystal structure of unmodified AlrBax is reported here to 1.95 A resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBax makes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure. CONCLUSION The chloride ion in AlrBax is functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBax structures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure.
Collapse
Affiliation(s)
- Rafael M Couñago
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Milya Davlieva
- Department of Biochemistry Rice University, Houston, TX, USA
| | - Ulrich Strych
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ryan E Hill
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
95
|
Fasanella A, Galante D, Garofolo G, Jones MH. Anthrax undervalued zoonosis. Vet Microbiol 2009; 140:318-31. [PMID: 19747785 DOI: 10.1016/j.vetmic.2009.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022]
Abstract
Anthrax is a non-contagious disease, known since ancient times. However, it became a matter of global public interest after the bioterrorist attacks in the U.S.A. during the autumn of 2001. The concern of politicians and civil authorities everywhere towards this emergency necessitated a significant research effort and the prevention of new bioterrorist acts. Anthrax is primarily a disease that affects livestock and wildlife; its distribution is worldwide; and it can represent a danger to humans but especially more so when it occurs in areas considered to be free and in atypical seasons and climatic conditions. The atypicality of the phenomenon may lead health workers to misdiagnose and, consequently, an inappropriately manage of affected carcasses with a consequent and inevitable increase in the risk of human infection. This article emphasises the importance of paying increasing attention to this zoonosis. The biggest risk is its underestimation.
Collapse
Affiliation(s)
- Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy.
| | | | | | | |
Collapse
|
96
|
Geographical distribution of genotypic and phenotypic markers among Bacillus anthracis isolates and related species by historical movement and horizontal transfer. Folia Microbiol (Praha) 2009; 53:472-8. [PMID: 19381470 DOI: 10.1007/s12223-008-0074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 09/04/2008] [Indexed: 10/20/2022]
Abstract
The geographical distribution of Bacillus anthracis strains and isolates bearing some of the same genetic markers as the Amerithrax Ames isolate was examined and evaluated. At least one mechanism for the horizontal movement of genetic markers was shown amongst isolates and closely related species and the effect of such mixing was demonstrated on phenotype. The results provided potential mechanisms by which attempts to attribute isolates of Bacillus anthracis to certain geographical and isolate sources may be disrupted.
Collapse
|
97
|
Khan SA, Sung K, Nawaz MS, Cerniglia CE, Tamplin ML, Phillips RW, Kelley LC. The survivability of Bacillus anthracis (Sterne strain) in processed liquid eggs. Food Microbiol 2009; 26:123-7. [DOI: 10.1016/j.fm.2008.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 11/30/2022]
|
98
|
Genomic research for important pathogenic bacteria in China. ACTA ACUST UNITED AC 2009; 52:50-63. [DOI: 10.1007/s11427-009-0009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/22/2008] [Indexed: 12/21/2022]
|
99
|
Nusbaum C, Ohsumi TK, Gomez J, Aquadro J, Victor TC, Warren RM, Hung DT, Birren BW, Lander ES, Jaffe DB. Sensitive, specific polymorphism discovery in bacteria using massively parallel sequencing. Nat Methods 2009; 6:67-9. [PMID: 19079253 PMCID: PMC2613166 DOI: 10.1038/nmeth.1286] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/24/2008] [Indexed: 11/18/2022]
Abstract
Our variant ascertainment algorithm, VAAL, uses massively parallel DNA sequence data to identify differences between bacterial genomes with high sensitivity and specificity. VAAL detected approximately 98% of differences (including large insertion-deletions) between pairs of strains from three species while calling no false positives. VAAL also pinpointed a single mutation between Vibrio cholerae genomes, identifying an antibiotic's site of action by identifying sequence differences between drug-sensitive strains and drug-resistant derivatives.
Collapse
Affiliation(s)
- Chad Nusbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, 320 Charles Street, Cambridge, MA 02141, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ravel J, Jiang L, Stanley ST, Wilson MR, Decker RS, Read TD, Worsham P, Keim PS, Salzberg SL, Fraser-Liggett CM, Rasko DA. The complete genome sequence of Bacillus anthracis Ames "Ancestor". J Bacteriol 2009; 191:445-6. [PMID: 18952800 PMCID: PMC2612425 DOI: 10.1128/jb.01347-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 10/14/2008] [Indexed: 11/20/2022] Open
Abstract
The pathogenic bacterium Bacillus anthracis has become the subject of intense study as a result of its use in a bioterrorism attack in the United States in September and October 2001. Previous studies suggested that B. anthracis Ames Ancestor, the original Ames fully virulent plasmid-containing isolate, was the ideal reference. This study describes the complete genome sequence of that original isolate, derived from a sample kept in cold storage since 1981.
Collapse
Affiliation(s)
- Jacques Ravel
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|