51
|
Koumandou VL, Kossida S. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes. PLoS Comput Biol 2014; 10:e1003821. [PMID: 25188293 PMCID: PMC4154653 DOI: 10.1371/journal.pcbi.1003821] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/18/2014] [Indexed: 11/22/2022] Open
Abstract
Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We discuss the implications of the overall pattern of conservation and flexibility of the F0F1 ATP synthase genetic locus.
Collapse
Affiliation(s)
- Vassiliki Lila Koumandou
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sophia Kossida
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
52
|
Evolutionary history of redox metal-binding domains across the tree of life. Proc Natl Acad Sci U S A 2014; 111:7042-7. [PMID: 24778258 DOI: 10.1073/pnas.1403676111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.
Collapse
|
53
|
Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 2014; 43:4423-48. [PMID: 24695773 DOI: 10.1039/c3cs60426h] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanofibres can be fabricated by various methods and perhaps electrospinning is the most facile route. In past years, electrospinning has been used as a synthesis technique and the fibres have been prepared from a variety of starting materials and show various properties. Recently, incorporating functional nanoparticles (NPs) with electrospun fibres has emerged as one of most exciting research topics in the field of electrospinning. When NPs are incorporated, on the one hand the NPs endow the electrospun fibres/mats novel or better performance, on the other hand the electrospun fibres/mats could preserve the NPs from corrosion and/or oxidation, especially for NPs with anisotropic structures. More importantly, electrospinning shows potential applications in self-assembly of nanoscale building blocks for generating new functions, and has some obvious advantages that are not available by other self-assembly methods, i.e., the obtained free-standing hybrid mats are usually flexible and with large area, which is favourable for their commercial applications. In this critical review, we will focus on the fabrication and applications of NPs-electrospun fibre composites and give an overview on this emerging field combining nanoparticles and electrospinning. Firstly, two main strategies for producing NPs-electrospun fibres will be discussed, i.e., one is preparing the NPs-electrospun fibres after electrospinning process that is usually combined with other post-processing methods, and the other is fabricating the composite nanofibres during the electrospinning process. In particular, the NPs in the latter method will be classified and introduced to show the assembling effect of electrospinning on NPs with different anisotropic structures. The subsequent section describes the applications of these NPs-electrospun fibre mats and nanocomposites, and finally a conclusion and perspectives of the future research in this emerging field is given.
Collapse
Affiliation(s)
- Chuan-Ling Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | |
Collapse
|
54
|
Kitadai N. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results. J Mol Evol 2014; 78:171-87. [PMID: 24652580 DOI: 10.1007/s00239-014-9616-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.
Collapse
Affiliation(s)
- Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan,
| |
Collapse
|
55
|
Braakman R, Smith E. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS One 2014; 9:e87950. [PMID: 24516572 PMCID: PMC3917532 DOI: 10.1371/journal.pone.0087950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/05/2014] [Indexed: 11/19/2022] Open
Abstract
Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.
Collapse
Affiliation(s)
- Rogier Braakman
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| | - Eric Smith
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
56
|
|
57
|
Abstract
The global biogeochemical nitrogen cycle is essential for life on Earth. Many of the underlying biotic reactions are catalyzed by a multitude of prokaryotic and eukaryotic life forms whereas others are exclusively carried out by microorganisms. The last century has seen the rise of a dramatic imbalance in the global nitrogen cycle due to human behavior that was mainly caused by the invention of the Haber-Bosch process. Its main product, ammonia, is a chemically reactive and biotically favorable form of bound nitrogen. The anthropogenic supply of reduced nitrogen to the biosphere in the form of ammonia, for example during environmental fertilization, livestock farming, and industrial processes, is mandatory in feeding an increasing world population. In this chapter, environmental ammonia pollution is linked to the activity of microbial metalloenzymes involved in respiratory energy metabolism and bioenergetics. Ammonia-producing multiheme cytochromes c are discussed as paradigm enzymes.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287, Darmstadt, Germany,
| | | |
Collapse
|
58
|
Colman DR, Garcia JR, Crossey LJ, Karlstrom K, Jackson-Weaver O, Takacs-Vesbach C. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs. GEOBIOLOGY 2014; 12:83-98. [PMID: 24286205 DOI: 10.1111/gbi.12070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro-organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture-independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well-characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle-derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Springs/chemistry
- Hot Springs/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- United States
Collapse
Affiliation(s)
- D R Colman
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|
59
|
Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PLoS One 2013; 8:e72958. [PMID: 23940820 PMCID: PMC3735525 DOI: 10.1371/journal.pone.0072958] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 07/22/2013] [Indexed: 12/20/2022] Open
Abstract
Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria (Thiomicrospira-like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin-Bassham-Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems.
Collapse
|
60
|
Mapping metabolism onto the prebiotic organic chemistry of hydrothermal vents. Proc Natl Acad Sci U S A 2013; 110:13236-7. [PMID: 23908404 DOI: 10.1073/pnas.1312470110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
61
|
Jin M, Ye T, Zhang X. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiology (Reading) 2013; 159:1597-1605. [DOI: 10.1099/mic.0.067611-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Min Jin
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ting Ye
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
62
|
He Y, Xiao X, Wang F. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. Front Microbiol 2013; 4:148. [PMID: 23785357 PMCID: PMC3682177 DOI: 10.3389/fmicb.2013.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/27/2013] [Indexed: 11/13/2022] Open
Abstract
Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China
| | | | | |
Collapse
|
63
|
Marakushev SA, Belonogova OV. The divergence and natural selection of autocatalytic primordial metabolic systems. ORIGINS LIFE EVOL B 2013; 43:263-81. [PMID: 23860777 DOI: 10.1007/s11084-013-9340-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022]
Abstract
The diversity of the central metabolism of modern organisms is caused by the existence of a few metabolic modules, combination of which produces multiple metabolic pathways. This paper analyzes biomimetically reconstructed coupled autocatalytic cycles as the basis of ancestral metabolic systems. The mechanism for natural selection and evolution in autocatalytic chemical systems may be affected by natural homeostatic parameters such as ambient chemical potentials, temperature, and pressure. Competition between separate parts of an autocatalytic network with positive-plus-negative feedback resulted in the formation of primordial autotrophic, mixotrophic, and heterotrophic metabolic systems. This work examined the last common ancestor of a set of coupled metabolic cycles in a population of protocells. Physical-chemical properties of these cycles determined the main principles of natural selection for the ancestral Bacteria and Archaea taxa.
Collapse
Affiliation(s)
- Sergey A Marakushev
- Institute of Problem of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia.
| | | |
Collapse
|
64
|
Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol 2013; 4:67. [PMID: 23653623 PMCID: PMC3644721 DOI: 10.3389/fmicb.2013.00067] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/09/2013] [Indexed: 01/24/2023] Open
Abstract
The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) "filamentous streamer" communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.
Collapse
Affiliation(s)
- William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman MT, USA ; Thermal Biology Institute, Montana State University Bozeman MT, USA
| | | | | | | | | | | |
Collapse
|
65
|
Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. GEOBIOLOGY 2013; 11:279-293. [PMID: 23551687 DOI: 10.1111/gbi.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the majority of endolithic anaerobic primary production in hydrothermal vent chimneys.
Collapse
Affiliation(s)
- H C Olins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
66
|
Community microrespirometry and molecular analyses reveal a diverse energy economy in Great Boiling Spring and Sandy's Spring West in the U.S. Great Basin. Appl Environ Microbiol 2013; 79:3306-10. [PMID: 23475616 DOI: 10.1128/aem.00139-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microrespirometry showed that several organic and inorganic electron donors stimulated oxygen consumption in two ∼80°C springs. Sediment and planktonic communities were structurally and functionally distinct, and quantitative PCR revealed catabolically distinct subpopulations of Thermocrinis. This study suggests that a variety of chemolithotrophic metabolisms operate simultaneously in these springs.
Collapse
|
67
|
Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD, Inskeep WP. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. GEOBIOLOGY 2013; 11:86-99. [PMID: 23231658 DOI: 10.1111/gbi.12015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments.
Collapse
Affiliation(s)
- R E Macur
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|
68
|
|
69
|
|
70
|
Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 2012; 43:393-409. [PMID: 19719671 DOI: 10.1111/j.1574-6941.2003.tb01080.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract The bacterial diversity in a diffuse flow hydrothermal vent habitat at Axial Volcano, Juan de Fuca Ridge was examined shortly after an eruptive event in 1998 and again in 1999 and 2000 using PCR-amplified 16S rRNA gene sequence analyses. While considerable overlap with deep-sea background seawater was found within the alpha- and gamma-proteobacteria, unique subseafloor phylotypes were distinguishable. These included diverse members of the epsilon-proteobacteria, high temperature groups such as Desulfurobacterium, Gram-positive bacteria, and members of novel candidate divisions WS6 and ABY1. Phylotype richness was highest in the particle-attached populations from all three sampling periods, and diversity appeared to increase over that time, particularly among the epsilon-proteobacteria. A preliminary model of the subseafloor is presented that relates microbial diversity to temperature, chemical characteristics of diffuse flow fluids and the degree of mixing with seawater.
Collapse
Affiliation(s)
- Julie A Huber
- School of Oceanography and Astrobiology Program, University of Washington, Box 357940, Seattle, WA 98195, USA
| | | | | |
Collapse
|
71
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
Braakman R, Smith E. The emergence and early evolution of biological carbon-fixation. PLoS Comput Biol 2012; 8:e1002455. [PMID: 22536150 PMCID: PMC3334880 DOI: 10.1371/journal.pcbi.1002455] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form.
Collapse
Affiliation(s)
- Rogier Braakman
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
73
|
Klales A, Duncan J, Nett EJ, Kane SA. Biophysical model of prokaryotic diversity in geothermal hot springs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021911. [PMID: 22463248 DOI: 10.1103/physreve.85.021911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms.
Collapse
Affiliation(s)
- Anna Klales
- Physics Department, Haverford College, Haverford, Pennsylvania 19041, USA
| | | | | | | |
Collapse
|
74
|
Abstract
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.
Collapse
|
75
|
|
76
|
Lanzén A, Jørgensen SL, Bengtsson MM, Jonassen I, Øvreås L, Urich T. Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA. FEMS Microbiol Ecol 2011; 77:577-89. [PMID: 21627670 DOI: 10.1111/j.1574-6941.2011.01138.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA sequencing technology has proven very valuable for analysing the microbiota of poorly accessible ecosystems such as hydrothermal vents. Using a combination of amplicon and shotgun sequencing of small-subunit rRNA and its gene, we examined the composition and diversity of microbial communities from the recently discovered Jan Mayen vent field, located on Mohn's Ridge in the Norwegian-Greenland Sea. The communities were dominated by the epsilonproteobacterial genera Sulfurimonas and Sulfurovum. These are mesophiles involved in sulphur metabolism and typically found in vent fluid mixing zones. Composition and diversity predictions differed systematically between extracted DNA and RNA samples as well as between amplicon and shotgun sequencing. These differences were more substantial than those between two biological replicates. Amplicon vs. shotgun sequencing differences could be explained to a large extent by bias introduced during PCR, caused by preferential primer-template annealing, while DNA vs. RNA differences were thought to be caused by differences between the activity levels of taxa. Further, predicted diversity from RNA samples was consistently lower than that from DNA. In summary, this study illustrates how different methods can provide complementary ecological insights.
Collapse
Affiliation(s)
- Anders Lanzén
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
77
|
Flow injection analysis combined with a hydrothermal flow reactor: Application to kinetic determination of trace amounts of iridium using a water-soluble porphyrin. Talanta 2011; 84:1318-22. [DOI: 10.1016/j.talanta.2011.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 02/02/2011] [Accepted: 02/25/2011] [Indexed: 11/15/2022]
|
78
|
Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing. Appl Environ Microbiol 2011; 77:4931-8. [PMID: 21622787 DOI: 10.1128/aem.00285-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.
Collapse
|
79
|
Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. THE ISME JOURNAL 2011; 5:414-426. [PMID: 20927138 PMCID: PMC3105715 DOI: 10.1038/ismej.2010.144] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 11/09/2022]
Abstract
Deep-sea hydrothermal vent chimneys harbor a high diversity of largely unknown microorganisms. Although the phylogenetic diversity of these microorganisms has been described previously, the adaptation and metabolic potential of the microbial communities is only beginning to be revealed. A pyrosequencing approach was used to directly obtain sequences from a fosmid library constructed from a black smoker chimney 4143-1 in the Mothra hydrothermal vent field at the Juan de Fuca Ridge. A total of 308,034 reads with an average sequence length of 227 bp were generated. Comparative genomic analyses of metagenomes from a variety of environments by two-way clustering of samples and functional gene categories demonstrated that the 4143-1 metagenome clustered most closely with that from a carbonate chimney from Lost City. Both are highly enriched in genes for mismatch repair and homologous recombination, suggesting that the microbial communities have evolved extensive DNA repair systems to cope with the extreme conditions that have potential deleterious effects on the genomes. As previously reported for the Lost City microbiome, the metagenome of chimney 4143-1 exhibited a high proportion of transposases, implying that horizontal gene transfer may be a common occurrence in the deep-sea vent chimney biosphere. In addition, genes for chemotaxis and flagellar assembly were highly enriched in the chimney metagenomes, reflecting the adaptation of the organisms to the highly dynamic conditions present within the chimney walls. Reconstruction of the metabolic pathways revealed that the microbial community in the wall of chimney 4143-1 was mainly fueled by sulfur oxidation, putatively coupled to nitrate reduction to perform inorganic carbon fixation through the Calvin-Benson-Bassham cycle. On the basis of the genomic organization of the key genes of the carbon fixation and sulfur oxidation pathways contained in the large genomic fragments, both obligate and facultative autotrophs appear to be present and contribute to biomass production.
Collapse
Affiliation(s)
- Wei Xie
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, Huazhong University of Science and Technology, Wuhan, PR China
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Fengping Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
- School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai, PR China
| | - Lei Guo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Zeling Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, MA, USA
| | - Jun Meng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Qingyu Yan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Shan Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Xin Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Guangyuan He
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiang Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
- School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai, PR China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Therapeutic Functional Genes, National Engineering Center for Marine Biotechnology of South China Sea, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| |
Collapse
|
80
|
Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:261-89. [PMID: 21329206 DOI: 10.1146/annurev-marine-120709-142712] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.
Collapse
Affiliation(s)
- Michael Hügler
- Microbiology Department, Water Technology Center, 76139 Karlsruhe, Germany.
| | | |
Collapse
|
81
|
Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K. Electrical Current Generation across a Black Smoker Chimney. Angew Chem Int Ed Engl 2010; 49:7692-4. [DOI: 10.1002/anie.201003311] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
|
83
|
Preston LJ, Genge MJ. The Rhynie Chert, Scotland, and the search for life on Mars. ASTROBIOLOGY 2010; 10:549-60. [PMID: 20624061 DOI: 10.1089/ast.2008.0321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Knowledge of ancient terrestrial hydrothermal systems-how they preserve biological information and how this information can be detected-is important in unraveling the history of life on Earth and, perhaps, that of extinct life on Mars. The Rhynie Chert in Scotland was originally deposited as siliceous sinter from Early Devonian hot springs and contains exceptionally well-preserved fossils of some of the earliest plants and animals to colonize the land. The aim of this study was to identify biomolecules within the samples through Fourier transform infrared (FTIR) spectroscopy and aid current techniques in identification of ancient hot spring deposits and their biological components on Mars. Floral and faunal fossils within the Rhynie Chert are commonly known; but new, FTIR spectroscopic analyses of these fossils has allowed for identification of biomolecules such as aliphatic hydrocarbons and OH molecules that are potentially derived from the fossilized biota and their environment. Gas chromatograph-mass spectrometer (GCMS) data were used to identify n-alkanes; however, this alone cannot be related to the samples' biota. Silicified microfossils are more resistant to weathering or dissolution, which renders them more readily preservable over time. This is of particular interest in astropaleontological research, considering the similarities in the early evolution of Mars and Earth.
Collapse
Affiliation(s)
- Louisa J Preston
- Impact and Astromaterials Research Centre (IARC), Imperial College London and The Natural History Museum, London, UK.
| | | |
Collapse
|
84
|
|
85
|
Takaki Y, Shimamura S, Nakagawa S, Fukuhara Y, Horikawa H, Ankai A, Harada T, Hosoyama A, Oguchi A, Fukui S, Fujita N, Takami H, Takai K. Bacterial lifestyle in a deep-sea hydrothermal vent chimney revealed by the genome sequence of the thermophilic bacterium Deferribacter desulfuricans SSM1. DNA Res 2010; 17:123-37. [PMID: 20189949 PMCID: PMC2885270 DOI: 10.1093/dnares/dsq005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily driven by C1 to C3 organics, e.g. formate, acetate, and pyruvate, and also suggested that the inability of autotrophy via a reductive tricarboxylic acid cycle may be due to the lack of ATP-dependent citrate lyase. In addition, the genome encodes numerous genes for chemoreceptors, chemotaxis-like systems, and signal transduction machineries. These signalling networks may be linked to this bacterium's versatile energy metabolisms and may provide ecophysiological advantages for D. desulfuricans SSM1 thriving in the physically and chemically fluctuating environments near hydrothermal vents. This is the first genome sequence from the phylum Deferribacteres.
Collapse
Affiliation(s)
- Yoshihiro Takaki
- Microbial Genome Research Group, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Synchrotron Infrared Spectromicroscopy for Studying Chemistry of Microbial Activity in Geologic Materials. SYNCHROTRON-BASED TECHNIQUES IN SOILS AND SEDIMENTS 2010. [DOI: 10.1016/s0166-2481(10)34004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
87
|
Gunbin KV, Afonnikov DA, Kolchanov NA. Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions. BMC Genomics 2009; 10:639. [PMID: 20042074 PMCID: PMC2816203 DOI: 10.1186/1471-2164-10-639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/30/2009] [Indexed: 05/14/2023] Open
Abstract
Background Prokaryotic microorganisms are able to survive and proliferate in severe environmental conditions. The increasing number of complete sequences of prokaryotic genomes has provided the basis for studying the molecular mechanisms of their adaptation at the genomic level. We apply here a computer-based approach to compare the genomes and proteomes from P. furiosus, P. horikoshii, and P. abyssi to identify features of their molecular evolution related to adaptation strategy to diverse environmental conditions. Results Phylogenetic analysis of rRNA genes from 26 Pyrococcus strains suggested that the divergence of P. furiosus, P. horikoshii and P. abyssi might have occurred from ancestral deep-sea organisms. It was demonstrated that the function of genes that have been subject to positive Darwinian selection is closely related to abiotic and biotic conditions to which archaea managed to become adapted. Divergence of the P. furiosus archaea might have been due to loss of some genes involved in cell motility or signal transduction, and/or to evolution under positive selection of the genes for translation machinery. In the course of P. horikoshii divergence, positive selection was found to operate mainly on the transcription machinery; divergence of P. abyssi was related with positive selection for the genes mainly involved in inorganic ion transport. Analysis of radical amino acid replacement rate in evolving P. furiosus, P. horikoshii and P. abyssi showed that the fixation rate was higher for radical substitutions relative to the volume of amino acid side-chain. Conclusions The current results give due credit to the important role of hydrostatic pressure as a cause of variability in the P. furiosus, P. horikoshii and P. abyssi genomes evolving in different habitats. Nevertheless, adaptation to pressure does not appear to be the sole factor ensuring adaptation to environment. For example, at the stage of the divergence of P. horikoshii and P. abyssi, an essential evolutionary role may be assigned to changes in the trophic chain, namely, acquisition of a consumer status at a high (P. horikoshii) or low level (P. abyssi).
Collapse
Affiliation(s)
- Konstantin V Gunbin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
88
|
Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. J Virol 2009; 84:2365-73. [PMID: 20015994 DOI: 10.1128/jvi.02182-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virus-host interaction is essential to understanding the role that viruses play in ecological and geochemical processes in deep-sea vent ecosystems. Virus-induced changes in cellular gene expression and host physiology have been studied extensively. However, the molecular mechanism of interaction between a bacteriophage and its host at high temperature remains poorly understood. In the present study, the virus-induced gene expression profile of Geobacillus sp. E263, a thermophile isolated from a deep-sea hydrothermal ecosystem, was characterized. Based on proteomic analysis and random arbitrarily primed PCR (RAP-PCR) of Geobacillus sp. E263 cultured under non-bacteriophage GVE2 infection and GVE2 infection conditions, there were two types of protein/gene profiles in response to GVE2 infection. Twenty differentially expressed genes and proteins were revealed that could be grouped into 3 different categories based on cellular function, suggesting a coordinated response to infection. These differentially expressed genes and proteins were further confirmed by Northern blot analysis. To characterize the host proteins in response to virus infection, aspartate aminotransferase (AST) was inactivated to construct the AST mutant of Geobacillus sp. E263. The results showed that the AST protein was essential in virus infection. Thus, transcriptional and proteomic analyses and functional analysis revealed previously unknown host responses to deep-sea thermophilic virus infection.
Collapse
|
89
|
Kimura H, Mori K, Nashimoto H, Hattori S, Yamada K, Koba K, Yoshida N, Kato K. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool. Environ Microbiol 2009; 12:480-9. [PMID: 19878264 DOI: 10.1111/j.1462-2920.2009.02089.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Geosciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Opatkiewicz AD, Butterfield DA, Baross JA. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiol Ecol 2009; 70:413-24. [PMID: 19796141 DOI: 10.1111/j.1574-6941.2009.00747.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The microbial community structure of five geographically distinct hydrothermal vents located within the Axial Seamount caldera, Juan de Fuca Ridge, was examined over 6 years following the 1998 diking eruptive event. Terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene sequence analyses were used to determine the bacterial and archaeal diversity, and the statistical software primer v6 was used to compare vent microbiology, temperature and fluid chemistry. Statistical analysis of vent fluid temperature and composition shows that there are significant differences between vents in any year, but that the fluid composition changes over time such that no vent maintains a chemical composition completely distinct from the others. In contrast, the subseafloor microbial communities associated with individual vents changed from year to year, but each location maintained a distinct community structure (based on TRFLP and 16S rRNA gene sequence analyses) that was significantly different from all other vents included in this study. Epsilonproteobacterial microdiversity is shown to be important in distinguishing vent communities, while archaeal microdiversity is less variable between sites. We propose that persistent venting at diffuse flow vents over time creates the potential to isolate and stabilize diverse microbial community structures between vents.
Collapse
Affiliation(s)
- Andrew D Opatkiewicz
- School of Oceanography and Center for Astrobiology and Early Evolution, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
91
|
Higashi Y, Sunamura M, Kitamura K, Nakamura KI, Kurusu Y, Ishibashi JI, Urabe T, Maruyama A. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber. FEMS Microbiol Ecol 2009; 47:327-36. [PMID: 19712321 DOI: 10.1016/s0168-6496(04)00004-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also noteworthy that some of the findings presented here were made possible by the application of the in situ growth chamber into the hot fluids deep inside the boreholes.
Collapse
Affiliation(s)
- Yowsuke Higashi
- National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
92
|
A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 2009; 13:905-15. [PMID: 19763742 DOI: 10.1007/s00792-009-0278-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Strains of hyperthermophilic anaerobic hydrothermal vent archaea maintained in the culture collection assembled by Holger Jannasch at the Woods Hole Oceanographic Institution between 1984 and 1998 were identified and partially characterized by Denaturing Gradient Gel Electrophoresis, 16S rRNA gene sequencing, and by growth tests at different temperatures and on different organic carbon and nitrogen sources. All strains were members of the genera Thermococcus and Pyrococcus. The greatest phylogenetic diversity was found in strains from a single Guaymas Basin core isolated by serial dilution from four different depth horizons of heated sediment incubated at the corresponding in situ temperatures. In contrast, geographically distinct vent locations and sample materials yielded a lower diversity of isolates when enriched under uniform temperature regimes and without prior dilution of the source material.
Collapse
|
93
|
Aditiawati P, Yohandini H, Madayanti F, Akhmaloka. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia. Open Microbiol J 2009; 3:58-66. [PMID: 19440252 PMCID: PMC2681175 DOI: 10.2174/1874285800903010058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 11/24/2022] Open
Abstract
Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.
Collapse
Affiliation(s)
- Pingkan Aditiawati
- School of Life Science and Technology, Institut Teknologi Bandung, Jl Ganesha 10, Bandung, Indonesia
| | | | | | | |
Collapse
|
94
|
Haouari O, Fardeau ML, Cayol JL, Casiot C, Elbaz-Poulichet F, Hamdi M, Joseph M, Ollivier B. Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 2009; 58:2529-35. [PMID: 18984688 DOI: 10.1099/ijs.0.65339-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic, moderately thermophilic, sulfate-reducing bacterium, designated strain Lam5(T), was isolated from a hot spring in north-east Tunisia and was characterized phenotypically and phylogenetically. The isolate stained Gram-negative but had a Gram-positive-type cell wall. The strain comprised endospore-forming, slightly curved rod-shaped cells with peritrichous flagella. It did not possess desulfoviridin. Strain Lam5(T) grew anaerobically at 40-60 degrees C (optimally at 55 degrees C) and at pH 5.8-8.2 (optimally at pH 7.1); it did not require NaCl but tolerated concentrations up to 1.5 % (w/v). It utilized lactate, pyruvate, formate, ethanol, butanol, glycerol, propanol and H(2) (plus acetate) as electron donors. Lactate was oxidized and pyruvate was fermented to acetate. Sulfate, sulfite, thiosulfate, As(V) and Fe(III) (but not elemental sulfur, fumarate, nitrate or nitrite) were used as electron acceptors. The G+C content of the genomic DNA was 46.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain Lam5(T) was a member of the genus Desulfotomaculum, with Desulfotomaculum putei as its closest relative (96 % similarity to the type strain). On the basis of genotypic, phenotypic and phylogenetic data, strain Lam5(T) represents a novel species of the genus Desulfotomaculum, for which the name Desulfotomaculum hydrothermale sp. nov. is proposed. The type strain is Lam5(T) (=DSM 18033(T) =JCM 13992(T)).
Collapse
Affiliation(s)
- Olfa Haouari
- IRD, UMR 180, Microbiologie et Biotechnologie des Environnements Chauds, IFR-BAIM, ESIL, Universités de Provence et de la Méditerranée, 163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
95
|
GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci U S A 2009; 106:4840-5. [PMID: 19273854 DOI: 10.1073/pnas.0810418106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep-sea hydrothermal vents are one of the most unique and fascinating ecosystems on Earth. Although phylogenetic diversity of vent communities has been extensively examined, their physiological diversity is poorly understood. In this study, a GeoChip-based, high-throughput metagenomics technology revealed dramatic differences in microbial metabolic functions in a newly grown protochimney (inner section, Proto-I; outer section, Proto-O) and the outer section of a mature chimney (4143-1) at the Juan de Fuca Ridge. Very limited numbers of functional genes were detected in Proto-I (113 genes), whereas much higher numbers of genes were detected in Proto-O (504 genes) and 4143-1 (5,414 genes). Microbial functional genes/populations in Proto-O and Proto-I were substantially different (around 1% common genes), suggesting a rapid change in the microbial community composition during the growth of the chimney. Previously retrieved cbbL and cbbM genes involved in the Calvin Benson Bassham (CBB) cycle from deep-sea hydrothermal vents were predominant in Proto-O and 4143-1, whereas photosynthetic green-like cbbL genes were the major components in Proto-I. In addition, genes involved in methanogenesis, aerobic and anaerobic methane oxidation (e.g., ANME1 and ANME2), nitrification, denitrification, sulfate reduction, degradation of complex carbon substrates, and metal resistance were also detected. Clone libraries supported the GeoChip results but were less effective than the microarray in delineating microbial populations of low biomass. Overall, these results suggest that the hydrothermal microbial communities are metabolically and physiologically highly diverse, and the communities appear to be undergoing rapid dynamic succession and adaptation in response to the steep temperature and chemical gradients across the chimney.
Collapse
|
96
|
Peng X, Zhou H, Yao H, Li J, Wu Z. Ultrastructural evidence for iron accumulation within the tube of Vestimentiferan Ridgeia piscesae. Biometals 2009; 22:723-32. [PMID: 19199091 DOI: 10.1007/s10534-009-9216-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/26/2009] [Indexed: 11/28/2022]
Abstract
This study reports on the accumulation of iron within the tube wall of the deep sea vent macro invertebrate Vestimentiferan Ridgeia piscesae collected from Juan de Fuca ridge. Combining an array of approaches including environmental scanning electron microscope (ESEM), electron probe micro-analysis (EPMA), X-ray microanalysis (EDS) and transmission electron microscope (TEM), we provide evidences for the influence of prokaryotic organisms on the accumulation of metals on and within the tube wall. Two types of iron-rich minerals such as iron oxides and framboidal pyrites are identified within or on the tube wall. Our results reveal the presence of prokaryotic organism is apparently responsible for the early accumulation of iron-rich minerals in the tube wall. The implications of the biomineralisation of iron in tube wall at hydrothermal vents are discussed.
Collapse
|
97
|
Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008; 9:R158. [PMID: 19000309 PMCID: PMC2614490 DOI: 10.1186/gb-2008-9-11-r158] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/21/2008] [Accepted: 11/10/2008] [Indexed: 01/03/2023] Open
Abstract
Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans. Background The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship. Results We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources. Conclusions A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere. Philos Trans R Soc Lond B Biol Sci 2008; 363:2651-64. [PMID: 18468980 PMCID: PMC2606762 DOI: 10.1098/rstb.2008.0018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H(2) in lieu of an oxygen 'acceptor'. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The 'photobacterium' proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O(2) in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes.
Collapse
|
99
|
Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 2008; 74:6417-26. [PMID: 18676703 DOI: 10.1128/aem.00843-08] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.
Collapse
|
100
|
Liu B, Zhang X. Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. Appl Microbiol Biotechnol 2008; 80:697-707. [PMID: 18636255 DOI: 10.1007/s00253-008-1575-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
Abstract
Thermophilic bacteria and viruses represent novel sources of genetic materials and enzymes with great potential for use in industry and biotechnology. In this study, GVE2, a virulent tailed Siphoviridae bacteriophage infecting deep-sea thermophilic Geobacillus sp. E263, was characterized. The bacteriophage contained a 40,863-bp linear double-stranded genomic deoxyribonucleic acid (DNA) with 62 presumptive open reading frames (ORFs). A viral DNA microarray was developed to monitor the viral gene transcription program. Microarray analysis indicated that 74.2% of the presumptive ORFs were expressed. The structural proteins of purified GVE2 virions were identified by mass spectrometric analysis. The purified virions contained six protein bands. Of the newly retrieved proteins, VP371 was further characterized. The immuno-electron microscopy indicated that the VP371 protein was a component of the viral capsid. Transcriptional analyses and proteomic characterization of GVE2 would be helpful to understand the complex host-virus interaction during virus infection.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Plant Virology and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, The People's Republic of China
| | | |
Collapse
|