51
|
Ji F, Feng C, Qin J, Wang C, Zhang D, Su L, Wang W, Zhang M, Li H, Ma L, Lu W, Liu C, Teng Z, Hu B, Jian F, Xie J, Jiao J. Brain-specific Pd1 deficiency leads to cortical neurogenesis defects and depressive-like behaviors in mice. Cell Death Differ 2023; 30:2053-2065. [PMID: 37553426 PMCID: PMC10482844 DOI: 10.1038/s41418-023-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Embryonic neurogenesis is tightly regulated by multiple factors to ensure the precise development of the cortex. Deficiency in neurogenesis may result in behavioral abnormalities. Pd1 is a well-known inhibitory immune molecule, but its function in brain development remains unknown. Here, we find brain specific deletion of Pd1 results in abnormal cortical neurogenesis, including enhanced proliferation of neural progenitors and reduced neuronal differentiation. In addition, neurons in Pd1 knockout mice exhibit abnormal morphology, both the total length and the number of primary dendrites were reduced. Moreover, Pd1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Pd1 regulates embryonic neurogenesis by targeting Pax3 through the β-catenin signaling pathway. The constitutive expression of Pax3 partly rescues the deficiency of neurogenesis in the Pd1 deleted embryonic brain. Besides, the administration of β-catenin inhibitor, XAV939, not only rescues abnormal brain development but also ameliorates depressive-like behaviors in Pd1cKO mice. Simultaneously, Pd1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Pd1 in embryonic neurogenesis and behavioral modulation, which could contribute to understanding immune molecules in brain development.
Collapse
Affiliation(s)
- Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chao Feng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Sino-Danish College at University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Qin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Sino-Danish College at University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Dongming Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mengtian Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Longbing Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
52
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
53
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
54
|
Mallela AN, Deng H, Gholipour A, Warfield SK, Goldschmidt E. Heterogeneous growth of the insula shapes the human brain. Proc Natl Acad Sci U S A 2023; 120:e2220200120. [PMID: 37279278 PMCID: PMC10268209 DOI: 10.1073/pnas.2220200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.
Collapse
Affiliation(s)
- Arka N. Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Ali Gholipour
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Simon K. Warfield
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Ezequiel Goldschmidt
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
55
|
Peng Q, Wilhelmsen KC, Ehlers CL. Pleiotropic loci for cannabis use disorder severity in multi-ancestry high-risk populations. Mol Cell Neurosci 2023; 125:103852. [PMID: 37061172 PMCID: PMC10247496 DOI: 10.1016/j.mcn.2023.103852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Cannabis use disorder (CUD) is common and has in part a genetic basis. The risk factors underlying its development likely involve multiple genes that are polygenetic and interact with each other and the environment to ultimately lead to the disorder. Co-morbidity and genetic correlations have been identified between CUD and other disorders and traits in select populations primarily of European descent. If two or more traits, such as CUD and another disorder, are affected by the same genetic locus, they are said to be pleiotropic. The present study aimed to identify specific pleiotropic loci for the severity level of CUD in three high-risk population cohorts: American Indians (AI), Mexican Americans (MA), and European Americans (EA). Using a previously developed computational method based on a machine learning technique, we leveraged the entire GWAS catalog and identified 114, 119, and 165 potentially pleiotropic variants for CUD severity in AI, MA, and EA respectively. Ten pleiotropic loci were shared between the cohorts although the exact variants from each cohort differed. While majority of the pleiotropic genes were distinct in each cohort, they converged on numerous enriched biological pathways. The gene ontology terms associated with the pleiotropic genes were predominately related to synaptic functions and neurodevelopment. Notable pathways included Wnt/β-catenin signaling, lipoprotein assembly, response to UV radiation, and components of the complement system. The pleiotropic genes were the most significantly differentially expressed in frontal cortex and coronary artery, up-regulated in adipose tissue, and down-regulated in testis, prostate, and ovary. They were significantly up-regulated in most brain tissues but were down-regulated in the cerebellum and hypothalamus. Our study is the first to attempt a large-scale pleiotropy detection scan for CUD severity. Our findings suggest that the different population cohorts may have distinct genetic factors for CUD, however they share pleiotropic genes from underlying pathways related to Alzheimer's disease, neuroplasticity, immune response, and reproductive endocrine systems.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kirk C Wilhelmsen
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
56
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory J, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Wnt activity reveals context-specific genetic effects on gene regulation in neural progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527357. [PMID: 36798360 PMCID: PMC9934631 DOI: 10.1101/2023.02.07.527357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Gene regulatory effects in bulk-post mortem brain tissues are undetected at many non-coding brain trait-associated loci. We hypothesized that context-specific genetic variant function during stimulation of a developmental signaling pathway would explain additional regulatory mechanisms. We measured chromatin accessibility and gene expression following activation of the canonical Wnt pathway in primary human neural progenitors from 82 donors. TCF/LEF motifs, brain structure-, and neuropsychiatric disorder-associated variants were enriched within Wnt-responsive regulatory elements (REs). Genetically influenced REs were enriched in genomic regions under positive selection along the human lineage. Stimulation of the Wnt pathway increased the detection of genetically influenced REs/genes by 66.2%/52.7%, and led to the identification of 397 REs primed for effects on gene expression. Context-specific molecular quantitative trait loci increased brain-trait colocalizations by up to 70%, suggesting that genetic variant effects during early neurodevelopmental patterning lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| |
Collapse
|
57
|
Da Silva F, Niehrs C. Multimodal Wnt signalling in the mouse neocortex. Cells Dev 2023; 174:203838. [PMID: 37060946 DOI: 10.1016/j.cdev.2023.203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
The neocortex is the site of higher cognitive functions and its development is tightly regulated by cell signalling pathways. Wnt signalling is inexorably linked with neocortex development but its precise role remains unclear. Most studies demonstrate that Wnt/β-catenin regulates neural progenitor self-renewal but others suggest it can also promote differentiation. Wnt/STOP signalling is a novel branch of the Wnt pathway that stabilizes proteins during G2/M by inhibiting glycogen synthase kinase 3 (GSK3)-mediated protein degradation. Recent data from Da Silva et al. (2021) demonstrate that Wnt/STOP is involved in neocortex development where, by stabilizing the neurogenic transcription factors Sox4 and Sox11, it promotes neural progenitor differentiation. The authors also show that Wnt/STOP regulates asymmetric cell division and cell cycle dynamics in apical and basal progenitors, respectively. This study reveals a division of labour in the Wnt signalling pathway by suggesting that Wnt/STOP is the primary driver of cortical neurogenesis while Wnt/β-catenin is mainly responsible for self-renewal. These results resolve a decades-old question on the role of Wnt signalling in cortical neural progenitors.
Collapse
Affiliation(s)
- Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
58
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
59
|
Cardo LF, de la Fuente DC, Li M. Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Mol Autism 2023; 14:8. [PMID: 36805818 PMCID: PMC9940404 DOI: 10.1186/s13229-023-00540-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Disruptions of SETBP1 (SET binding protein 1) on 18q12.3 by heterozygous gene deletion or loss-of-function variants cause SETBP1 disorder. Clinical features are frequently associated with moderate to severe intellectual disability, autistic traits and speech and motor delays. Despite the association of SETBP1 with neurodevelopmental disorders, little is known about its role in brain development. METHODS Using CRISPR/Cas9 genome editing technology, we generated a SETBP1 deletion model in human embryonic stem cells (hESCs) and examined the effects of SETBP1-deficiency in neural progenitors (NPCs) and neurons derived from these stem cells using a battery of cellular assays, genome-wide transcriptomic profiling and drug-based phenotypic rescue. RESULTS Neural induction occurred efficiently in all SETBP1 deletion models as indicated by uniform transition into neural rosettes. However, SETBP1-deficient NPCs exhibited an extended proliferative window and a decrease in neurogenesis coupled with a deficiency in their ability to acquire ventral forebrain fate. Genome-wide transcriptome profiling and protein biochemical analysis revealed enhanced activation of Wnt/β-catenin signaling in SETBP1 deleted cells. Crucially, treatment of the SETBP1-deficient NPCs with a small molecule Wnt inhibitor XAV939 restored hyper canonical β-catenin activity and restored both cortical and MGE neuronal differentiation. LIMITATIONS The current study is based on analysis of isogenic hESC lines with genome-edited SETBP1 deletion and further studies would benefit from the use of patient-derived iPSC lines that may harbor additional genetic risk that aggravate brain pathology of SETBP1 disorder. CONCLUSIONS We identified an important role for SETBP1 in controlling forebrain progenitor expansion and neurogenic differentiation. Our study establishes a novel regulatory link between SETBP1 and Wnt/β-catenin signaling during human cortical neurogenesis and provides mechanistic insights into structural abnormalities and potential therapeutic avenues for SETBP1 disorder.
Collapse
Affiliation(s)
- Lucia F Cardo
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Daniel C de la Fuente
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
60
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
61
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
62
|
An NA, Zhang J, Mo F, Luan X, Tian L, Shen QS, Li X, Li C, Zhou F, Zhang B, Ji M, Qi J, Zhou WZ, Ding W, Chen JY, Yu J, Zhang L, Shu S, Hu B, Li CY. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol 2023; 7:264-278. [PMID: 36593289 PMCID: PMC9911349 DOI: 10.1038/s41559-022-01925-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/04/2022] [Indexed: 01/03/2023]
Abstract
Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.
Collapse
Affiliation(s)
- Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuke Luan
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lu Tian
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjun Ji
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Shaokun Shu
- Peking University International Cancer Institute, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
63
|
Multisession Anodal Transcranial Direct Current Stimulation Enhances Adult Hippocampal Neurogenesis and Context Discrimination in Mice. J Neurosci 2023; 43:635-646. [PMID: 36639896 PMCID: PMC9888513 DOI: 10.1523/jneurosci.1476-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising noninvasive neuromodulatory treatment option for multiple neurologic and psychiatric disorders, but its mechanism of action is still poorly understood. Adult hippocampal neurogenesis (AHN) continues throughout life and is crucial for preserving several aspects of hippocampal-dependent cognitive functions. Nevertheless, the contribution of AHN in the neuromodulatory effects of tDCS remains unexplored. Here, we sought to investigate whether multisession anodal tDCS may modulate AHN and its associated cognitive functions. Multisession anodal tDCS were applied on the skull over the hippocampus of adult male mice for 20 min at 0.25 mA once daily for 10 d totally. We found that multisession anodal tDCS enhances AHN by increasing the proliferation, differentiation and survival of neural stem/progenitor cells (NSPCs). In addition, tDCS treatment increased cell cycle reentry and reduced cell cycle exit of NSPCs. The tDCS-treated mice exhibited a reduced GABAergic inhibitory tone in the dentate gyrus compared with sham-treated mice. The effect of tDCS on the proliferation of NSPCs was blocked by pharmacological restoration of GABAB receptor-mediated inhibition. Functionally, multisession anodal tDCS enhances performance on a contextual fear discrimination task, and this enhancement was prevented by blocking AHN using the DNA alkylating agent temozolomide (TMZ). Our results emphasize an important role for AHN in mediating the beneficial effects of tDCS on cognitive functions that substantially broadens the mechanistic understanding of tDCS beyond its well-described in hippocampal synaptic plasticity.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) has been shown to effectively enhance cognitive functions in healthy and pathologic conditions. However, the mechanisms underlying its effects are largely unknown and need to be better understood to enable its optimal clinical use. This study shows that multisession anodal tDCS enhances adult hippocampal neurogenesis (AHN) and therefore contributes to enhance context discrimination in mice. Our results also show that the effect of tDCS on AHN is associated with reduced GABAergic inhibition in the dentate gyrus. Our study uncovers a novel mechanism of anodal tDCS to elicit cognitive-enhancing effects and may have the potential to improve cognitive decline associated with normal aging and neurodegenerative disorders.
Collapse
|
64
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of Dopamine Receptor Antagonists and Radiation on Mouse Neural Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524632. [PMID: 36712018 PMCID: PMC9882258 DOI: 10.1101/2023.01.18.524632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Dopamine receptor antagonists are psychotropic drugs that have been originally developed against psychiatric disorders. We recently identified dopamine receptor antagonists as potential anti-cancer agents and some have entered clinical trials against glioblastoma. Radiotherapy is known to cause cognitive impairment in patients receiving cranial irradiation through the elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Methods Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of enhanced green fluorescent protein, the effects of dopamine receptor antagonists alone or in combination with radiation on murine neural stem/progenitor cells were assessed in sphere-formation assays, flow cytometry and immunofluorescence in vitro and in vivo . Results We report that several dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells both in vitro and in vivo . Hydroxyzine, trifluoperazine, amisulpride, nemonapride or quetiapine alone or in combination with radiation significantly increased the number of neural stem/progenitor cells in female neurospheres but not in male mice. Dopamine receptor antagonists either protected neural stem/progenitor cells from radiation or expanded the stem cell pool, thus indicating that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Conclusions We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exist, making it a novel combination therapy against glioblastoma. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be taken into consideration when designing clinical trials. Key Points - Neural stem/progenitor cells show sex-dependent sensitivity to dopamine receptor antagonists- Dopamine receptor antagonists active against GBM increase Neural stem/progenitor cells counts. Importance of the Study Combination therapy of dopamine receptor antagonists with radiation have entered clinical trials against glioblastoma but the normal tissue toxicity of this combination has not been fully explored yet. Here we present evidence that some dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells either by protecting neural stem/progenitor cells from radiation or inducing an expansion of the stem cell pool, suggesting that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be further explored in clinical trials.
Collapse
|
65
|
McGuigan BN, Santini T, Keshavan MS, Prasad KM. Gene Expressions Preferentially Influence Cortical Thickness of Human Connectome Project Atlas Parcellated Regions in First-Episode Antipsychotic-Naïve Psychoses. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad019. [PMID: 37621304 PMCID: PMC10445951 DOI: 10.1093/schizbullopen/sgad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Altered gene expressions may mechanistically link genetic factors with brain morphometric alterations. Existing gene expression studies have examined selected morphometric features using low-resolution atlases in medicated schizophrenia. We examined the relationship of gene expression with cortical thickness (CT), surface area (SA), and gray matter volume (GMV) of first-episode antipsychotic-naïve psychosis patients (FEAP = 85) and 81 controls, hypothesizing that gene expressions often associated with psychosis will differentially associate with different morphometric features. We explored such associations among schizophrenia and non-schizophrenia subgroups within FEAP group compared to controls. We mapped 360 Human Connectome Project atlas-based parcellations on brain MRI on to the publicly available brain gene expression data from the Allen Brain Institute collection. Significantly correlated genes were investigated using ingenuity pathway analysis to elucidate molecular pathways. CT but not SA or GMV correlated with expression of 1137 out of 15 633 genes examined controlling for age, sex, and average CT. Among these ≈19%, ≈39%, and 8% of genes were unique to FEAP, schizophrenia, and non-schizophrenia, respectively. Variants of 10 among these 1137 correlated genes previously showed genome-wide-association with schizophrenia. Molecular pathways associated with CT were axonal guidance and sphingosine pathways (common to FEAP and controls), selected inflammation pathways (unique to FEAP), synaptic modulation (unique to schizophrenia), and telomere extension (common to NSZ and healthy controls). We demonstrate that different sets of genes and molecular pathways may preferentially influence CT in different diagnostic groups. Genes with altered expressions correlating with CT and associated pathways may be targets for pathophysiological investigations and novel treatment designs.
Collapse
Affiliation(s)
- Bridget N McGuigan
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- University of Pittsburgh Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
66
|
Geng S, Paul F, Kowalczyk I, Raimundo S, Sporbert A, Mamo TM, Hammes A. Balancing WNT signalling in early forebrain development: The role of LRP4 as a modulator of LRP6 function. Front Cell Dev Biol 2023; 11:1173688. [PMID: 37091972 PMCID: PMC10119419 DOI: 10.3389/fcell.2023.1173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The specification of the forebrain relies on the precise regulation of WNT/ß-catenin signalling to support neuronal progenitor cell expansion, patterning, and morphogenesis. Imbalances in WNT signalling activity in the early neuroepithelium lead to congenital disorders, such as neural tube defects (NTDs). LDL receptor-related protein (LRP) family members, including the well-studied receptors LRP5 and LRP6, play critical roles in modulating WNT signalling capacity through tightly regulated interactions with their co-receptor Frizzled, WNT ligands, inhibitors and intracellular WNT pathway components. However, little is known about the function of LRP4 as a potential modulator of WNT signalling in the central nervous system. In this study, we investigated the role of LRP4 in the regulation of WNT signalling during early mouse forebrain development. Our results demonstrate that LRP4 can modulate LRP5- and LRP6-mediated WNT signalling in the developing forebrain prior to the onset of neurogenesis at embryonic stage 9.5 and is therefore essential for accurate neural tube morphogenesis. Specifically, LRP4 functions as a genetic modifier for impaired mitotic activity and forebrain hypoplasia, but not for NTDs in LRP6-deficient mutants. In vivo and in vitro data provide evidence that LRP4 is a key player in fine-tuning WNT signalling capacity and mitotic activity of mouse neuronal progenitors and of human retinal pigment epithelial (hTERT RPE-1) cells. Our data demonstrate the crucial roles of LRP4 and LRP6 in regulating WNT signalling and forebrain development and highlight the need to consider the interaction between different signalling pathways to understand the underlying mechanisms of disease. The findings have significant implications for our mechanistic understanding of how LRPs participate in controlling WNT signalling.
Collapse
Affiliation(s)
- Shuang Geng
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Fabian Paul
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Izabela Kowalczyk
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Sandra Raimundo
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tamrat Meshka Mamo
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| | - Annette Hammes
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| |
Collapse
|
67
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
68
|
Identification of PAX6 and NFAT4 as the Transcriptional Regulators of the Long Noncoding RNA Mrhl in Neuronal Progenitors. Mol Cell Biol 2022; 42:e0003622. [PMID: 36317923 PMCID: PMC9670966 DOI: 10.1128/mcb.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long noncoding RNA (lncRNA) Mrhl has been shown to be involved in coordinating meiotic commitment of mouse spermatogonial progenitors and differentiation events in mouse embryonic stem cells. Here, we characterized the interplay of Mrhl with lineage-specific transcription factors during mouse neuronal lineage development. Our results demonstrate that Mrhl is expressed in the neuronal progenitor populations in mouse embryonic brains and in retinoic acid-derived radial-glia-like neuronal progenitor cells. Depletion of Mrhl leads to early differentiation of neuronal progenitors to a more committed state. A master transcription factor, PAX6, directly binds to the Mrhl promoter at a major site in the distal promoter, located at 2.9 kb upstream of the transcription start site (TSS) of Mrhl. Furthermore, NFAT4 occupies the Mrhl-proximal promoter at two sites, at 437 base pairs (bp) and 143 bp upstream of the TSS. Independent knockdown studies for PAX6 and NFAT4 confirm that they regulate Mrhl expression in neuronal progenitors. We also show that PAX6 and NFAT4 associate with each other in the same chromatin complex. NFAT4 occupies the Mrhl promoter in PAX6-bound chromatin, implying possible coregulation of Mrhl. Our studies are crucial for understanding how lncRNAs are regulated by major lineage-specific transcription factors, in order to define specific development and differentiation events.
Collapse
|
69
|
Pan Y, Zong Q, Li G, Wu Z, Du T, Huang Z, Zhang Y, Ma K. Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons. Front Mol Neurosci 2022; 15:1015881. [PMID: 36438187 PMCID: PMC9684191 DOI: 10.3389/fnmol.2022.1015881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2024] Open
Abstract
Nuclear accumulation of alpha-synuclein (α-syn) in neurons can promote neurotoxicity, which is considered the key factor in the pathogenesis of synucleinopathy. The damage to hippocampus neurons driven by α-syn pathology is also the potential cause of memory impairment in Parkinson's disease (PD) patients. In this study, we examined the role of α-syn nuclear translocation in the cognition and motor ability of mice by overexpressing α-syn in cell nuclei in the hippocampus. The results showed that the overexpression of α-syn in nuclei was able to cause significant pathological accumulation of α-syn in the hippocampus, and quickly lead to memory and motor impairments in mice. It might be that nuclear overexpression of α-syn may cause DNA damage of hippocampal neurons, thereby leading to activation and abnormal blocking of cell cycle, and further inducing apoptosis of hippocampal neurons and inflammatory reaction. Meanwhile, the inflammatory reaction further aggravated DNA damage and formed a vicious circle. Therefore, the excessive nuclear translocation of α-syn in hippocampal neurons may be one of the main reasons for cognitive decline in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
70
|
Hashimoto M, Takeichi K, Murata K, Kozakai A, Yagi A, Ishikawa K, Suzuki-Nakagawa C, Kasuya Y, Fukamizu A, Nakagawa T. Regulation of neural stem cell proliferation and survival by protein arginine methyltransferase 1. Front Neurosci 2022; 16:948517. [PMID: 36440275 PMCID: PMC9685794 DOI: 10.3389/fnins.2022.948517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 12/22/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.
Collapse
Affiliation(s)
- Misuzu Hashimoto
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kaho Takeichi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aoi Kozakai
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Atsushi Yagi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kohei Ishikawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Chiharu Suzuki-Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- World Premier International Research Center Initiative, International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tsutomu Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
71
|
Wallace MN, Zobay O, Hardman E, Thompson Z, Dobbs P, Chakrabarti L, Palmer AR. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity. Front Neuroanat 2022; 16:1034264. [PMID: 36439196 PMCID: PMC9681811 DOI: 10.3389/fnana.2022.1034264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Minicolumns are thought to be a fundamental neural unit in the neocortex and their replication may have formed the basis of the rapid cortical expansion that occurred during primate evolution. We sought evidence of minicolumns in the primary visual cortex (V-1) of three great apes, three rodents and representatives from three other mammalian orders: Eulipotyphla (European hedgehog), Artiodactyla (domestic pig) and Carnivora (ferret). Minicolumns, identified by the presence of a long bundle of radial, myelinated fibers stretching from layer III to the white matter of silver-stained sections, were found in the human, chimpanzee, gorilla and guinea pig V-1. Shorter bundles confined to one or two layers were found in the other species but represent modules rather than minicolumns. The inter-bundle distance, and hence density of minicolumns, varied systematically both within a local area that might represent a hypercolumn but also across the whole visual field. The distance between all bundles had a similar range for human, chimpanzee, gorilla, ferret and guinea pig: most bundles were 20-45 μm apart. By contrast, the space between bundles was greater for the hedgehog and pig (20-140 μm). The mean density of minicolumns was greater in tangential sections of the gorilla and chimpanzee (1,243-1,287 bundles/mm2) than in human (314-422 bundles/mm2) or guinea pig (643 bundles/mm2). The minicolumnar bundles did not form a hexagonal lattice but were arranged in thin curving and branched bands separated by thicker bands of neuropil/somata. Estimates of the total number of modules/minicolumns within V-1 were strongly correlated with visual acuity.
Collapse
Affiliation(s)
- Mark N. Wallace
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Zobay
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Hearing Sciences—Scottish Section, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Eden Hardman
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Phillipa Dobbs
- Veterinary Department, Twycross Zoo, East Midland Zoological Society, Atherstone, United Kingdom
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
72
|
Xu C, Hu X, Fan Y, Zhang L, Gao Z, Cai C. Wif1 Mediates Coordination of Bone Morphogenetic Protein and Wnt Signaling in Neural and Glioma Stem Cells. Cell Transplant 2022; 31:9636897221134540. [PMID: 36324293 PMCID: PMC9634200 DOI: 10.1177/09636897221134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnts, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) are
paracrine signaling pathways implicated in the niche control of stem cell fate
decisions. BMP-on and Wnt-off are the dominant quiescent niche signaling
pathways in many cell types, including neural stem cells (NSCs). However, among
the multiple inhibitory family members of the Wnt pathway, those with direct
action after BMP4 stimulation in NSCs remain unclear. We examined 11 Wnt
inhibitors in NSCs after BMP4 treatment. Wnt inhibitory factor 1 (Wif1) has been
identified as the main factor reacting to BMP4 stimuli. RNA sequencing confirmed
that Wif1 was markedly upregulated after BMP4 treatment in different gene
expression analyses. Similar to the functional role of BMP4, Wif1 significantly
decreased the cell cycle of NSCs and significantly inhibited cell proliferation
(P < 0.05). Combined treatment with BMP4 and Wif1
significantly enhanced the inhibition of cell growth compared with the single
treatment (P < 0.05). Wif1 expression was clearly lower in
glioblastoma and low-grade glioma samples than in normal samples
(P < 0.05). A functional analysis revealed that both
BMP4 and Wif1 could decrease glioma cell growth. These effects were abrogated by
the BMP inhibitor Noggin. The collective findings demonstrate that Wif1 plays a
key role in quiescent NSC homeostasis and glioma cell growth downstream of
BMP-on signaling. The functional roles of Wif1/BMP4 in glioma cells may provide
a technical basis for regenerative medicine, drug discovery, and personal
molecular therapy in future clinical treatments.
Collapse
Affiliation(s)
- Congdi Xu
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China
| | - Xinyu Hu
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute for Molecules and Materials,
Radboud University, Nijmegen, The Netherlands
| | - Yantao Fan
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ling Zhang
- The First Rehabilitation Hospital of
Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Chunhui Cai
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China,Chunhui Cai, Fundamental Research Center,
Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation
Center), School of Medicine, Tongji University, Shanghai 200001, China.
| |
Collapse
|
73
|
Kayumi S, Pérez-Jurado LA, Palomares M, Rangu S, Sheppard SE, Chung WK, Kruer MC, Kharbanda M, Amor DJ, McGillivray G, Cohen JS, García-Miñaúr S, van Eyk CL, Harper K, Jolly LA, Webber DL, Barnett CP, Santos-Simarro F, Pacio-Míguez M, Pozo AD, Bakhtiari S, Deardorff M, Dubbs HA, Izumi K, Grand K, Gray C, Mark PR, Bhoj EJ, Li D, Ortiz-Gonzalez XR, Keena B, Zackai EH, Goldberg EM, Perez de Nanclares G, Pereda A, Llano-Rivas I, Arroyo I, Fernández-Cuesta MÁ, Thauvin-Robinet C, Faivre L, Garde A, Mazel B, Bruel AL, Tress ML, Brilstra E, Fine AS, Crompton KE, Stegmann APA, Sinnema M, Stevens SCJ, Nicolai J, Lesca G, Lion-François L, Haye D, Chatron N, Piton A, Nizon M, Cogne B, Srivastava S, Bassetti J, Muss C, Gripp KW, Procopio RA, Millan F, Morrow MM, Assaf M, Moreno-De-Luca A, Joss S, Hamilton MJ, Bertoli M, Foulds N, McKee S, MacLennan AH, Gecz J, Corbett MA. Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet Med 2022; 24:2351-2366. [PMID: 36083290 PMCID: PMC9939054 DOI: 10.1016/j.gim.2022.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.
Collapse
Affiliation(s)
- Sayaka Kayumi
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Luis A Pérez-Jurado
- Genetics Service, Hospital del Mar Medical Research Institute (IMIM), Network Research Centre for Rare Diseases (CIBERER), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María Palomares
- Instituto de Genética Médica y Molecular (INGEMM), La Paz University Hospital, Network Research Centre for Rare Diseases (CIBERER), Madrid, Spain
| | - Sneha Rangu
- Albert Einstein College of Medicine, Bronx, NY; Section of Dermatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Mira Kharbanda
- Wessex Clinical Genetics Service, Southampton University Hospitals NHS Foundation Trust, Princess Anne Hospital, Southampton, United Kingdom
| | - David J Amor
- Department of Paediatrics, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Sixto García-Miñaúr
- Instituto de Genética Médica y Molecular (INGEMM), La Paz University Hospital, Network Research Centre for Rare Diseases (CIBERER), Madrid, Spain
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Adelaide Biomedical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dani L Webber
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), La Paz University Hospital, Network Research Centre for Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Pacio-Míguez
- Instituto de Genética Médica y Molecular (INGEMM), La Paz University Hospital, Network Research Centre for Rare Diseases (CIBERER), Madrid, Spain
| | - Angela Del Pozo
- Instituto de Genética Médica y Molecular (INGEMM), La Paz University Hospital, Network Research Centre for Rare Diseases (CIBERER), Madrid, Spain
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Matthew Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Robert's Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA; Departments of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Robert's Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katheryn Grand
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Christopher Gray
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Robert's Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI
| | - Elizabeth J Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Xilma R Ortiz-Gonzalez
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Beth Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guiomar Perez de Nanclares
- Molecular (epi)genetics lab, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Arrate Pereda
- Molecular (epi)genetics lab, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | | | - Ignacio Arroyo
- Servicio de Neonatología, Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | - Christel Thauvin-Robinet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; L'Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Laboratoire de Génétique Chromosomique et Moléculaire, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; INSERM - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Genetics of Developmental Disorders, Dijon, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; L'Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Laboratoire de Génétique Chromosomique et Moléculaire, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Benoit Mazel
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- L'Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Laboratoire de Génétique Chromosomique et Moléculaire, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; INSERM - Bourgogne Franche-Comté University, UMR 1231 GAD Team, Genetics of Developmental Disorders, Dijon, France
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Amena Smith Fine
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Kylie E Crompton
- Department of Paediatrics, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Servi C J Stevens
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon, Lyon, France
| | | | - Damien Haye
- Department of Medical Genetics, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Chatron
- Department of Medical Genetics, Hospices Civils de Lyon, Lyon, France
| | - Amelie Piton
- Department of Medical genetics, Hopitaux Universitaires de Strasbourg, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jennifer Bassetti
- Department of Pediatrics, Division of Medical Genetics, Weill Cornell Medicine, New York, NY
| | - Candace Muss
- Nemours/A.I duPont Hospital for Children, Wilmington, DE
| | - Karen W Gripp
- Nemours/A.I duPont Hospital for Children, Wilmington, DE
| | | | | | | | - Melissa Assaf
- Banner Children's Specialists Neurology Clinic, Glendale, AZ
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Glasgow, United Kingdom
| | - Mark J Hamilton
- West of Scotland Clinical Genetics Service, Glasgow, United Kingdom
| | - Marta Bertoli
- Northern Genetics Service, Newcastle upon Tyne, United Kingdom
| | - Nicola Foulds
- Wessex Clinical Genetics Service, Southampton University Hospitals NHS Foundation Trust, Princess Anne Hospital, Southampton, United Kingdom
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast, United Kingdom
| | - Alastair H MacLennan
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
74
|
Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, Spampanato J, Tarboton P, Ullah HMA, Edgar NU, Chang AN, Harmin DA, Bocchi VD, Vezzoli E, Besusso D, Cui J, Cattaneo E, Kubanek J, Shcheglovitov A. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022; 13:5688. [PMID: 36202854 PMCID: PMC9537523 DOI: 10.1038/s41467-022-33364-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Chad Russell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Yuanyuan Wu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Paisley Tarboton
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Amelia N Chang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jun Cui
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Aleksandr Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
75
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
76
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
77
|
Ka M, Moffat JJ, Kim WY. MACF1, Involved in the 1p34.2p34.3 Microdeletion Syndrome, is Essential in Cortical Progenitor Polarity and Brain Integrity. Cell Mol Neurobiol 2022; 42:2187-2204. [PMID: 33871731 PMCID: PMC8523589 DOI: 10.1007/s10571-021-01088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
1p34.2p34.3 deletion syndrome is characterized by an increased risk for autism. Microtubule Actin Crosslinking Factor 1 (MACF1) is one candidate gene for this syndrome. It is unclear, however, how MACF1 deletion is linked to brain development and neurodevelopmental deficits. Here we report on Macf1 deletion in the developing mouse cerebral cortex, focusing on radial glia polarity and morphological integrity, as these are critical factors in brain formation. We found that deleting Macf1 during cortical development resulted in double cortex/subcortical band heterotopia as well as disrupted cortical lamination. Macf1-deleted radial progenitors showed increased proliferation rates compared to control cells but failed to remain confined within their defined proliferation zone in the developing brain. The overproliferation of Macf1-deleted radial progenitors was associated with elevated cell cycle speed and re-entry. Microtubule stability and actin polymerization along the apical ventricular area were decreased in the Macf1 mutant cortex. Correspondingly, there was a disconnection between radial glial fibers and the apical and pial surfaces. Finally, we observed that Macf1-mutant mice exhibited social deficits and aberrant emotional behaviors. Together, these results suggest that MACF1 plays a critical role in cortical progenitor proliferation and localization by promoting glial fiber stabilization and polarization. Our findings may provide insights into the pathogenic mechanism underlying the 1p34.2p34.3 deletion syndrome.
Collapse
Affiliation(s)
- Minhan Ka
- Research Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
78
|
Tomita H, Hines KM, Herron JM, Li A, Baggett DW, Xu L. 7-Dehydrocholesterol-derived oxysterols cause neurogenic defects in Smith-Lemli-Opitz syndrome. eLife 2022; 11:e67141. [PMID: 36111785 PMCID: PMC9519149 DOI: 10.7554/elife.67141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Defective 3β-hydroxysterol-Δ7 -reductase (DHCR7) in the developmental disorder, Smith-Lemli-Opitz syndrome (SLOS), results in a deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC). Here, we show that loss of DHCR7 causes accumulation of 7-DHC-derived oxysterol metabolites, premature neurogenesis from murine or human cortical neural precursors, and depletion of the cortical precursor pool, both in vitro and in vivo. We found that a major oxysterol, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), mediates these effects by initiating crosstalk between glucocorticoid receptor (GR) and neurotrophin receptor kinase TrkB. Either loss of DHCR7 or direct exposure to DHCEO causes hyperactivation of GR and TrkB and their downstream MEK-ERK-C/EBP signaling pathway in cortical neural precursors. Moreover, direct inhibition of GR activation with an antagonist or inhibition of DHCEO accumulation with antioxidants rescues the premature neurogenesis phenotype caused by the loss of DHCR7. These results suggest that GR could be a new therapeutic target against the neurological defects observed in SLOS.
Collapse
Affiliation(s)
- Hideaki Tomita
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Josi M Herron
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Amy Li
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - David W Baggett
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Libin Xu
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
79
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
80
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
81
|
Gharehgazlou A, Jetly R, Rhind SG, Reichelt AC, Da Costa L, Dunkley BT. Cortical Gyrification Morphology in Adult Males with Mild Traumatic Brain Injury. Neurotrauma Rep 2022; 3:299-307. [PMID: 36060456 PMCID: PMC9438439 DOI: 10.1089/neur.2021.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cortical gyrification, as a specific measure derived from magnetic resonance imaging, remains understudied in mild traumatic brain injury (mTBI). Local gyrification index (lGI) and mean curvature are related measures indexing the patterned folding of the cortex,ml which reflect distinct properties of cortical morphology and geometry. Using both metrics, we examined cortical gyrification morphology in 59 adult males with mTBI (n = 29) versus those without (n = 30) mTBI in the subacute phase of injury (between 2 weeks and 3 months). The effect of IQ on lGI and brain-symptom relations were also examined. General linear models revealed greater lGI in mTBI versus controls in the frontal lobes bilaterally, but reduced lGI in mTBI of the left temporal lobe. An age-related decrease in lGI was found in numerous areas, with no significant group-by-age interaction effects observed. Including other factors (i.e., mTBI severity, symptoms, and IQ) in the lGI model yielded similar results with few exceptions. Mean curvature analyses depicted a significant group-by-age interaction with the absence of significant main effects of group or age. Our results suggest that cortical gyrification morphology is adversely affected by mTBI in both frontal and temporal lobes, which are thought of as highly susceptible regions to mTBI. These findings contribute to understanding the effects of mTBI on neuromorphological properties, such as alterations in cortical gyrification, which reflect underlying microstructural changes (i.e., apoptosis, neuronal number, or white matter alterations). Future studies are needed to infer causal relationships between micro- and macrostructural changes after an mTBI and investigate potential sex differences.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Neurosciences and Mental Health, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services HQ, Ottawa, Ontario, Canada
- Defence Research and Development Canada–Toronto Research Centre, Toronto, Ontario, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Amy C. Reichelt
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Leodante Da Costa
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
| | - Benjamin T. Dunkley
- Neurosciences and Mental Health, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
82
|
Wolter JM, Jimenez JA, Stein JL, Zylka MJ. ToxCast chemical library Wnt screen identifies diethanolamine as an activator of neural progenitor proliferation. FASEB Bioadv 2022; 4:441-453. [PMID: 35812078 PMCID: PMC9254222 DOI: 10.1096/fba.2021-00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Numerous autism spectrum disorder (ASD) risk genes are associated with Wnt signaling, suggesting that brain development may be especially sensitive to genetic perturbation of this pathway. Additionally, valproic acid, which modulates Wnt signaling, increases risk for ASD when taken during pregnancy. We previously found that an autism-linked gain-of-function UBE3A T485A mutant construct hyperactivated canonical Wnt signaling, providing a genetic means to elevate Wnt signaling above baseline levels. To identify environmental use chemicals that enhance or suppress Wnt signaling, we screened the ToxCast Phase I and II libraries in cells expressing this autism-linked UBE3A T485A gain-of-function mutant construct. Using structural comparisons, we identify classes of chemicals that stimulated Wnt signaling, including ethanolamines, as well as chemicals that inhibited Wnt signaling, such as agricultural pesticides, and synthetic hormone analogs. To prioritize chemicals for follow-up, we leveraged predicted human exposure data, and identified diethanolamine (DEA) as a chemical that stimulates Wnt signaling in UBE3A T485A -transfected cells, and has a high potential for prenatal exposure in humans. DEA enhanced proliferation in primary human neural progenitor cell lines (phNPC), but did not affect expression of canonical Wnt target genes in NPCs or primary mouse neuron cultures. Instead, we found DEA increased expression of the H3K9 methylation sensitive gene CALB1, consistent with competitive inhibition of the methyl donor enzymatic pathways.
Collapse
Affiliation(s)
- Justin M. Wolter
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jessica A. Jimenez
- Curriculum in Toxicology & Environmental MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jason L. Stein
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mark J. Zylka
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
83
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
84
|
Jin Y, Gao X, Lu M, Chen G, Yang X, Ren N, Song Y, Hou C, Li J, Liu Q, Gao J. Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Hum Mol Genet 2022; 31:3504-3520. [PMID: 35666215 DOI: 10.1093/hmg/ddac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding subunits of the BAF (BRG1/BRM-associated factor) complex cause various neurodevelopmental diseases. However, the underlying pathophysiology remains largely unknown. Here, we analyzed the function of Brg1, a core ATPase of BAF complexes, in the developing cerebral cortex. Loss of Brg1 causes several morphological defects resembling human malformations of cortical development (MCDs), including microcephaly, cortical dysplasia, cobblestone lissencephaly, and periventricular heterotopia. We demonstrated that neural progenitor cell (NPC) renewal, neuronal differentiation, neuronal migration, apoptotic cell death, pial basement membrane, and apical junctional complexes, which are associated with MCD formation, were impaired after Brg1 deletion. Furthermore, transcriptome profiling indicated that a large number of genes were deregulated. The deregulated genes were closely related to MCD formation, and most of these genes were bound by Brg1. Cumulatively, our study indicates an essential role of Brg1 in cortical development and provides a new possible pathogenesis underlying Brg1-based BAF complex-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Miaoqing Lu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Xiaofan Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Yuning Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Congzhe Hou
- Department of Reproductive medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
85
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
86
|
Nomura T, Gotoh H, Kiyonari H, Ono K. Cell Type-Specific Transcriptional Control of Gsk3β in the Developing Mammalian Neocortex. Front Neurosci 2022; 16:811689. [PMID: 35401100 PMCID: PMC8983961 DOI: 10.3389/fnins.2022.811689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Temporal control of neurogenesis is central for the development and evolution of species-specific brain architectures. The balance between progenitor expansion and neuronal differentiation is tightly coordinated by cell-intrinsic and cell-extrinsic cues. Wnt signaling plays pivotal roles in the proliferation and differentiation of neural progenitors in a temporal manner. However, regulatory mechanisms that adjust intracellular signaling amplitudes according to cell fate progression remain to be elucidated. Here, we report the transcriptional controls of Gsk3β, a critical regulator of Wnt signaling, in the developing mouse neocortex. Gsk3β expression was higher in ventricular neural progenitors, while it gradually declined in differentiated neurons. We identified active cis-regulatory module (CRM) of Gsk3β that responded to cell type-specific transcription factors, such as Sox2, Sox9, and Neurogenin2. Furthermore, we found extensive conservation of the CRM among mammals but not in non-mammalian amniotes. Our data suggest that a mammalian-specific CRM drives the cell type-specific activity of Gsk3β to fine tune Wnt signaling, which contributes to the tight control of neurogenesis during neocortical development.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
87
|
Shinmyo Y, Hamabe-Horiike T, Saito K, Kawasaki H. Investigation of the Mechanisms Underlying the Development and Evolution of the Cerebral Cortex Using Gyrencephalic Ferrets. Front Cell Dev Biol 2022; 10:847159. [PMID: 35386196 PMCID: PMC8977464 DOI: 10.3389/fcell.2022.847159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex has changed significantly during evolution. As a result of the increase in the number of neurons and glial cells in the cerebral cortex, its size has markedly expanded. Moreover, folds, called gyri and sulci, appeared on its surface, and its neuronal circuits have become much more complicated. Although these changes during evolution are considered to have been crucial for the acquisition of higher brain functions, the mechanisms underlying the development and evolution of the cerebral cortex of mammals are still unclear. This is, at least partially, because it is difficult to investigate these mechanisms using mice only. Therefore, genetic manipulation techniques for the cerebral cortex of gyrencephalic carnivore ferrets were developed recently. Furthermore, gene knockout was achieved in the ferret cerebral cortex using the CRISPR/Cas9 system. These techniques enabled molecular investigations using the ferret cerebral cortex. In this review, we will summarize recent findings regarding the mechanisms underlying the development and evolution of the mammalian cerebral cortex, mainly focusing on research using ferrets.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshihide Hamabe-Horiike
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
88
|
Zhou J, Zheng Y, Liang G, Xu X, Liu J, Chen S, Ge T, Wen P, Zhang Y, Liu X, Zhuang J, Wu Y, Chen J. Atypical deletion of Williams-Beuren syndrome reveals the mechanism of neurodevelopmental disorders. BMC Med Genomics 2022; 15:79. [PMID: 35379245 PMCID: PMC8981662 DOI: 10.1186/s12920-022-01227-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Genes associated with specific neurocognitive phenotypes in Williams–Beuren syndrome are still controversially discussed. This study identified nine patients with atypical deletions out of 111 patients with Williams–Beuren syndrome; these deletions included seven smaller deletions and two larger deletions. One patient had normal neurodevelopment with a deletion of genes on the distal side of the Williams–Beuren syndrome chromosomal region, including GTF2I and GTF2IRD1. However, another patient retained these genes but showed neurodevelopmental abnormalities. By comparing the genotypes and phenotypes of patients with typical and atypical deletions and previous reports in the literature, we hypothesize that the BAZ1B, FZD9, and STX1A genes may play an important role in the neurodevelopment of patients with WBS.
Collapse
Affiliation(s)
- Jianrong Zhou
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiying Liang
- Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jian Liu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tongkai Ge
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zhang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jimei Chen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
89
|
Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 2022; 43:2859-2863. [PMID: 35099645 DOI: 10.1007/s10072-022-05904-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
CTNNB1 encodes for the β-catenin protein, a component of the cadherin adhesion complex, which regulates cell-cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.
Collapse
|
90
|
Wei SW, Zou MM, Huan J, Li D, Zhang PF, Lu MH, Xiong J, Ma YX. Role of the hydrogen sulfide-releasing donor ADT-OH in the regulation of mammal neural precursor cells. J Cell Physiol 2022; 237:2877-2887. [PMID: 35342944 DOI: 10.1002/jcp.30726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Neural precursor cells (NPCs) generate new neurons to supplement neuronal loss as well as to repair damaged neural circuits. Therefore, NPCs have potential applications in a variety of neurological diseases, such as spinal cord injury, traumatic brain injury, and glaucoma. Specifically, improving NPCs proliferation and manipulating their differentiated cell types can be a beneficial therapy for a variety of these diseases. ADT-OH is a slow-releasing organic H2 S donor that produces a slow and continuous release of H2 S to maintain normal brain functions. In this study, we aimed to explore the effect of ADT-OH on NPCs. Our results demonstrated that ADT-OH promotes self-renewal and antiapoptosis ability of cultured NPCs. Additionally, it facilitates more NPCs to differentiate into neurons and oligodendrocytes, while inhibiting their differentiation into astrocytes. Furthermore, it enhances axonal growth. Moreover, we discovered that the mRNA and protein expression of β-catenin, TCF7L2, c-Myc, Ngn1, and Ngn2, which are key genes that regulate NPCs self-renewal and differentiation, were increased in the presence of ADT-OH. Altogether, these results indicate that ADT-OH may be a promising drug to regulate the neurogenesis of NPCs, and needs to be studied in the future for clinical application potential.
Collapse
Affiliation(s)
- Shan-Wen Wei
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Ming-Ming Zou
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Huan
- Department of Radiation Oncology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Di Li
- Department of Rehabilitation, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Peng-Fei Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mei-Hong Lu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Xiong
- Department of Rehabilitation, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yan-Xia Ma
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
91
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
92
|
Gattoni G, Andrews TGR, Benito-Gutiérrez È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front Neurosci 2022; 16:812223. [PMID: 35401089 PMCID: PMC8987370 DOI: 10.3389/fnins.2022.812223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that, despite apparent morphological simplicity, the amphioxus neural tube is highly regionalised at the molecular level. However, little is known about the morphogenetic mechanisms regulating the spatiotemporal emergence of cell types at distinct sites of the neural axis and how their arrangements contribute to the overall neural architecture. In vertebrates, proliferation is key to provide appropriate cell numbers of specific types to particular areas of the nervous system as development proceeds, but in amphioxus proliferation has never been studied at this level of detail, nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos, and identify specific regions of the nervous system that depend on proliferation of neuronal precursors at precise time-points for their maturation. By labelling proliferating cells in vivo at specific time points in development, and inhibiting cell division during neurulation, we demonstrate that localised proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongation of the caudal floor plate. Between these proliferative domains, we find that trunk nervous system differentiation is independent from cell division, in which proliferation decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight the importance of proliferation as a tightly controlled mechanism for shaping and regionalising the amphioxus neural axis during development, by addition of new cells fated to particular types, or by influencing tissue geometry.
Collapse
|
93
|
Wang W, Su L, Ji F, Zhang D, Wang Y, Zhao J, Jiao RD, Zhang M, Huang E, Jiang H, Zhang J, Jiao J. The human FOXM1 homolog promotes basal progenitor cell proliferation and cortical folding in mouse. EMBO Rep 2022; 23:e53602. [PMID: 34935271 PMCID: PMC8892259 DOI: 10.15252/embr.202153602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cortical expansion and folding are key processes in human brain development and evolution and are considered to be principal elements of intellectual ability. How cortical folding has evolved and is induced during embryo development is not well understood. Here, we show that the expression of human FOXM1 promotes basal progenitor cell proliferation and induces cortical thickening and folding in mice. Human-specific protein sequences further promote the generation of basal progenitor cells. Human FOXM1 increases the proliferation of neural progenitors by binding to the Lin28a promoter and increasing Lin28a expression. Furthermore, overexpression of LIN28A rescues the proliferation of human FOXM1 knockout neural progenitor cells. Together, our findings demonstrate that a human gene can increase the number of basal progenitor cells in mice, leading to brain size increase and gyrification, and may thus contribute to evolutionary brain development and cortical expansion.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina,State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | | | - Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Enyu Huang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Hong Jiang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: PhysiologySchool of Basic MedicineMedical CollegeQingdao UniversityQingdaoChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
94
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
95
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
96
|
Makowski C, van der Meer D, Dong W, Wang H, Wu Y, Zou J, Liu C, Rosenthal SB, Hagler DJ, Fan CC, Kremen WS, Andreassen OA, Jernigan TL, Dale AM, Zhang K, Visscher PM, Yang J, Chen CH. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science 2022; 375:522-528. [PMID: 35113692 DOI: 10.1126/science.abe8457] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To determine the impact of genetic variants on the brain, we used genetically informed brain atlases in genome-wide association studies of regional cortical surface area and thickness in 39,898 adults and 9136 children. We uncovered 440 genome-wide significant loci in the discovery cohort and 800 from a post hoc combined meta-analysis. Loci in adulthood were largely captured in childhood, showing signatures of negative selection, and were linked to early neurodevelopment and pathways associated with neuropsychiatric risk. Opposing gradations of decreased surface area and increased thickness were associated with common inversion polymorphisms. Inferior frontal regions, encompassing Broca's area, which is important for speech, were enriched for human-specific genomic elements. Thus, a mixed genetic landscape of conserved and human-specific features is concordant with brain hierarchy and morphogenetic gradients.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Hao Wang
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jingjing Zou
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Cin Liu
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, CA, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, CA, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| |
Collapse
|
97
|
Chinnappa K, Cárdenas A, Prieto-Colomina A, Villalba A, Márquez-Galera Á, Soler R, Nomura Y, Llorens E, Tomasello U, López-Atalaya JP, Borrell V. Secondary loss of miR-3607 reduced cortical progenitor amplification during rodent evolution. SCIENCE ADVANCES 2022; 8:eabj4010. [PMID: 35020425 PMCID: PMC8754304 DOI: 10.1126/sciadv.abj4010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The evolutionary expansion and folding of the mammalian cerebral cortex resulted from amplification of progenitor cells during embryonic development. This process was reversed in the rodent lineage after splitting from primates, leading to smaller and smooth brains. Genetic mechanisms underlying this secondary loss in rodent evolution remain unknown. We show that microRNA miR-3607 is expressed embryonically in the large cortex of primates and ferret, distant from the primate-rodent lineage, but not in mouse. Experimental expression of miR-3607 in embryonic mouse cortex led to increased Wnt/β-catenin signaling, amplification of radial glia cells (RGCs), and expansion of the ventricular zone (VZ), via blocking the β-catenin inhibitor APC (adenomatous polyposis coli). Accordingly, loss of endogenous miR-3607 in ferret reduced RGC proliferation, while overexpression in human cerebral organoids promoted VZ expansion. Our results identify a gene selected for secondary loss during mammalian evolution to limit RGC amplification and, potentially, cortex size in rodents.
Collapse
|
98
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
99
|
Xu J, Guo Y, Li J, Lv X, Zhang J, Zhang J, Hu Q, Wang K, Tian Y. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis. J Neurol 2022; 269:389-398. [PMID: 34297178 DOI: 10.1007/s00415-021-10643-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Advanced structural analyses are increasingly being highly valued to uncover pathophysiological understanding of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Therefore, we aimed to explore whether and how antibody-mediated NMDAR dysfunction affected cortical and sub-cortical brain morphology and their relationship with clinical symptoms. METHODS We performed surface-based morphometry analyses, hippocampal segmentation, and correlational analyses in 24 patients with anti-NMDAR encephalitis after acute disease stage and 30 normal controls (NC) in this case-control study. RESULTS Patients showed significantly decreased cortical alterations mainly in language network (LN) and default mode network (DMN), as well as decreased gray matter volume in left cornu ammonis 1 (CA1) body of hippocampus. Further correlation analyses showed that the decreased cortical thickness in the right superior frontier gyrus was associated with decreased cognitive scores, the decreased cortical volume in the right pars triangulari and decreased surface area in the right pars operculari were associated with decreased memory scores, whereas decreased gray matter volume in the left CA1 body was significantly correlated with longer time between first symptom and imaging in the patients. CONCLUSION These results suggested that cognitive impairments resulted from long-term sequelae of the encephalitis were mainly associated with cortical alterations in LN and DMN and sub-cortical atrophy of left CA1 body, which can be served as effective features to assess disease progression in clinical routine examination.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Xinyi Lv
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| |
Collapse
|
100
|
Ma L, Du Y, Hui Y, Li N, Fan B, Zhang X, Li X, Hong W, Wu Z, Zhang S, Zhou S, Xu X, Zhou Z, Jiang C, Liu L, Zhang X. Developmental programming and lineage branching of early human telencephalon. EMBO J 2021; 40:e107277. [PMID: 34558085 DOI: 10.15252/embj.2020107277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaojie Zhang
- Department of Obstetrics and Gynecology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Hong
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, China
| |
Collapse
|