51
|
Caianiello S, Bertolaso M, Militello G. Thinking in 3 dimensions: philosophies of the microenvironment in organoids and organs-on-chip. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:14. [PMID: 36949354 DOI: 10.1007/s40656-023-00560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Organoids and organs-on-a-chip are currently the two major families of 3D advanced organotypic in vitro culture systems, aimed at reconstituting miniaturized models of physiological and pathological states of human organs. Both share the tenets of the so-called "three-dimensional thinking", a Systems Physiology approach focused on recapitulating the dynamic interactions between cells and their microenvironment. We first review the arguments underlying the "paradigm shift" toward three-dimensional thinking in the in vitro culture community. Then, through a historically informed account of the technical affordances and the epistemic commitments of these two approaches, we highlight how they embody two distinct experimental cultures. We finally argue that the current systematic effort for their integration requires not only innovative "synergistic" engineering solutions, but also conceptual integration between different perspectives on biological causality.
Collapse
Affiliation(s)
- Silvia Caianiello
- Institute for the History of Philosophy and Science in the Modern Age (ISPF), Consiglio Nazionale delle Ricerche, Naples, Italy.
- Stazione Zoologica "Anton Dohrn", Naples, Italy.
| | - Marta Bertolaso
- Faculty of Science and Technology for Sustainable Development and One Health, Universitá Campus Bio-Medico di Roma, Rome, Italy
| | - Guglielmo Militello
- Faculty of Science and Technology for Sustainable Development and One Health, Universitá Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
52
|
Kutscher A, Kalenczuk P, Shahadha M, Grünzner S, Obst F, Gruner D, Paschew G, Beck A, Howitz S, Richter A. Fabrication of Chemofluidic Integrated Circuits by Multi-Material Printing. MICROMACHINES 2023; 14:699. [PMID: 36985107 PMCID: PMC10052728 DOI: 10.3390/mi14030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Photolithographic patterning of components and integrated circuits based on active polymers for microfluidics is challenging and not always efficient on a laboratory scale using the traditional mask-based fabrication procedures. Here, we present an alternative manufacturing process based on multi-material 3D printing that can be used to print various active polymers in microfluidic structures that act as microvalves on large-area substrates efficiently in terms of processing time and consumption of active materials with a single machine. Based on the examples of two chemofluidic valve types, hydrogel-based closing valves and PEG-based opening valves, the respective printing procedures, essential influencing variables and special features are discussed, and the components are characterized with regard to their properties and tolerances. The functionality of the concept is demonstrated by a specific chemofluidic chip which automates an analysis procedure typical of clinical chemistry and laboratory medicine. Multi-material 3D printing allows active-material devices to be produced on chip substrates with tolerances comparable to photolithography but is faster and very flexible for small quantities of up to about 50 chips.
Collapse
Affiliation(s)
- Alexander Kutscher
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Paula Kalenczuk
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohammed Shahadha
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Grünzner
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Franziska Obst
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Denise Gruner
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Georgi Paschew
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Anthony Beck
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| | - Steffen Howitz
- GeSiM—Gesellschaft für Silizium-Mikrosysteme mbH, Bautzner Landstrasse 45, D-01454 Radeberg, Germany
| | - Andreas Richter
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
53
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
54
|
Turiello R, Nouwairi RL, Landers JP. Taking the microfluidic approach to nucleic acid analysis in forensics: Review and perspectives. Forensic Sci Int Genet 2023; 63:102824. [PMID: 36592574 DOI: 10.1016/j.fsigen.2022.102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Forensic laboratories are universally acknowledged as being overburdened, underfunded, and in need of improved analytical methods to expedite investigations, decrease the costs associated with nucleic acid (NA) analysis, and perform human identification (HID) at the point of need (e.g., crime scene, booking station, etc.). In response, numerous research and development (R&D) efforts have resulted in microfluidic tools that automate portions of the forensic genetic workflow, including DNA extraction, amplification, and short tandem repeat (STR) typing. By the early 2000 s, reports from the National Institute of Justice (NIJ) anticipated that microfluidic 'swab-in-profile-out' systems would be available for use at the crime scene by 2015 and the FBI's 2010 'Rapid DNA' Initiative, approved by Congress in 2017, directed this effort by guiding the development and implementation of maturing systems. At present, few fully-automated microfluidic DNA technologies are commercially available for forensic HID and their adoption by agencies interested in identification has been limited. In practice, the integration of complex laboratory processes to produce one autonomous unit, along with the highly variable nature of forensic input samples, resulted in systems that are more expensive per sample and not comparable to gold-standard identification methods in terms of sensitivity, reproducibility, and multiplex capability. This Review and Perspective provides insight into the contributing factors to this outcome; namely, we focus on the complications associated with the tremendous undertaking that is developing a sample-in-answer-out platform for HID. For context, we also describe the intricate forensic landscape that contributes to a nuanced marketplace, not easily distilled down to cases of simple supply and demand. Moving forward and considering the trade-offs associated with developing methods to compete, sometimes directly, with conventional ones, we recommend a focus shift for microfluidics developers toward the creation of innovative solutions for emerging applications in the field to increase the bandwidth of the forensic investigative toolkit. Likewise, we urge case working personnel to reframe how they conceptualize the currently available Rapid DNA tools; rather than comparing these microfluidic methods to gold-standard procedures, take advantage of their rapid and integrated modes for those situations requiring expedited identifications in an informed manner.
Collapse
|
55
|
Bacon A, Wang W, Lee H, Umrao S, Sinawang PD, Akin D, Khemtonglang K, Tan A, Hirshfield S, Demirci U, Wang X, Cunningham BT. Review of HIV Self Testing Technologies and Promising Approaches for the Next Generation. BIOSENSORS 2023; 13:298. [PMID: 36832064 PMCID: PMC9954708 DOI: 10.3390/bios13020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 05/28/2023]
Abstract
The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.
Collapse
Affiliation(s)
- Amanda Bacon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hankeun Lee
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Prima Dewi Sinawang
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Demir Akin
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kodchakorn Khemtonglang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anqi Tan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabina Hirshfield
- Special Treatment and Research (STAR) Program, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, NY 11203, USA
| | - Utkan Demirci
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
56
|
Sano H, Kazoe Y, Ohta R, Shimizu H, Morikawa K, Kitamori T. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay. LAB ON A CHIP 2023; 23:727-736. [PMID: 36484269 DOI: 10.1039/d2lc00881e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There have been significant advances in the field of nanofluidics, and novel technologies such as single-cell analysis have been demonstrated. Despite the evident advantages of nanofluidics, fluid control in nanochannels for complicated analyses is extremely difficult because the fluids are currently manipulated by maintaining the balance of driving pressure. To address this issue, the use of valves will be essential. Our group previously developed a nanochannel open/close valve utilizing glass deformation, but this has not yet been integrated into nanofluidic devices for analytical applications. In the present study, a nanofluidic analytical system integrated with multiple nanochannel open/close valves was developed. This system consists of eight pneumatic pumps, seven nanochannel open/close valves combined with piezoelectric actuators, and an ultra-high sensitivity detector for non-fluorescent molecules. For simultaneous actuation of multiple valves, a device holder was designed that prevented deformation of the entire device caused by operating the valves. A system was subsequently devised to align each valve and actuator with a precision of better than 20 μm to permit the operation of valves. The developed analytical system was verified by analyzing IL-6 molecules using an enzyme-linked immunosorbent assay. Fluid operations such as sample injection, pL-level aliquot sampling and flow switching were accomplished in this device simply by opening/closing specific valves, and a sample consisting of approximately 1500 IL-6 molecules was successfully detected. This study is expected to significantly improve the usability of nanofluidic analytical devices and lead to the realization of sophisticated analytical techniques such as single-cell proteomics.
Collapse
Affiliation(s)
- Hiroki Sano
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yutaka Kazoe
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Ryoichi Ohta
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hisashi Shimizu
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
57
|
Cai G, Xu F, Chen B, Li X, Huang J, Mi S. Variable-position centrifugal platform achieves droplet manipulation and logic circuitries on-chip. LAB ON A CHIP 2023; 23:349-361. [PMID: 36606538 DOI: 10.1039/d2lc00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Taking information as material to realize non-electronic physical computing is a promising idea, which facilitates the integration of technologies in different fields such as chemistry, biology, and mechanical control into a new computing platform. Here, we propose a novel, efficient and robust manipulation platform that drives droplet computing by way of inertial force. Combining this with droplet flow path design, we demonstrated multiple basic functions of droplet manipulation, including storage, dosing, interrupts, controllable release and addressing. These basic functions without external control lay the foundation for the realization of droplet calculation. We developed AND, OR, and XOR logic gates of the "liquid circuit" and combined them into a binary adder, which successfully completed the addition of four-digit binary numbers through droplet movement. Moreover, we attempted to perform algorithmic design for biological information under the control of droplets based on synchronous logical operations, developing the possibility of biological applications. This programmable physical computing system exists independently of electronic computing, aiming to supplement and expand the computing methods outside the field of electronic technology and to open a new method for the algorithmic operation of materials after combining new physical computing technologies such as biological or chemical computing.
Collapse
Affiliation(s)
- Gangpei Cai
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Fei Xu
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Bailiang Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China
| |
Collapse
|
58
|
Tian T, Liu J, Zhu H. Organ Chips and Visualization of Biological Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:155-183. [PMID: 37460731 DOI: 10.1007/978-981-32-9902-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Organ-on-a-chip (OOC) is an emerging frontier cross-cutting science and technology developed in the past 10 years. It was first proposed by the Wyss Institute for Biologically Inspired Engineering of Harvard Medical School. It consists of a transparent flexible polymer the size of a computer memory stick, with hollow microfluidic channels lined with living human cells. Researchers used bionics methods to simulate the microenvironment of human cells on microfluidic chips, so as to realize the basic physiological functions of corresponding tissues and organs in vitro. Transparent chip materials can perform real-time visualization and high-resolution analysis of various human life processes in a way that is impossible in animal models, so as to better reproduce the microenvironment of human tissue and simulate biological systems in vitro to observe drug metabolism and other life processes. It provides innovative research systems and system solutions for in vitro bionics of biological systems. It also has gradually become a new tool for disease mechanism research and new drug development. In this chapter, we will take the current research mature single-organ-on-a-chip and multi-organ human-on-a-chip as examples; give an overview of the research background and underlying technologies in this field, especially the application of in vitro bionic models in visualized medicine; and look forward to the foreseeable future development prospects after the integration of organ-on-chip and organoid technology.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jun Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - He Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
59
|
Li P, Cui F, Chen H, Yang Y, Li G, Mao H, Lyu X. A Microfluidic Cell Co-Culture Chip for the Monitoring of Interactions between Macrophages and Fibroblasts. BIOSENSORS 2022; 13:bios13010070. [PMID: 36671905 PMCID: PMC9855520 DOI: 10.3390/bios13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 05/28/2023]
Abstract
Macrophages and fibroblasts are two types of important cells in wound healing. The development of novel platforms for studying the interrelationship between these two cells is crucial for the exploration of wound-healing mechanisms and drug development. In this study, a microfluidic chip composed of two layers was designed for the co-culturing of these two cells. An air valve was employed to isolate fibroblasts to simulate the wound-healing microenvironment. The confluence rate of fibroblasts in the co-culture system with different macrophages was explored to reflect the role of different macrophages in wound healing. It was demonstrated that M2-type macrophages could promote the activation and migration of fibroblasts and it can be inferred that they could promote the wound-healing process. The proposed microfluidic co-culture system was designed for non-contact cell-cell interactions, which has potential significance for the study of cell-cell interactions in biological processes such as wound healing, tumor microenvironment, and embryonic development.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Orthopedics, West China Hospital, West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Heying Chen
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaoyan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
60
|
Duran C, Zhang S, Yang C, Falco ML, Cravo-Laureau C, Suzuki-Minakuchi C, Nojiri H, Duran R, Sassa F. Low-cost gel-filled microwell array device for screening marine microbial consortium. Front Microbiol 2022; 13:1031439. [PMID: 36590440 PMCID: PMC9800614 DOI: 10.3389/fmicb.2022.1031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In order to exploit the microbes present in the environment for their beneficial resources, effective selection and isolation of microbes from environmental samples is essential. In this study, we fabricated a gel-filled microwell array device using resin for microbial culture. The device has an integrated sealing mechanism that enables high-density isolation based on the culture of microorganisms; the device is easily manageable, facilitating observation using bright-field microscopy. This low-cost device made from polymethyl methacrylate (PMMA)/polyethylene terephthalate (PET) has 900 microwells (600 μm × 600 μm × 700 μm) filled with a microbial culture gel medium in glass slide-sized plates. It also has grooves for maintaining the moisture content in the micro-gel. The partition wall between the wells has a highly hydrophobic coating to inhibit microbial migration to neighboring wells and to prevent exchange of liquid substances. After being hermetically sealed, the device can maintain moisture in the agarose gels for 7 days. In the bacterial culture experiment using this device, environmental bacteria were isolated and cultured in individual wells after 3 days. Moreover, the isolated bacteria were then picked up from wells and re-cultured. This device is effective for the first screening of microorganisms from marine environmental samples.
Collapse
Affiliation(s)
- Clelia Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shiyi Zhang
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Chongyang Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maria Lorena Falco
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| | - Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| |
Collapse
|
61
|
Sun Y, Zhang F, Li L, Chen K, Wang S, Ouyang Q, Luo C. Two-Layered Microfluidic Devices for High-Throughput Dynamic Analysis of Synthetic Gene Circuits in E. coli. ACS Synth Biol 2022; 11:3954-3965. [PMID: 36283074 DOI: 10.1021/acssynbio.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Escherichia coli is a common chassis for synthetic gene circuit studies. In addition to the dose-response of synthetic gene circuits, the analysis of dynamic responses is also an important part of the future design of more complicated synthetic systems. Recently, microfluidic-based methods have been widely used for the analysis of gene expression dynamics. Here, we established a two-layered microfluidic platform for the systematic characterization of synthetic gene circuits (eight strains in eight different culture environments could be observed simultaneously with a 5 min time resolution). With this platform, both dose responses and dynamic responses with a high temporal resolution could be easily derived for further analysis. A controlled environment ensures the stability of the bacterial growth rate, excluding changes in gene expression dynamics caused by changes of the growth dilution rate. The precise environmental switch and automatic micrograph shooting ensured that there was nearly no time lag between the inducer addition and the data recording. We studied four four-node incoherent-feedforward-loop (IFFL) networks with different operators using this device. The experimental results showed that as the effect of inhibition increased, two of the IFFL networks generated pulselike dynamic gene expressions in the range of the inducer concentrations, which was different from the dynamics of the two other circuits with only a simple pattern of rising to the platform. Through fitting the dose-response curves and the dynamic response curves, corresponding parameters were derived and introduced to a simple model that could qualitatively explain the generation of pulse dynamics.
Collapse
Affiliation(s)
- Yanhong Sun
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China
| | - Fengyu Zhang
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Lusi Li
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Kaiyue Chen
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| | - Shujing Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China.,Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
62
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
63
|
Winkler S, Menke J, Meyer KV, Kortmann C, Bahnemann J. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system. LAB ON A CHIP 2022; 22:4656-4665. [PMID: 36342331 DOI: 10.1039/d2lc00629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microfluidic valve systems show great potential to automate mixing, dilution, and time-resolved reagent supply within biochemical assays and novel on-chip cell culture systems. However, most of these systems require a complex and cost-intensive fabrication in clean room facilities, and the valve control element itself also requires vacuum or pressure sources (including external valves, tubing, ports and pneumatic control channels). Addressing these bottlenecks, the herein presented biocompatible and heat steam sterilizable microfluidic valve system was fabricated via high-resolution 3D printing in a one-step process - including inlets, micromixer, microvalves, and outlets. The 3D-printed valve membrane is deflected via miniature on-chip servomotors that are controlled using a Raspberry Pi and a customized Python script (resulting in a device that is comparatively low-cost, portable, and fully automated). While a high mixing accuracy and long-term robustness is established, as described herein the system is further applied in a proof-of-concept assay for automated IC50 determination of camptothecin with mouse fibroblasts (L929) monitored by a live-cell-imaging system. Measurements of cell growth and IC50 values revealed no difference in performance between the microfluidic valve system and traditional pipetting. This novel design and the accompanying automatization scripts provide the scientific community with direct access to customizable full-time reagent control of 2D cell culture, or even novel organ-on-a-chip systems.
Collapse
Affiliation(s)
- Steffen Winkler
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Jannik Menke
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Katharina V Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Carlotta Kortmann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany.
| |
Collapse
|
64
|
Watson C, Liu C, Ansari A, Miranda HC, Somoza RA, Senyo SE. Multiplexed microfluidic chip for cell co-culture. Analyst 2022; 147:5409-5418. [PMID: 36300548 PMCID: PMC10077866 DOI: 10.1039/d2an01344d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Paracrine signaling is challenging to study in vitro, as conventional culture tools dilute soluble factors and offer little to no spatiotemporal control over signaling. Microfluidic chips offer potential to address both of these issues. However, few solutions offer both control over onset and duration of cell-cell communication, and high throughput. We have developed a microfluidic chip designed to culture cells in adjacent chambers, separated by valves to selectively allow or prevent exchange of paracrine signals. The chip features 16 fluidic inputs and 128 individually-addressable chambers arranged in 32 sets of 4 chambers. Media can be continuously perfused or delivered by diffusion, which we model under different culture conditions to ensure normal cell viability. Immunocytochemistry assays can be performed in the chip, which we modeled and fine-tuned to reduce total assay time to 1 h. Finally, we validate the use of the chip for co-culture studies by showing that HEK293Ta cells respond to signals secreted by RAW 264.7 immune cells in adjacent chambers, only when the valve between the chambers is opened.
Collapse
Affiliation(s)
- Craig Watson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Chao Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, OH, USA
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
65
|
Microfluidic dose-response platform to track the dynamics of drug response in single mycobacterial cells. Sci Rep 2022; 12:19578. [PMID: 36379978 PMCID: PMC9666435 DOI: 10.1038/s41598-022-24175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical analysis of drug efficacy is critical for drug development. However, conventional bulk-cell assays statically assess the mean population behavior, lacking resolution on drug-escaping cells. Inaccurate estimation of efficacy can lead to overestimation of compounds, whose efficacy will not be confirmed in the clinic, or lead to rejection of valuable candidates. Time-lapse microfluidic microscopy is a powerful approach to characterize drugs at high spatiotemporal resolution, but hard to apply on a large scale. Here we report the development of a microfluidic platform based on a pneumatic operating principle, which is scalable and compatible with long-term live-cell imaging and with simultaneous analysis of different drug concentrations. We tested the platform with mycobacterial cells, including the tubercular pathogen, providing the first proof of concept of a single-cell dose-response assay. This dynamic in-vitro model will prove useful to probe the fate of drug-stressed cells, providing improved predictions of drug efficacy in the clinic.
Collapse
|
66
|
Li P, Chen Y. Progress in Modeling Neural Tube Development and Defects by Organoid Reconstruction. Neurosci Bull 2022; 38:1409-1419. [PMID: 35753025 PMCID: PMC9672182 DOI: 10.1007/s12264-022-00896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022] Open
Abstract
It is clear that organoids are useful for studying the structure as well as the functions of organs and tissues; they are able to simulate cell-to-cell interactions, symmetrical and asymmetric division, proliferation, and migration of different cell groups. Some progress has been made using brain organoids to elucidate the genetic basis of certain neurodevelopmental disorders. Such as Parkinson's disease and Alzheimer's disease. However, research on organoids in early neural development has received insufficient attention, especially that focusing on neural tube precursors. In this review, we focus on the recent research progress on neural tube organoids and discuss both their challenges and potential solutions.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China.
| |
Collapse
|
67
|
Tharakan S, Faqah O, Asghar W, Ilyas A. Microfluidic Devices for HIV Diagnosis and Monitoring at Point-of-Care (POC) Settings. BIOSENSORS 2022; 12:949. [PMID: 36354458 PMCID: PMC9687700 DOI: 10.3390/bios12110949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human immunodeficiency virus (HIV) is a global epidemic; however, many individuals are able to obtain treatment and manage their condition. Progression to acquired immunodeficiency syndrome (AIDS) occurs during late-stage HIV infection, which compromises the immune system, making it susceptible to infections. While there is no cure, antiretroviral therapy can be used provided that detection occurs, preferably during the early phase. However, the detection of HIV is expensive and resource-intensive when tested with conventional methods, such as flow cytometry, polymerase chain reaction (PCR), or enzyme-linked immunosorbent assays (ELISA). Improving disease detection in resource-constrained areas requires equipment that is affordable, portable, and can deliver rapid results. Microfluidic devices have transformed many benchtop techniques to on-chip detection for portable and rapid point-of-care (POC) testing. These devices are cost-effective, sensitive, and rapid and can be used in areas lacking resources. Moreover, their functionality can rival their benchtop counterparts, making them efficient for disease detection. In this review, we discuss the limitations of currently used conventional HIV diagnostic assays and provide an overview of potential microfluidic technologies that can improve HIV testing in POC settings.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Omair Faqah
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
68
|
Driver R, Mishra S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
69
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
70
|
Abstract
In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials-in this case, by leveraging membrane inversion and tube kinking-two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user's fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design.
Collapse
|
71
|
Li Q, van de Groep J, White AK, Song JH, Longwell SA, Fordyce PM, Quake SR, Kik PG, Brongersma ML. Metasurface optofluidics for dynamic control of light fields. NATURE NANOTECHNOLOGY 2022; 17:1097-1103. [PMID: 36163507 DOI: 10.1038/s41565-022-01197-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
The ability to manipulate light and liquids on integrated optofluidics chips has spurred a myriad of important developments in biology, medicine, chemistry and display technologies. Here we show how the convergence of optofluidics and metasurface optics can lead to conceptually new platforms for the dynamic control of light fields. We first demonstrate metasurface building blocks that display an extreme sensitivity in their scattering properties to their dielectric environment. These blocks are then used to create metasurface-based flat optics inside microfluidic channels where liquids with different refractive indices can be directed to manipulate their optical behaviour. We demonstrate the intensity and spectral tuning of metasurface colour pixels as well as on-demand optical elements. We finally demonstrate automated control in an integrated meta-optofluidic platform to open up new display functions. Combined with large-scale microfluidic integration, our dynamic-metasurface flat-optics platform could open up the possibility of dynamic display, imaging, holography and sensing applications.
Collapse
Affiliation(s)
- Qitong Li
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Jorik van de Groep
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Van der Waals-Zeeman Institute for Experimental Physics, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
| | - Adam K White
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jung-Hwan Song
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Scott A Longwell
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Pieter G Kik
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
| |
Collapse
|
72
|
Affiliation(s)
- Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
73
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
74
|
Luo Y, Wang S, Feng Z, Li J, Mao C, Wang R, Jiang X. Integrated Microfluidic DNA Storage Platform with Automated Sample Handling and Physical Data Partitioning. Anal Chem 2022; 94:13153-13162. [DOI: 10.1021/acs.analchem.2c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, No 1088, Xueyuan Rd., Xili, Nanshan
District, Shenzhen518055, Guangdong, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Shuchen Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, No 1088, Xueyuan Rd., Xili, Nanshan
District, Shenzhen518055, Guangdong, P. R. China
| | - Zhuowei Feng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, No 1088, Xueyuan Rd., Xili, Nanshan
District, Shenzhen518055, Guangdong, P. R. China
| | - Jie Li
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
| | - Cuiping Mao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, No 1088, Xueyuan Rd., Xili, Nanshan
District, Shenzhen518055, Guangdong, P. R. China
| | - Rui Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen518055, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, No 1088, Xueyuan Rd., Xili, Nanshan
District, Shenzhen518055, Guangdong, P. R. China
| |
Collapse
|
75
|
Qiu B, Chen X, Xu F, Wu D, Zhou Y, Tu W, Jin H, He G, Chen S, Sun D. Nanofiber self-consistent additive manufacturing process for 3D microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:102. [PMID: 36119377 PMCID: PMC9477890 DOI: 10.1038/s41378-022-00439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/13/2023]
Abstract
3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid-nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Bin Qiu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Xiaojun Chen
- School of Mechanical and Electrical Engineering, Lingnan Normal University, Zhanjiang, 524000 China
| | - Feng Xu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Dongyang Wu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Yike Zhou
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Wenchang Tu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Gonghan He
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Songyue Chen
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
76
|
Compera N, Atwell S, Wirth J, von Törne C, Hauck SM, Meier M. Adipose microtissue-on-chip: a 3D cell culture platform for differentiation, stimulation, and proteomic analysis of human adipocytes. LAB ON A CHIP 2022; 22:3172-3186. [PMID: 35875914 PMCID: PMC9400584 DOI: 10.1039/d2lc00245k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 06/01/2023]
Abstract
Human fat tissue has evolved to serve as a major energy reserve. An imbalance between energy intake and expenditure leads to an expansion of adipose tissue. Maintenance of this energy imbalance over long periods leads to obesity and metabolic disorders such as type 2 diabetes, for which a clinical cure is not yet available. In this study, we developed a microfluidic large-scale integration chip platform to automate the formation, long-term culture, and retrieval of 3D adipose microtissues to enable longitudinal studies of adipose tissue in vitro. The chip was produced from soft-lithography molds generated by 3D-printing, which allowed scaling of pneumatic membrane valves for parallel fluid routing and thus incorporated microchannels with variable dimensions to handle 3D cell cultures with diameters of several hundred micrometers. In 32 individual fluidically accessible cell culture chambers, designed to enable the self-aggregation process of three microtissues, human adipose stem cells differentiated into mature adipocytes over a period of two weeks. Coupling mass spectrometry to the cell culture platform, we determined the minimum cell numbers required to obtain robust and complex proteomes with over 1800 identified proteins. The adipose microtissues on the chip platform were then used to periodically simulate food intake by alternating the glucose level in the cell-feeding media every 6 h over the course of one week. The proteomes of adipocytes under low/high glucose conditions exhibited unique protein profiles, confirming the technical functionality and applicability of the chip platform. Thus, our adipose tissue-on-chip in vitro model may prove useful for elucidating the molecular and functional mechanisms of adipose tissue in normal and pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Nina Compera
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Scott Atwell
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Johannes Wirth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Christine von Törne
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
77
|
Yu Y, Wen H, Li S, Cao H, Li X, Ma Z, She X, Zhou L, Huang S. Emerging microfluidic technologies for microbiome research. Front Microbiol 2022; 13:906979. [PMID: 36051769 PMCID: PMC9424851 DOI: 10.3389/fmicb.2022.906979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of the microbiome is increasingly prominent. For example, the human microbiome has been proven to be strongly associated with health conditions, while the environmental microbiome is recognized to have a profound influence on agriculture and even the global climate. Furthermore, the microbiome can serve as a fascinating reservoir of genes that encode tremendously valuable compounds for industrial and medical applications. In the past decades, various technologies have been developed to better understand and exploit the microbiome. In particular, microfluidics has demonstrated its strength and prominence in the microbiome research. By taking advantage of microfluidic technologies, inherited shortcomings of traditional methods such as low throughput, labor-consuming, and high-cost are being compensated or bypassed. In this review, we will summarize a broad spectrum of microfluidic technologies that have addressed various needs in the field of microbiome research, as well as the achievements that were enabled by the microfluidics (or technological advances). Finally, how microfluidics overcomes the limitations of conventional methods by technology integration will also be discussed.
Collapse
Affiliation(s)
- Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sihong Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haojie Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyi She
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
78
|
McIntyre D, Lashkaripour A, Fordyce P, Densmore D. Machine learning for microfluidic design and control. LAB ON A CHIP 2022; 22:2925-2937. [PMID: 35904162 PMCID: PMC9361804 DOI: 10.1039/d2lc00254j] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
Microfluidics has developed into a mature field with applications across science and engineering, having particular commercial success in molecular diagnostics, next-generation sequencing, and bench-top analysis. Despite its ubiquity, the complexity of designing and controlling custom microfluidic devices present major barriers to adoption, requiring intuitive knowledge gained from years of experience. If these barriers were overcome, microfluidics could miniaturize biological and chemical research for non-experts through fully-automated platform development and operation. The intuition of microfluidic experts can be captured through machine learning, where complex statistical models are trained for pattern recognition and subsequently used for event prediction. Integration of machine learning with microfluidics could significantly expand its adoption and impact. Here, we present the current state of machine learning for the design and control of microfluidic devices, its possible applications, and current limitations.
Collapse
Affiliation(s)
- David McIntyre
- Biomedical Engineering Department, Boston University, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, MA, USA.
- Electrical & Computer Engineering Department, Boston University, Boston, MA, USA
| |
Collapse
|
79
|
Codutti A, Charsooghi MA, Cerdá-Doñate E, Taïeb HM, Robinson T, Faivre D, Klumpp S. Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement. eLife 2022; 11:71527. [PMID: 35852850 PMCID: PMC9365388 DOI: 10.7554/elife.71527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion. In this work, we investigate magnetically steerable microswimmers, specifically magnetotactic bacteria, in strong spatial confinement and under the influence of an external magnetic field. We trap single cells in micrometer-sized microfluidic chambers and track and analyze their motion, which shows a variety of different trajectories, depending on the chamber size and the strength of the magnetic field. Combining these experimental observations with simulations using a variant of an active Brownian particle model, we explain the variety of trajectories by the interplay between the wall interactions and the magnetic torque. We also analyze the pronounced cell-to-cell heterogeneity, which makes single-cell tracking essential for an understanding of the motility patterns. In this way, our work establishes a basis for the analysis and prediction of microswimmer motility in more complex environments.
Collapse
Affiliation(s)
- Agnese Codutti
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | | | - Elisa Cerdá-Doñate
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | - Hubert M Taïeb
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | - Tom Robinson
- Theory and Bio‐systems Department, Max Planck Institute of Colloids and Interfaces
| | | | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen
| |
Collapse
|
80
|
Tischler J, Swank Z, Hsiung HA, Vianello S, Lutolf MP, Maerkl SJ. An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates. CELL REPORTS METHODS 2022; 2:100244. [PMID: 35880022 PMCID: PMC9308133 DOI: 10.1016/j.crmeth.2022.100244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
We present a low-cost, do-it-yourself system for complex mammalian cell culture under dynamically changing medium formulations by integrating conventional multi-well tissue culture plates with simple microfluidic control and system automation. We demonstrate the generation of complex concentration profiles, enabling the investigation of sophisticated input-response relations. We further apply our automated cell-culturing platform to the dynamic stimulation of two widely employed stem-cell-based in vitro models for early mammalian development: the conversion of naive mouse embryonic stem cells into epiblast-like cells and mouse 3D gastruloids. Performing automated medium-switch experiments, we systematically investigate cell fate commitment along the developmental trajectory toward mouse epiblast fate and examine symmetry-breaking, germ layer formation, and cardiac differentiation in mouse 3D gastruloids as a function of time-varying Wnt pathway activation. With these proof-of-principle examples, we demonstrate a highly versatile and scalable tool that can be adapted to specific research questions, experimental demands, and model systems.
Collapse
Affiliation(s)
- Julia Tischler
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Zoe Swank
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao-An Hsiung
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Stefano Vianello
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
- Roche Institute for Translational Bioengineering (TB), Pharma Research and Early Development (pRED), F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Sebastian J. Maerkl
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| |
Collapse
|
81
|
Wolf S, Domes R, Merian A, Domes C, Frosch T. Parallelized Raman Difference Spectroscopy for the Investigation of Chemical Interactions. Anal Chem 2022; 94:10346-10354. [PMID: 35820661 DOI: 10.1021/acs.analchem.2c00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy provides an extremely high chemical selectivity. Raman difference spectroscopy is a technique to reveal even the smallest differences that occur due to weak interactions between substances and changes in the molecular structure. To enable parallelized and highly sensitive Raman difference spectroscopy in a microtiter-array, a diffractive optical element, a lens array, and a fiber bundle were integrated into a Raman spectroscopy setup in a unique fashion. The setup was evaluated with a microtiter-array containing pyridine-water complexes, and subwavenumber changes below the spectrometer's resolution could be resolved. The spectral changes were emphasized with two-dimensional correlation analysis. Density functional theory calculation and "atoms in molecule" analysis were performed to simulate the intermolecular long-range interactions between water and pyridine molecules and to get insight into the involved noncovalent interactions, respectively. It was found that by the addition of pyridine, the energy portion of hydrogen bonds to the total complexation energy between pyridine and water reduces. These results demonstrate the unique abilities of the new setup to investigate subtle changes due to biochemically important molecular interactions and opens new avenues to perform drug binding assays and to monitor highly parallelized chemical reactions.
Collapse
Affiliation(s)
- Sebastian Wolf
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Andreas Merian
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.,Abbe Center of Photonics, Friedrich Schiller University, Jena 07745, Germany.,Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| |
Collapse
|
82
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
83
|
Adampourezare M, Hasanzadeh M, Seidi F. Microfluidic assisted recognition of miRNAs towards point-of-care diagnosis: Technical and analytical overview towards biosensing of short stranded single non-coding oligonucleotides. Biomed Pharmacother 2022; 153:113365. [PMID: 35785705 DOI: 10.1016/j.biopha.2022.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022] Open
Abstract
MiRNAs are short stranded single non-coding oligonucleotides that play an important role in regulating gene expression. MiRNAs are stable in RNase enriched environments such as human body fluids and their dysregulation or abnormal abundance in human body fluids as a diagnostic biomarker has been associated with several diseases. Due to the low concentration of miRNAs, it is difficult to detect using interactive methods (ideal detection limit is femtomolar range). However, clinicians lack sensitive and reliable methods for quantifying miRNA. Microfluidic devices integrated with electrochemical, optical (fluorometric, SERs, FRET, colorimetric), electrochemiluminescence and photoelectrochemical signal readout led to development innovative diagnostic device test, can probably overcome the limitations of the traditional methods. In the present review, microfluid methods for the sensitive and selective recognition of miRNA in various biological matrices are surveyed. Also, advantages and limitation of recognition methods on the performance and efficiency of microfluidic based biosensing of miRNAs are critically investigated. Finally, the future perspectives on the diagnosis of disease based on microfluidic analysis of miRNAs are provided.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
84
|
Bartlett S, Gao AK, Yung YL. Computation by Convective Logic Gates and Thermal Communication. ARTIFICIAL LIFE 2022; 28:96-107. [PMID: 35358297 DOI: 10.1162/artl_a_00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate a novel computational architecture based on fluid convection logic gates and heat flux-mediated information flows. Our previous work demonstrated that Boolean logic operations can be performed by thermally driven convection flows. In this work, we use numerical simulations to demonstrate a different , but universal Boolean logic operation (NOR), performed by simpler convective gates. The gates in the present work do not rely on obstacle flows or periodic boundary conditions, a significant improvement in terms of experimental realizability. Conductive heat transfer links can be used to connect the convective gates, and we demonstrate this with the example of binary half addition. These simulated circuits could be constructed in an experimental setting with modern, 2-dimensional fluidics equipment, such as a thin layer of fluid between acrylic plates. The presented approach thus introduces a new realm of unconventional, thermal fluid-based computation.
Collapse
Affiliation(s)
- Stuart Bartlett
- California Institute of Technology, Division of Geological and Planetary Sciences.
- Tokyo Institute of Technology, Earth-Life Science Institute
| | - Andrew K Gao
- California Institute of Technology, Division of Geological and Planetary Sciences
- Peking University, Yuanpei College
| | - Yuk L Yung
- California Institute of Technology, Division of Geological and Planetary Sciences
- NASA Jet Propulsion Laboratory
| |
Collapse
|
85
|
Mao S, Hu X, Tanaka Y, Zhou L, Peng C, Kasai N, Nakajima H, Kato S, Uchiyama K. A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
86
|
Wang C, Hu W, Guan L, Yang X, Liang Q. Single-cell metabolite analysis on a microfluidic chip. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Dettinger P, Kull T, Arekatla G, Ahmed N, Zhang Y, Schneiter F, Wehling A, Schirmacher D, Kawamura S, Loeffler D, Schroeder T. Open-source personal pipetting robots with live-cell incubation and microscopy compatibility. Nat Commun 2022; 13:2999. [PMID: 35637179 PMCID: PMC9151679 DOI: 10.1038/s41467-022-30643-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/10/2022] [Indexed: 01/03/2023] Open
Abstract
Liquid handling robots have the potential to automate many procedures in life sciences. However, they are not in widespread use in academic settings, where funding, space and maintenance specialists are usually limiting. In addition, current robots require lengthy programming by specialists and are incompatible with most academic laboratories with constantly changing small-scale projects. Here, we present the Pipetting Helper Imaging Lid (PHIL), an inexpensive, small, open-source personal liquid handling robot. It is designed for inexperienced users, with self-production from cheap commercial and 3D-printable components and custom control software. PHIL successfully automates pipetting (incl. aspiration) for e.g. tissue immunostainings and stimulations of live stem and progenitor cells during time-lapse microscopy using 3D printed peristaltic pumps. PHIL is cheap enough to put a personal pipetting robot within the reach of most labs and enables users without programming skills to easily automate a large range of experiments.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Schirmacher
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shunsuke Kawamura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
88
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
89
|
Li Z, Hui J, Yang P, Mao H. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. BIOSENSORS 2022; 12:bios12060370. [PMID: 35735518 PMCID: PMC9220862 DOI: 10.3390/bios12060370] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
An organ-on-a-chip is a device that combines micro-manufacturing and tissue engineering to replicate the critical physiological environment and functions of the human organs. Therefore, it can be used to predict drug responses and environmental effects on organs. Microfluidic technology can control micro-scale reagents with high precision. Hence, microfluidics have been widely applied in organ-on-chip systems to mimic specific organ or multiple organs in vivo. These models integrated with various sensors show great potential in simulating the human environment. In this review, we mainly introduce the typical structures and recent research achievements of several organ-on-a-chip platforms. We also discuss innovations in models applied to the fields of pharmacokinetics/pharmacodynamics, nano-medicine, continuous dynamic monitoring in disease modeling, and their further applications in other fields.
Collapse
Affiliation(s)
- Zening Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
| | - Panhui Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
90
|
Manipulation of Elastic Instability of Viscoelastic Fluid in a Rhombus Cross Microchannel. Polymers (Basel) 2022; 14:polym14112152. [PMID: 35683826 PMCID: PMC9182659 DOI: 10.3390/polym14112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
This paper reports the manipulation of elastic instability of the viscoelastic fluid in a rhombus cross microchannel (RCM) structure. The bistable instability and unsteady instability of the flow is firstly demonstrated in a standard cross microchannel (SCM) for reference. We then keep the bi-stable instability over a much wider injection rate range in the RCM, which is attributed to the stabilizing effect of the rhombus structure. A semi-bistable instability was also established in the RCM at a high enough injection rate. In addition, the unsteady elastic instability is realized in the RCM through an asymmetric injection rate condition.
Collapse
|
91
|
Microfluidic chain reaction of structurally programmed capillary flow events. Nature 2022; 605:464-469. [PMID: 35585345 DOI: 10.1038/s41586-022-04683-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Chain reactions, characterized by initiation, propagation and termination, are stochastic at microscopic scales and underlie vital chemical (for example, combustion engines), nuclear and biotechnological (for example, polymerase chain reaction) applications1-5. At macroscopic scales, chain reactions are deterministic and limited to applications for entertainment and art such as falling dominoes and Rube Goldberg machines. On the other hand, the microfluidic lab-on-a-chip (also called a micro-total analysis system)6,7 was visualized as an integrated chip, akin to microelectronic integrated circuits, yet in practice remains dependent on cumbersome peripherals, connections and a computer for automation8-11. Capillary microfluidics integrate energy supply and flow control onto a single chip by using capillary phenomena, but programmability remains rudimentary with at most a handful (eight) operations possible12-19. Here we introduce the microfluidic chain reaction (MCR) as the conditional, structurally programmed propagation of capillary flow events. Monolithic chips integrating a MCR are three-dimensionally printed, and powered by the free energy of a paper pump, autonomously execute liquid handling algorithms step-by-step. With MCR, we automated (1) the sequential release of 300 aliquots across chained, interconnected chips, (2) a protocol for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibodies detection in saliva and (3) a thrombin generation assay by continuous subsampling and analysis of coagulation-activated plasma with parallel operations including timers, iterative cycles of synchronous flow and stop-flow operations. MCRs are untethered from and unencumbered by peripherals, encode programs structurally in situ and can form a frugal, versatile, bona fide lab-on-a-chip with wide-ranging applications in liquid handling and point-of-care diagnostics.
Collapse
|
92
|
Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 2022; 605:681-686. [PMID: 35614247 DOI: 10.1038/s41586-022-04645-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1-6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal-oxide-semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.
Collapse
|
93
|
Xie Y, Dai L, Yang Y. Microfluidic technology and its application in the point-of-care testing field. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100109. [PMID: 35075447 PMCID: PMC8769924 DOI: 10.1016/j.biosx.2022.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 05/15/2023]
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), countries around the world have suffered heavy losses of life and property. The global pandemic poses a challenge to the global public health system, and public health organizations around the world are actively looking for ways to quickly and efficiently screen for viruses. Point-of-care testing (POCT), as a fast, portable, and instant detection method, is of great significance in infectious disease detection, disease screening, pre-disease prevention, postoperative treatment, and other fields. Microfluidic technology is a comprehensive technology that involves various interdisciplinary disciplines. It is also known as a lab-on-a-chip (LOC), and can concentrate biological and chemical experiments in traditional laboratories on a chip of several square centimeters with high integration. Therefore, microfluidic devices have become the primary implementation platform of POCT technology. POCT devices based on microfluidic technology combine the advantages of both POCT and microfluids, and are expected to shine in the biomedical field. This review introduces microfluidic technology and its applications in combination with other technologies.
Collapse
Affiliation(s)
- Yaping Xie
- Sansure Biotech Inc., Changsha, 410205, PR China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lizhong Dai
- Sansure Biotech Inc., Changsha, 410205, PR China
| | - Yijia Yang
- Sansure Biotech Inc., Changsha, 410205, PR China
| |
Collapse
|
94
|
A Magnetorheological Duckbill Valve Micropump for Drug Delivery Applications. MICROMACHINES 2022; 13:mi13050723. [PMID: 35630190 PMCID: PMC9146940 DOI: 10.3390/mi13050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
In this study, we propose a duckbill valve microfluidic pump that relies on an electromagnetic actuation mechanism. An FEA/CFD-based approach was adopted for the design of the device due to the coupled electromagnetic–solid–fluid interactions in the device. The simulation methodology was confirmed with the previously published data in the literature to ensure the accuracy of the simulations. The proposed optimum duckbill valve micropump can pump 2.45 µL of fluid during the first 1 s, including both contraction and expansion phases, almost 16.67% more than the basic model. In addition, the model can pump a maximum volume of 0.26 µL of fluid at the end of the contraction phase (at 0.5 s) when the magnetic flux density is at maximum (0.027 T). The use of a duckbill valve in the model also reduces the backflow by almost 7.5 times more than the model without any valve. The proposed device could potentially be used in a broad range of applications, such as an insulin dosing system for Type 1 diabetic patients, artificial organs to transport blood, organ-on-chip applications, and so on.
Collapse
|
95
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
96
|
Gervais T, Temiz Y, Aubé L, Delamarche E. Large-Scale Dried Reagent Reconstitution and Diffusion Control Using Microfluidic Self-Coalescence Modules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105939. [PMID: 35307960 DOI: 10.1002/smll.202105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The positioning and manipulation of large numbers of reagents in small aliquots are paramount to many fields in chemistry and the life sciences, such as combinatorial screening, enzyme activity assays, and point-of-care testing. Here, a capillary microfluidic architecture based on self-coalescence modules capable of storing thousands of dried reagent spots per square centimeter is reported, which can all be reconstituted independently without dispersion using a single pipetting step and ≤5 μL of a solution. A simple diffusion-based mathematical model is also provided to guide the spotting of reagents in this microfluidic architecture at the experimental design stage to enable either compartmentalization, mixing, or the generation of complex multi-reagent chemical patterns. Results demonstrate the formation of chemical patterns with high accuracy and versatility, and simple methods for integrating reagents and imaging the resulting chemical patterns.
Collapse
Affiliation(s)
- Thomas Gervais
- IBM Research Europe - Zurich, Rueschlikon, 8803, Switzerland
- Polytechnique Montréal, Montreal, H3C 3A7, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, H2X0A9, Canada
| | - Yuksel Temiz
- IBM Research Europe - Zurich, Rueschlikon, 8803, Switzerland
| | - Lucas Aubé
- Polytechnique Montréal, Montreal, H3C 3A7, Canada
| | | |
Collapse
|
97
|
Quintard C, Tubbs E, Achard JL, Navarro F, Gidrol X, Fouillet Y. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet. Biosens Bioelectron 2022; 202:113967. [DOI: 10.1016/j.bios.2022.113967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
|
98
|
Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci U S A 2022; 119:2110672119. [PMID: 35197282 PMCID: PMC8892341 DOI: 10.1073/pnas.2110672119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
We describe a highly multiplex PCR approach that can identify 10-fold more targets in current real-time PCR assays without additional enzymes or separate reactions. This single-step, single-tube, homogeneous detection approach, termed MeltArray, is achieved by coupling the 5′-flap endonuclease activity of the Taq DNA polymerase and multiple annealing sites of the molecular beacon reporters. The 5′-flap endonuclease cleaves a probe specifically into a “mediator” primer, and one molecular beacon reporter allows for the extension of multiple “mediator” primers to produce a series of fluorescent hybrids with different melting temperatures unique to each target. The overall number of targets detectable per reaction is equal to the number of the reporters multiplied by the number of mediator primers per reporter. Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5′-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.
Collapse
|
99
|
Cao M, Wu Y, Zhao M, Dai C, Yuan Y, Chen Z. Modulation of bubble flow resistance and surface fluidity :the effect of nanoparticle packing density at gas–liquid interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Abstract
This review focuses on experimental work on nonlinear phenomena in microfluidics, which for the most part are phenomena for which the velocity of a fluid flowing through a microfluidic channel does not scale proportionately with the pressure drop. Examples include oscillations, flow-switching behaviors, and bifurcations. These phenomena are qualitatively distinct from laminar, diffusion-limited flows that are often associated with microfluidics. We explore the nonlinear behaviors of bubbles or droplets when they travel alone or in trains through a microfluidic network or when they assemble into either one- or two-dimensional crystals. We consider the nonlinearities that can be induced by the geometry of channels, such as their curvature or the bas-relief patterning of their base. By casting posts, barriers, or membranes─situated inside channels─from stimuli-responsive or flexible materials, the shape, size, or configuration of these elements can be altered by flowing fluids, which may enable autonomous flow control. We also highlight some of the nonlinearities that arise from operating devices at intermediate Reynolds numbers or from using non-Newtonian fluids or liquid metals. We include a brief discussion of relevant practical applications, including flow gating, mixing, and particle separations.
Collapse
Affiliation(s)
- Sarah Battat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|