51
|
Klotho Exerts an Emerging Role in Cytokinesis. Genes (Basel) 2020; 11:genes11091048. [PMID: 32899868 PMCID: PMC7565453 DOI: 10.3390/genes11091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
The Klotho gene functions as an anti-aging gene. A previous klotho-knockout mice study indicated that neither male nor female gametocytes could accomplish the first meiotic division. It suggested that Klotho might regulate cell division. In this study, we determined the roles of Klotho in cytokinesis in cultural human cells (HEK293 and HeLa) and in zebrafish embryos. Immunoprecipitation, mass spectrometry analysis, and a zebrafish model were used in this study. The results showed that Klotho is located in the midbody, which correlated with cytokinesis related kinases, Aurora kinase B and citron kinases, in the late stage of cytokinesis. There was a spatial correlation between the abscission site and the location of Klotho in the cytokinesis bridge. A three-dimensional structural reconstruction study demonstrated there was a spatial correlation among Klotho, Aurora kinase B, and citron kinases in the midbody. In addition, Klotho depletion inactivated Aurora kinases; it was also indicated that Klotho depletion caused aberrant cell cycle and delayed cytokinesis in a cell model. The study with zebrafish embryos suggested that klotho knockdown caused early embryo development abnormality due to dysregulated cytokinesis. In conclusion, Klotho might have a critical role in cytokinesis regulation by interacting with the cytokinesis related kinases.
Collapse
|
52
|
Bergmann L, Lang A, Bross C, Altinoluk-Hambüchen S, Fey I, Overbeck N, Stefanski A, Wiek C, Kefalas A, Verhülsdonk P, Mielke C, Sohn D, Stühler K, Hanenberg H, Jänicke RU, Scheller J, Reichert AS, Ahmadian MR, Piekorz RP. Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein. Cells 2020; 9:E1950. [PMID: 32846968 PMCID: PMC7564595 DOI: 10.3390/cells9091950] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The stress-inducible and senescence-associated tumor suppressor SIRT4, a member of the family of mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), regulates bioenergetics and metabolism via NAD+-dependent enzymatic activities. Next to the known mitochondrial location, we found that a fraction of endogenous or ectopically expressed SIRT4, but not SIRT3, is present in the cytosol and predominantly localizes to centrosomes. Confocal spinning disk microscopy revealed that SIRT4 is found during the cell cycle dynamically at centrosomes with an intensity peak in G2 and early mitosis. Moreover, SIRT4 precipitates with microtubules and interacts with structural (α,β-tubulin, γ-tubulin, TUBGCP2, TUBGCP3) and regulatory (HDAC6) microtubule components as detected by co-immunoprecipitation and mass spectrometric analyses of the mitotic SIRT4 interactome. Overexpression of SIRT4 resulted in a pronounced decrease of acetylated α-tubulin (K40) associated with altered microtubule dynamics in mitotic cells. SIRT4 or the N-terminally truncated variant SIRT4(ΔN28), which is unable to translocate into mitochondria, delayed mitotic progression and reduced cell proliferation. This study extends the functional roles of SIRT4 beyond mitochondrial metabolism and provides the first evidence that SIRT4 acts as a novel centrosomal/microtubule-associated protein in the regulation of cell cycle progression. Thus, stress-induced SIRT4 may exert its role as tumor suppressor through mitochondrial as well as extramitochondrial functions, the latter associated with its localization at the mitotic spindle apparatus.
Collapse
Affiliation(s)
- Laura Bergmann
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Bross
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Simone Altinoluk-Hambüchen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Iris Fey
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otolaryngology and Head/Neck Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Kefalas
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Verhülsdonk
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Mielke
- Institute of Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otolaryngology and Head/Neck Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, 45112 Essen, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
53
|
The Correct Localization of Borealin in Midbody during Cytokinesis Depends on IQGAP1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6231697. [PMID: 32685508 PMCID: PMC7334785 DOI: 10.1155/2020/6231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Borealin is a key component of chromosomal passenger complex, which is vital in cytokinesis. IQ domain-containing GTPase-activating protein 1 (IQGAP1) also participates in cytokinesis. The correlation between Borealin and IQGAP1 during cytokinesis is not yet clear. Here, we used mass spectrometry and endogenous coimmunoprecipitation experiments to investigate the interaction between IQGAP1 and Borealin. Results of the current study showed that Borealin interacted directly with IQGAP1 both in vitro and in vivo. Knockdown of IQGAP1 resulted in an abnormal location of Borealin in the midbody. Knocking down Borealin alone, IQGAP1 alone, or Borealin and IQGAP1 at the same time inhibited the completion of cytokinesis and formed multinucleated cells. Our results indicated that IQGAP1 interacts with Borealin during cytokinesis, and the correct localization of Borealin in the midbody during cytokinesis is determined by IQGAP1, and IQGAP1 may play an important role in regulating Borealin function in cytokinesis.
Collapse
|
54
|
Moonlighting in Mitosis: Analysis of the Mitotic Functions of Transcription and Splicing Factors. Cells 2020; 9:cells9061554. [PMID: 32604778 PMCID: PMC7348712 DOI: 10.3390/cells9061554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions. However, recently published moonlighting protein databases, which comprise almost 400 proteins, do not include TFs and SFs with secondary mitotic functions. We searched the literature and found several TFs and SFs with bona fide moonlighting mitotic functions, namely they localize to specific mitotic structure(s), interact with proteins enriched in the same structure(s), and are required for proper morphology and functioning of the structure(s). In addition, we describe TFs and SFs that localize to mitotic structures but cannot be classified as moonlighting proteins due to insufficient data on their biochemical interactions and mitotic roles. Nevertheless, we hypothesize that most TFs and SFs with specific mitotic localizations have either minor or redundant moonlighting functions, or are evolving towards the acquisition of these functions.
Collapse
|
55
|
Peterman E, Valius M, Prekeris R. CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division. J Cell Sci 2020; 133:jcs241117. [PMID: 32184265 PMCID: PMC7240295 DOI: 10.1242/jcs.241117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
During mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. Although the regulators of cytokinetic ring formation and contraction are well established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of the sub-plasma-membrane actomyosin network within the furrow by recruiting MST4 kinase (also known as STK26) and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during the late stages of cytokinetic furrowing.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius 10257, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
56
|
McNeely KC, Dwyer ND. Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development. Proc Natl Acad Sci U S A 2020; 117:9584-9593. [PMID: 32273386 PMCID: PMC7197019 DOI: 10.1073/pnas.1919658117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Building a brain of the proper size and structure requires neural stem cells (NSCs) to divide with tight temporal and spatial control to produce different daughter cell types in proper numbers and sequence. Mammalian NSCs in the embryonic cortex must maintain their polarized epithelial structure as they undergo both early proliferative divisions and later neurogenic divisions. To do this, they undergo a polarized form of cytokinesis at the apical membrane that is not well understood. Here, we investigate whether polarized furrowing and abscission in mouse NSCs are regulated differently at earlier and later stages and in a cytokinesis mutant, Kif20b This mutant was previously shown to have microcephaly and elevated apoptosis of NSCs. We developed methods to live image furrow ingression and midbody abscission in NSCs within cortical explants. We find that polarized furrow ingression occurs at a steady rate and completes in ∼15 min at two different ages. However, ingression is slower in a subset of Kif20b mutant NSCs. Abscission is usually observed on both sides of the midbody and takes 65 to 75 min to complete. Surprisingly, abscission is accelerated in the Kif20b mutant NSCs. Postabscission midbody remnants are observed at the apical membranes of daughter cells and are much more abundant in early-stage cortices. After NSC divisions in vitro, midbody remnants are more often retained on the daughter cells of early proliferative divisions. Altogether, these results suggest that regulation of abscission timing and midbody remnants in embryonic NSCs may influence proper brain growth and structure.
Collapse
Affiliation(s)
- Katrina C McNeely
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
57
|
The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis. Nat Commun 2020; 11:1941. [PMID: 32321914 PMCID: PMC7176721 DOI: 10.1038/s41467-020-15205-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle. Among these proteins, we further characterized a plasma membrane-to-ESCRT module composed of the transmembrane proteoglycan syndecan-4, ALIX and syntenin, a protein that bridges ESCRT-III/ALIX to syndecans. The three proteins are highly recruited first at the midbody then at the abscission site, and their depletion delays abscission. Mechanistically, direct interactions between ALIX, syntenin and syndecan-4 are essential for proper enrichment of the ESCRT-III machinery at the abscission site, but not at the midbody. We propose that the ESCRT-III machinery must be physically coupled to a membrane protein at the cytokinetic abscission site for efficient scission, uncovering common requirements in cytokinesis, exosome formation and HIV budding.
Collapse
|
58
|
Blum IR, Behling-Hess C, Padilla-Rodriguez M, Momtaz S, Cox C, Wilson JM. Rab22a regulates the establishment of epithelial polarity. Small GTPases 2020; 12:282-293. [PMID: 32281471 DOI: 10.1080/21541248.2020.1754104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane trafficking establishes and maintains epithelial polarity. Rab22a has a polarized distribution in activated T-cells, but its role in epithelial polarity has not been investigated. We showed previously that Rab14 acts upstream of Arf6 to establish the apical membrane initiation site (AMIS), but its interaction with Rab22a is unknown. Here we show that Rab14 and Rab22a colocalize in endosomes of both unpolarized and polarized MDCK cells and Rab22a localizes to the cell:cell interface of polarizing cell pairs. Knockdown of Rab22a results in a multi-lumen phenotype in three-dimensional culture. Further, overexpression of Rab22a in Rab14 knockdown cells rescues the multi-lumen phenotype observed with Rab14 knockdown, suggesting that Rab22a is downstream of Rab14. Because of the relationship between Rab14 and Arf6, we investigated the effect of Rab22a knockdown on Arf6. We find that Rab22a knockdown results in decreased active Arf6 and that Rab22a co-immunoprecipitates with the Arf6 GEF EFA6. In addition, EFA6 is retained in intracellular puncta in Rab22a KD cells. These results suggest that Rab22a acts downstream of Rab14 to traffic EFA6 to the AMIS to regulate Arf6 in the establishment of polarity.
Collapse
Affiliation(s)
- Isabella R Blum
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | | | | | - Samina Momtaz
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Christopher Cox
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
59
|
Dong X, Jin S, Shao Z. Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans. Cell Rep 2020; 30:2614-2626.e2. [PMID: 32101740 DOI: 10.1016/j.celrep.2020.01.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuhan Jin
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
60
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
61
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
62
|
Magliozzi R, Carrero ZI, Low TY, Yuniati L, Valdes-Quezada C, Kruiswijk F, van Wijk K, Heck AJR, Jackson CL, Guardavaccaro D. Inheritance of the Golgi Apparatus and Cytokinesis Are Controlled by Degradation of GBF1. Cell Rep 2019; 23:3381-3391.e4. [PMID: 29898406 DOI: 10.1016/j.celrep.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
Although much is known about how chromosome segregation is coupled to cell division, how intracellular organelles partition during mitotic division is poorly understood. We report that the phosphorylation-dependent degradation of the ARFGEF GBF1 regulates organelle trafficking during cell division. We show that, in mitosis, GBF1 is phosphorylated on Ser292 and Ser297 by casein kinase-2 allowing recognition by the F-box protein βTrCP. GBF1 interaction with βTrCP recruits GBF1 to the SCFβTrCP ubiquitin ligase complex, triggering its degradation. Phosphorylation and degradation of GBF1 occur along microtubules at the intercellular bridge of telophase cells and are required for Golgi membrane positioning and postmitotic Golgi reformation. Indeed, expression of a non-degradable GBF1 mutant inhibits the transport of the Golgi cluster adjacent to the midbody toward the Golgi twin positioned next to the centrosome and results in defective Golgi reassembly and cytokinesis failure. These findings define a mechanism that controls postmitotic Golgi reassembly and inheritance.
Collapse
Affiliation(s)
- Roberto Magliozzi
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Zunamys I Carrero
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; The Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Laurensia Yuniati
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Flore Kruiswijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Koen van Wijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; The Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
63
|
Monteonofrio L, Valente D, Rinaldo C, Soddu S. Extrachromosomal Histone H2B Contributes to the Formation of the Abscission Site for Cell Division. Cells 2019; 8:cells8111391. [PMID: 31694230 PMCID: PMC6912571 DOI: 10.3390/cells8111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission factors fail to re-localize at the periphery of the midbody and the abscission site fails to form. These results show that extrachromosomal activity of histone H2B is required in the formation of the abscission site and the proper localization of the fission machinery.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Institutes of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| |
Collapse
|
64
|
Peterman E, Prekeris R. The postmitotic midbody: Regulating polarity, stemness, and proliferation. J Cell Biol 2019; 218:3903-3911. [PMID: 31690620 PMCID: PMC6891101 DOI: 10.1083/jcb.201906148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Peterman and Prekeris review abscission and discuss the diverse roles for the postmitotic midbody in regulating polarity, tumorigenesis, and stemness. Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
65
|
Gan H, Xue W, Gao Y, Zhu G, Chan D, Cheah KSE, Huang J. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci 2019; 9:85. [PMID: 31636894 PMCID: PMC6794761 DOI: 10.1186/s13578-019-0344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background The growth plate is a special region of the cartilage that drives longitudinal growth of long bones. Proliferating chondrocytes in the growth plate, arranged in columns, divide perpendicular to the long axis of the growth plate then intercalate to re-align with parental columns. Which molecular partners maintain growth plate columnar structures and chondrocyte cytokinesis has not been fully revealed. It is reported that kinesin family member 3A (KIF3A), a subunit of kinesin-2, plays an important role in maintaining columnar organization in growth plates via controlling primary cilia formation and cell proliferation. Result Here we identify kinesin family member 5B (KIF5B), the heavy chain of kinesin-1, a ubiquitously expressed motor protein for anterograde intracellular transport along the microtubule network, as a key modulator of cytokinesis in chondrocytes via maintenance of central spindle organization. We show that KIF5B is concentrated in the central spindle during cytokinesis in both primary chondrocytes and chondrogenic ATDC5 cells. Conclusion The failure of cytokinesis in KIF5B null chondrocytes leads to incomplete cell rotation, disrupting proliferation and differentiation, and results in a disorganized growth plate.
Collapse
Affiliation(s)
- Huiyan Gan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenqian Xue
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ya Gao
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,2Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guixia Zhu
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Danny Chan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kathryn S E Cheah
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiandong Huang
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,3Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 People's Republic of China
| |
Collapse
|
66
|
The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 2019; 10:4513. [PMID: 31586073 PMCID: PMC6778137 DOI: 10.1038/s41467-019-12507-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins. The midbody is an organelle present at the bridge connecting two cells at the end of cell division. Here, the authors use mass spectrometry to define the midbody interactome and uncover a role for PP1 phosphatases in microtubule dynamics and regulation of cytokinesis.
Collapse
|
67
|
Pavlova GA, Popova JV, Andreyeva EN, Yarinich LA, Lebedev MO, Razuvaeva AV, Dubatolova TD, Oshchepkova AL, Pellacani C, Somma MP, Pindyurin AV, Gatti M. RNAi-mediated depletion of the NSL complex subunits leads to abnormal chromosome segregation and defective centrosome duplication in Drosophila mitosis. PLoS Genet 2019; 15:e1008371. [PMID: 31527906 PMCID: PMC6772098 DOI: 10.1371/journal.pgen.1008371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/01/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of housekeeping genes. It contains at least seven subunits that are conserved in the human KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance. Here, we analyzed the mitotic phenotypes caused by RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds in greater detail. Depletion of any of these proteins in Drosophila S2 cells led to defects in chromosome segregation. Consistent with these findings, Rcd1, Rcd5 and MBD-R2 RNAi cells showed reduced levels of both Cid/CENP-A and the kinetochore component Ndc80. In addition, RNAi against any of the four genes negatively affected centriole duplication. In Wds-depleted cells, the mitotic phenotypes were similar but milder than those observed in Rcd1-, Rcd5- or MBD-R2-deficient cells. RT-qPCR experiments and interrogation of published datasets revealed that transcription of many genes encoding centromere/kinetochore proteins (e.g., cid, Mis12 and Nnf1b), or involved in centriole duplication (e.g., Sas-6, Sas-4 and asl) is substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells, and to a lesser extent in wds RNAi cells. During mitosis, both Rcd1-GFP and Rcd5-GFP accumulate at the centrosomes and the telophase midbody, MBD-R2-GFP is enriched only at the chromosomes, while Wds-GFP accumulates at the centrosomes, the kinetochores, the midbody, and on a specific chromosome region. Collectively, our results suggest that the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds depletion are primarily due to reduced transcription of genes involved in kinetochore assembly and centriole duplication. The differences in the subcellular localizations of the NSL components may reflect direct mitotic functions that are difficult to detect at the phenotypic level, because they are masked by the transcription-dependent deficiency of kinetochore and centriolar proteins. The Drosophila Nonspecific Lethal (NSL) complex is a conserved protein assembly that controls transcription of more than 4,000 housekeeping genes. We analyzed the mitotic functions of four genes, Rcd1, Rcd5, MBD-R2 and wds, encoding NSL subunits. Inactivation of these genes by RNA interference (RNAi) resulted in defects in both chromosome segregation and centrosome duplication. Our analyses indicate that RNAi against Rcd1, Rcd5 or MBD-R2 reduces transcription of genes involved in centromere/kinetochore assembly and centriole replication. During interphase, Rcd1, Rcd5, MBD-R2 and Wds are confined to the nucleus, as expected for transcription factors. However, during mitosis each of these proteins relocates to specific mitotic structures. Our results suggest that the four NSL components work together as a complex to stimulate transcription of genes encoding important mitotic determinants. However, the different localization of the proteins during mitosis suggests that they might have acquired secondary “moonlighting” functions that directly contribute to the mitotic process.
Collapse
Affiliation(s)
- Gera A. Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | - Julia V. Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Evgeniya N. Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | - Lyubov A. Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Mikhail O. Lebedev
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alyona V. Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana D. Dubatolova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | - Anastasiya L. Oshchepkova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Novosibirsk, Russia
| | - Claudia Pellacani
- IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Maria Patrizia Somma
- IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (AVP); (MG)
| | - Maurizio Gatti
- IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- * E-mail: (AVP); (MG)
| |
Collapse
|
68
|
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep 2019; 9:13121. [PMID: 31511568 PMCID: PMC6739377 DOI: 10.1038/s41598-019-49483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization, and translation. A subset of maternal transcripts is stored in a translationally dormant state in the oocyte, and temporally driven translation of specific mRNAs propel meiotic progression, oocyte-to-embryo transition and early embryo development. We identified Ank2.3 as the only transcript variant present in the mouse oocyte and discovered that it is translated after nuclear envelope breakdown. Here we show that Ank2.3 mRNA is localized in higher concentration in the oocyte nucleoplasm and, after nuclear envelope breakdown, in the newly forming spindle where its translation occurs. Furthermore, we reveal that Ank2.3 mRNA contains an oligo-pyrimidine motif at 5'UTR that predetermines its translation through a cap-dependent pathway. Lastly, we show that prevention of ANK2 translation leads to abnormalities in oocyte cytokinesis.
Collapse
|
69
|
Peterman E, Gibieža P, Schafer J, Skeberdis VA, Kaupinis A, Valius M, Heiligenstein X, Hurbain I, Raposo G, Prekeris R. The post-abscission midbody is an intracellular signaling organelle that regulates cell proliferation. Nat Commun 2019; 10:3181. [PMID: 31320617 PMCID: PMC6639393 DOI: 10.1038/s41467-019-10871-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/01/2019] [Indexed: 01/05/2023] Open
Abstract
Once thought to be a remnant of cell division, the midbody (MB) has recently been shown to have roles beyond its primary function of orchestrating abscission. Despite the emerging roles of post-abscission MBs, how MBs accumulate in the cytoplasm and signal to regulate cellular functions remains unknown. Here, we show that extracellular post-abscission MBs can be internalized by interphase cells, where they reside in the cytoplasm as a membrane-bound signaling structure that we have named the MBsome. We demonstrate that MBsomes stimulate cell proliferation and that MBsome formation is a phagocytosis-like process that depends on a phosphatidylserine/integrin complex, driven by actin-rich membrane protrusions. Finally, we show that MBsomes rely on dynamic actin coats to slow lysosomal degradation and propagate their signaling function. In summary, MBsomes may sometimes serve as intracellular organelles that signal via integrin and EGFR-dependent pathways to promote cell proliferation and anchorage-independent growth and survival.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paulius Gibieža
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, 44307, Lithuania
| | - Johnathon Schafer
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Xavier Heiligenstein
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, 75005, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, 75005, France
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
70
|
Hegsted A, Votra S, Christophe AM, Yingling CV, Sundaramurthy S, Pruyne D. Functional importance of an inverted formin C-terminal tail at morphologically dynamic epithelial junctions. Cytoskeleton (Hoboken) 2019; 76:322-336. [PMID: 31215743 DOI: 10.1002/cm.21547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 06/09/2019] [Indexed: 11/10/2022]
Abstract
Epithelial cell-cell junctions have dual roles of accommodating morphological changes in an epithelium, while maintaining cohesion during those changes. An abundance of junction proteins has been identified, but many details on how intercellular junctions respond to morphological changes remain unclear. In Caenorhabditis elegans, the spermatheca is an epithelial sac that repeatedly dilates and constricts to allow ovulation. It is thought that the junctions between spermatheca epithelial cells undergo reversible partial unzipping to allow rapid dilation. Previously, we found that EXC-6, a C. elegans protein homolog of the human disease-associated formin INF2, is expressed in the spermatheca and promotes oocyte entry. We show here that EXC-6 localizes toward the apical aspect of the spermatheca epithelial junctions, and that the EXC-6-labeled junction domains "unzip" and dramatically flatten with oocyte entry into the spermatheca. We demonstrate that the C-terminal tail of EXC-6 is necessary and sufficient for junction localization. Moreover, expression of the tail alone worsens ovulation defects, suggesting this region not only mediates EXC-6 localization, but also interacts with other components important for junction remodeling.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - SarahBeth Votra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Amylisa M Christophe
- Department of Clinical Laboratory Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
71
|
El-Amine N, Carim SC, Wernike D, Hickson GRX. Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation. Mol Biol Cell 2019; 30:2185-2204. [PMID: 31166845 PMCID: PMC6743463 DOI: 10.1091/mbc.e19-04-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.
Collapse
Affiliation(s)
- Nour El-Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sabrya C Carim
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Denise Wernike
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Gilles R X Hickson
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
72
|
Hu J, Sun F, Handel MA. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod 2019; 98:102-114. [PMID: 29161344 DOI: 10.1093/biolre/iox150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic translation initiation factor 4G (EIF4G) is an important scaffold protein in the translation initiation complex. In mice, mutation of the Eif4g3 gene causes male infertility, with arrest of meiosis at the end of meiotic prophase. This study documents features of the developmental expression and subcellular localization of EIF4G3 that might contribute to its highly specific role in meiosis and spermatogenesis. Quite unexpectedly, EIF4G3 is located in the nucleus of spermatocytes, where it is highly enriched in the XY body, the chromatin domain formed by the transcriptionally inactive sex chromosomes. Moreover, many other, but not all, translation-related proteins are also localized in the XY body. These unanticipated observations implicate roles for the XY body in controlling mRNA metabolism and/or "poising" protein translation complexes before the meiotic division phase in spermatocytes.
Collapse
Affiliation(s)
| | - Fengyun Sun
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
73
|
Kita AM, Swider ZT, Erofeev I, Halloran MC, Goryachev AB, Bement WM. Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol Biol Cell 2019; 30:1645-1654. [PMID: 31091161 PMCID: PMC6727749 DOI: 10.1091/mbc.e19-02-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mitotic spindles are well known to be assembled from and dependent on microtubules. In contrast, whether actin filaments (F-actin) are required for or are even present in mitotic spindles has long been controversial. Here we have developed improved methods for simultaneously preserving F-actin and microtubules in fixed samples and exploited them to demonstrate that F-actin is indeed associated with mitotic spindles in intact Xenopus laevis embryonic epithelia. We also find that there is an “F-actin cycle,” in which the distribution and organization of spindle F-actin changes over the course of the cell cycle. Live imaging using a probe for F-actin reveals that at least two pools of F-actin are associated with mitotic spindles: a relatively stable internal network of cables that moves in concert with and appears to be linked to spindles, and F-actin “fingers” that rapidly extend from the cell cortex toward the spindle and make transient contact with the spindle poles. We conclude that there is a robust endoplasmic F-actin network in normal vertebrate epithelial cells and that this network is also a component of mitotic spindles. More broadly, we conclude that there is far more internal F-actin in epithelial cells than is commonly believed.
Collapse
Affiliation(s)
- Angela M Kita
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
74
|
Xu M, Wang F, Li G, Wang X, Fang X, Jin H, Chen Z, Zhang J, Fu L. MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC. Mol Cancer 2019; 18:93. [PMID: 31072327 PMCID: PMC6509838 DOI: 10.1186/s12943-019-1020-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Mediator complex subunit 12 (MED12) is an essential hub for transcriptional regulation, in which mutations and overexpression were reported to be associated with several kinds of malignancies. Nevertheless, the role of MED12 in non-small cell lung cancer (NSCLC) remains to be elucidated. Methods MED12 mutation was detected by Next-generation sequencing. The expression of MED12 in 179 human NSCLC tissue samples and 73 corresponding adjacent normal lung tissue samples was measured by immunohistochemistry (IHC). CRISPR-Cas9 was used to knock out MED12 in PC9 and SPC-A1 cells. MED12 rescued stable cell lines were generated by lentivirus infection. We traced cell division process by live cell imaging. The molecular mechanism of aborted cytokinesis resulted by MED12 knockout was investigated by RNA-seq. Effects of MED12 deletion on the proliferation of NSCLC cells were determined by MTT assay and Colony-formation assay in vitro and xenograft tumor model in nude mouse. Cell senescence was measured by SA-β-gal staining. Results In our study, no MED12 exon mutation was detected in NSCLC samples, whereas we found that MED12 was overexpressed in human NSCLC tissues, which positively correlated with the tumor volume and adversely affected patient survival. Furthermore, knockout MED12 in NSCLC cell lines resulted in cytokinesis failure, displayed a multinuclear phenotype, and disposed to senescence, and become non-viable. Lack of MED12 decreased the proliferative potential of NSCLC cells and limited the tumor growth in vivo. Mechanism investigations revealed that MED12 knockout activated LIMK2, caused aberrant actin cytoskeleton remodeling, and disrupted the abscission of intercellular bridge, which led to the cytokinesis failure. Reconstitution of exogenous MED12 restored actin dynamics, normal cytokinesis and cell proliferation capacity in MED12 knockout cells. Conclusions These results revealed a novel role of MED12 as an important regulator for maintaining accurate cytokinesis and survival in NSCLC cells, which may offer a therapeutic strategy to control tumor growth for NSCLC patients especially those highly expressed MED12. Electronic supplementary material The online version of this article (10.1186/s12943-019-1020-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.,Radiotherapy Department of Thorax & Abdomen Tumor, Cancer Center, The First People's Hospital of Foshan Affiliated to Sun Yat-sen University, Foshan, 528000, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Guibo Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Xiaokun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Xiaona Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Haoxuan Jin
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liwu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
75
|
Chung D, Salsman J, Dellaire G. Inhibition of neddylation induces mitotic defects and alters MKLP1 accumulation at the midbody during cytokinesis. Cell Cycle 2019; 18:1135-1153. [PMID: 31057046 PMCID: PMC6592236 DOI: 10.1080/15384101.2019.1612696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cullin-RING E3 ubiquitin ligases (CRLs) play crucial roles in modulating the stability of proteins in the cell and are, in turn, regulated by post-translational modification by the ubiquitin-like (Ubl) protein NEDD8. This process, termed neddylation, is reversible through the action of the COP9 signalosome (CSN); a multi-subunit metalloprotease conserved among eukaryotes that plays direct or indirect roles in DNA repair, cell signaling and cell cycle regulation in part through modulating the activity of the CRLs. Previously, inhibition of CRL neddylation by MLN4924, a small molecule inhibitor of the NEDD8-activating enzyme 1 (NAE1), was shown to induce interphase cell cycle arrest and cell death. Using fixed and living cell microscopy, we re-evaluated the cell cycle effects of inhibition of neddylation by MLN4924 in both asynchronous and mitotic cell populations. Consistent with previous studies, treatment of asynchronous cells with MLN4924 increased CDT1 expression levels, induced G2 arrest and increased nuclear size. However, in synchronized cells treated in mitosis, mitotic defects were observed including lagging chromosomes and binucleated daughter cells. Consistent with neddylation and deneddylation playing a role in cytokinesis, NEDD8, as well as subunits of the CSN, could be localized at the midbody and cleavage furrow. Finally, treatment of mitotic cells with MLN4924 induced the premature accumulation of MKLP1 at the cleavage furrow, a key regulator of cytokinesis, which was concomitant with increased abscission delay and failure. Thus, these studies uncover an uncharacterized mitotic effect of MLN4924 on MKLP1 accumulation at the midbody and support a role for neddylation during cytokinesis. Abbreviations: CSN, COP9 Signalosome; MKLP1, mitotic kinesin-like protein 1; NEDD8, Neural precursor cell Expressed, Developmentally Down-regulated 8.
Collapse
Affiliation(s)
- Dudley Chung
- a Department of Pathology , Dalhousie University , Halifax , Canada
| | - Jayme Salsman
- a Department of Pathology , Dalhousie University , Halifax , Canada
| | - Graham Dellaire
- a Department of Pathology , Dalhousie University , Halifax , Canada.,b Department of Biochemistry & Molecular Biology , Dalhousie University , Halifax , Canada.,c Beatrice Hunter Cancer Research Institute , Halifax , Canada
| |
Collapse
|
76
|
The RIF1-PP1 Axis Controls Abscission Timing in Human Cells. Curr Biol 2019; 29:1232-1242.e5. [DOI: 10.1016/j.cub.2019.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023]
|
77
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|
78
|
RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene 2019; 38:3077-3092. [PMID: 30617304 DOI: 10.1038/s41388-018-0647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.
Collapse
|
79
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
80
|
Halperin D, Kadir R, Perez Y, Drabkin M, Yogev Y, Wormser O, Berman EM, Eremenko E, Rotblat B, Shorer Z, Gradstein L, Shelef I, Birk R, Abdu U, Flusser H, Birk OS. SEC31A mutation affects ER homeostasis, causing a neurological syndrome. J Med Genet 2018; 56:139-148. [PMID: 30464055 DOI: 10.1136/jmedgenet-2018-105503] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Consanguineous kindred presented with an autosomal recessive syndrome of intrauterine growth retardation, marked developmental delay, spastic quadriplegia with profound contractures, pseudobulbar palsy with recurrent aspirations, epilepsy, dysmorphism, neurosensory deafness and optic nerve atrophy with no eye fixation. Affected individuals died by the age of 4. Brain MRI demonstrated microcephaly, semilobar holoprosencephaly and agenesis of corpus callosum. We aimed at elucidating the molecular basis of this disease. METHODS Genome-wide linkage analysis combined with whole exome sequencing were performed to identify disease-causing variants. Functional consequences were investigated in fruit flies null mutant for the Drosophila SEC31A orthologue. SEC31A knockout SH-SY5Y and HEK293T cell-lines were generated using CRISPR/Cas9 and studied through qRT-PCR, immunoblotting and viability assays. RESULTS Through genetic studies, we identified a disease-associated homozygous nonsense mutation in SEC31A. We demonstrate that SEC31A is ubiquitously expressed, and that the mutation triggers nonsense-mediated decay of its transcript, comprising a practical null mutation. Similar to the human disease phenotype, knockdown SEC31A flies had defective brains and early lethality. Moreover, in line with SEC31A encoding one of the two coating layers comprising the Coat protein complex II (COP-II) complex, trafficking newly synthesised proteins from the endoplasmic reticulum (ER) to the Golgi, CRISPR/Cas9-mediated SEC31A null mutant cells demonstrated reduced viability through upregulation of ER-stress pathways. CONCLUSION We demonstrate through human and Drosophila genetic and in vitro molecular studies, that a severe neurological syndrome is caused by a null mutation in SEC31A, reducing cell viability through enhanced ER-stress response, in line with SEC31A's role in the COP-II complex.
Collapse
Affiliation(s)
- Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Erez M Berman
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zamir Shorer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Department of Imaging, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hagit Flusser
- Zussman Child Development Center, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
81
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
82
|
NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nat Commun 2018; 9:2330. [PMID: 29899413 PMCID: PMC5997995 DOI: 10.1038/s41467-018-04706-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Organization of microtubules into ordered arrays is best understood in mitotic systems, but remains poorly characterized in postmitotic cells such as neurons. By analyzing the cycling cell microtubule cytoskeleton proteome through expression profiling and targeted RNAi screening for candidates with roles in neurons, we have identified the mitotic kinase NEK7. We show that NEK7 regulates dendrite morphogenesis in vitro and in vivo. NEK7 kinase activity is required for dendrite growth and branching, as well as spine formation and morphology. NEK7 regulates these processes in part through phosphorylation of the kinesin Eg5/KIF11, promoting its accumulation on microtubules in distal dendrites. Here, Eg5 limits retrograde microtubule polymerization, which is inhibitory to dendrite growth and branching. Eg5 exerts this effect through microtubule stabilization, independent of its motor activity. This work establishes NEK7 as a general regulator of the microtubule cytoskeleton, controlling essential processes in both mitotic cells and postmitotic neurons. NEK7 is a kinase known for its role in mitotic spindle assembly, driving centrosome separation in prophase through regulation of the kinesin Eg5. Here, the authors show that NEK7 and Eg5 also control dendrite morphogenesis in postmitotic neurons.
Collapse
|
83
|
Eno C, Gomez T, Slusarski DC, Pelegri F. Slow calcium waves mediate furrow microtubule reorganization and germ plasm compaction in the early zebrafish embryo. Development 2018; 145:dev156604. [PMID: 29632136 PMCID: PMC6001370 DOI: 10.1242/dev.156604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Zebrafish germ plasm ribonucleoparticles (RNPs) become recruited to furrows of early zebrafish embryos through their association with astral microtubules ends. During the initiation of cytokinesis, microtubules are remodeled into a furrow microtubule array (FMA), which is thought to be analogous to the mammalian midbody involved in membrane abscission. During furrow maturation, RNPs and FMA tubules transition from their original distribution along the furrow to enrichments at the furrow distal ends, which facilitates germ plasm mass compaction. We show that nebel mutants exhibit reduced furrow-associated slow calcium waves (SCWs), caused at least in part by defective enrichment of calcium stores. RNP and FMA distal enrichment mirrors the medial-to-distal polarity of SCWs, and inhibition of calcium release or downstream mediators such as Calmodulin affects RNP and FMA distal enrichment. Blastomeres with reduced or lacking SCWs, such as early blastomeres in nebel mutants and wild-type blastomeres at later stages, exhibit medially bundling microtubules similar to midbodies in other cell types. Our data indicate that SCWs provide medial-to-distal directionality along the furrow to facilitate germ plasm RNP enrichment at the furrow ends.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Timothy Gomez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Diane C Slusarski
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
84
|
Gao K, Zhang Y, Shi Q, Zhang J, Zhang L, Sun H, Jiao D, Zhao X, Tao H, Wei Y, Wang Y, Saiyin H, Zhao SM, Li Y, Zhang P, Wang C. iASPP-PP1 complex is required for cytokinetic abscission by controlling CEP55 dephosphorylation. Cell Death Dis 2018; 9:528. [PMID: 29743530 PMCID: PMC5943338 DOI: 10.1038/s41419-018-0561-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step of cell division and is concluded by the abscission of the intercellular bridge that connects two daughter cells. The tight regulation of cytokinesis completion is essential because cytokinesis failure is associated with various human diseases. Here, we report that iASPP, a member of the apoptosis-stimulating proteins of p53 (ASPP) family, is required for proper cell division. iASPP depletion results in abnormal midbody structure and failed cytokinesis. We used protein affinity purification methods to identify the functional partners of iASPP. We found that iASPP associates with centrosomal protein of 55 kDa (CEP55), an important cytokinetic abscission regulator. Mechanically, iASPP acts as a PP1-targeting subunit to facilitate the interaction between PP1 and CEP55 and to remove PLK1-mediated Ser436 phosphorylation in CEP55 during late mitosis. The latter step is critical for the timely recruitment of CEP55 to the midbody. The present observations revealed a previously unrecognized function of iASPP in cytokinesis. This function, in turn, likely contributes to the roles of iASPP in tumor development and genetic diseases.
Collapse
Affiliation(s)
- Kun Gao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China. .,State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiru Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dongyue Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiayin Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hongru Tao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pingzhao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
85
|
|
86
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
87
|
Ohashi A, Ohori M, Iwai K. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission. Oncotarget 2018; 7:79964-79980. [PMID: 27835888 PMCID: PMC5346764 DOI: 10.18632/oncotarget.13206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659-2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
88
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
89
|
Cheng ZF, Pai RK, Cartwright CA. Rack1 function in intestinal epithelia: regulating crypt cell proliferation and regeneration and promoting differentiation and apoptosis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G1-G13. [PMID: 28935684 PMCID: PMC5866376 DOI: 10.1152/ajpgi.00240.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023]
Abstract
Previously, we showed that receptor for activated C kinase 1 (Rack1) regulates growth of colon cells in vitro, partly by suppressing Src kinase activity at key cell cycle checkpoints, in apoptotic and cell survival pathways and at cell-cell adhesions. Here, we generated mouse models of Rack1 deficiency to assess Rack1's function in intestinal epithelia in vivo. Intestinal Rack1 deficiency resulted in proliferation of crypt cells, diminished differentiation of crypt cells into enterocyte, goblet, and enteroendocrine cell lineages, and expansion of Paneth cell populations. Following radiation injury, the morphology of Rack1-deleted small bowel was strikingly abnormal with development of large polypoid structures that contained many partly formed villi, numerous back-to-back elongated and regenerating crypts, and high-grade dysplasia in surface epithelia. These abnormalities were not observed in Rack1-expressing areas of intestine or in control mice. Following irradiation, apoptosis of enterocytes was strikingly reduced in Rack1-deleted epithelia. These novel findings reveal key functions for Rack1 in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia. NEW & NOTEWORTHY Our findings reveal novel functions for receptor for activated C kinase 1 (Rack1) in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia.
Collapse
Affiliation(s)
- Zhuan-Fen Cheng
- Department of Medicine, Stanford University , Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
90
|
Chao HW, Doi M, Fustin JM, Chen H, Murase K, Maeda Y, Hayashi H, Tanaka R, Sugawa M, Mizukuchi N, Yamaguchi Y, Yasunaga JI, Matsuoka M, Sakai M, Matsumoto M, Hamada S, Okamura H. Circadian clock regulates hepatic polyploidy by modulating Mkp1-Erk1/2 signaling pathway. Nat Commun 2017; 8:2238. [PMID: 29269828 PMCID: PMC5740157 DOI: 10.1038/s41467-017-02207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Liver metabolism undergoes robust circadian oscillations in gene expression and enzymatic activity essential for liver homeostasis, but whether the circadian clock controls homeostatic self-renewal of hepatocytes is unknown. Here we show that hepatocyte polyploidization is markedly accelerated around the central vein, the site of permanent cell self-renewal, in mice deficient in circadian Period genes. In these mice, a massive accumulation of hyperpolyploid mononuclear and binuclear hepatocytes occurs due to impaired mitogen-activated protein kinase phosphatase 1 (Mkp1)-mediated circadian modulation of the extracellular signal-regulated kinase (Erk1/2) activity. Time-lapse imaging of hepatocytes suggests that the reduced activity of Erk1/2 in the midbody during cytokinesis results in abscission failure, leading to polyploidization. Manipulation of Mkp1 phosphatase activity is sufficient to change the ploidy level of hepatocytes. These data provide clear evidence that the Period genes not only orchestrate dynamic changes in metabolic activity, but also regulate homeostatic self-renewal of hepatocytes through Mkp1-Erk1/2 signaling pathway. Circadian clock regulates hepatic gene expression and functions. Here Chao et al. show that alteration of circadian clock genes by Period deletion induces polyploidy in hepatocytes due to impaired regulation of Erk signaling by mitogen-activated protein kinase phosphatase 1.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kimihiko Murase
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,The Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Maeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Rina Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Maho Sugawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Mizukuchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan.,Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | | | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
91
|
Janisch KM, McNeely KC, Dardick JM, Lim SH, Dwyer ND. Kinesin-6 KIF20B is required for efficient cytokinetic furrowing and timely abscission in human cells. Mol Biol Cell 2017; 29:166-179. [PMID: 29167382 PMCID: PMC5909929 DOI: 10.1091/mbc.e17-08-0495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/19/2023] Open
Abstract
KIF20B is in the Kinesin-6 family that includes KIF23/MKLP1 and KIF20A/MKLP2. Previously we showed that mouse Kif20b regulates cerebral cortex growth and neural stem cell midbodies. Now we show KIF20B has a cell-autonomous role in regulating cytokinetic furrowing and abscission. KIF20B may coordinate late midbody maturation before abscission. Cytokinesis requires the cooperation of many cytoskeletal and membrane regulators. Most of the major players required for cytokinesis are known, but the temporal regulation and adaptations for different cell types are less understood. KIF20B (previously called MPHOSPH1 or MPP1) is a member of the Kinesin-6 family, which also includes the better-known members KIF23/MKLP1 and KIF20A/MKLP2. Previously, we showed that mouse Kif20b is involved in cerebral cortex growth and midbody organization of neural stem cells. Here, using siRNA-mediated knockdown of KIF20B in a human cell line and fixed and live imaging, we show that KIF20B has a cell-autonomous role in cytokinesis. KIF20B depletion affects the speed of both furrow ingression and abscission. It localizes to microtubules of the central spindle and midbody throughout cytokinesis, at sites distinct from the other Kinesin-6 family members. KIF20B is not required for midbody assembly, but may accelerate or coordinate midbody maturation. In particular, KIF20B appears to regulate late steps of maturation including anillin dispersal, ESCRT-III recruitment, and the formation of microtubule constriction sites.
Collapse
Affiliation(s)
- Kerstin M Janisch
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Katrina C McNeely
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Joseph M Dardick
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Samuel H Lim
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
92
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
93
|
Pollard TD. Nine unanswered questions about cytokinesis. J Cell Biol 2017; 216:3007-3016. [PMID: 28807993 PMCID: PMC5626534 DOI: 10.1083/jcb.201612068] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
| |
Collapse
|
94
|
Chang YW, Huang YS. Midbody localization of vinexin recruits rhotekin to facilitate cytokinetic abscission. Cell Cycle 2017; 16:2046-2057. [PMID: 28118077 DOI: 10.1080/15384101.2017.1284713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Vinexin is a SH3 domain-containing adaptor protein that has diverse roles in cell adhesion, signal transduction, gene regulation and stress granule assembly. In this study, we found that vinexin localizes at the midbody during cell division and facilitates cytokinesis. Knockdown of vinexin in HeLa cells delayed the mitotic cell cycle progression and increased the time of cell abscission and the failure to resolve the cytoplasmic bridge. Midbody-localized vinexin is essential for recruiting rhotekin to this structure for cytokinesis because overexpression of a vinexin mutant without a rhotekin-binding motif or knockdown of rhotekin also impaired cytokinetic abscission and increased the number of cells arrested at the midbody stage. Aberrant expression of vinexin and rhotekin in various cancers has been implicated to promote metastasis because of their functions in cell adhesion and signaling. Our findings reveal a novel role of vinexin and rhotekin in cytokinetic abscission and provide another perspective of how both molecules may affect oncogenic transformation via this fundamental cell cycle process.
Collapse
Affiliation(s)
- Yu-Wei Chang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Yi-Shuian Huang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
95
|
Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017; 8:76686-76698. [PMID: 29100341 PMCID: PMC5652735 DOI: 10.18632/oncotarget.20805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Microtentacles are mostly microtubule-based cell protrusions that are formed by detached tumor cells. Here, we report that the formation of tumor cell microtentacles depends on the presence and dynamics of guanine nucleotide-binding proteins of the septin family, which are part of the cytoskeleton. In matrix-attached breast, lung, prostate and pancreas cancer cells, septins are associated with the cytosolic actin cytoskeleton. Detachment of cells causes redistribution of septins to the membrane, where microtentacle formation occurs. Forchlorfenuron, which inhibits septin functions, blocks microtentacle formation. The small GTPase Cdc42 and its effector proteins Borgs regulate septins and are essential for microtentacle formation. Dominant active and inactive Cdc42 inhibit microtentacle formation indicating that the free cycling of Cdc42 between its active and inactive state is essential for septin regulation and microtentacle formation. Cell attachment and aggregation models suggest that septins play an essential role in the metastatic behavior of tumor cells.
Collapse
|
96
|
Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N. Proteomics in Cell Division. Proteomics 2017; 17. [PMID: 28548456 DOI: 10.1002/pmic.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.
Collapse
Affiliation(s)
| | - Aydanur Şentürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
97
|
Fu R, Jiang X, Huang Z, Zhang H. The spectraplakins of Caenorhabditis elegans : Cytoskeletal crosslinkers and beyond. Semin Cell Dev Biol 2017; 69:58-68. [DOI: 10.1016/j.semcdb.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/04/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023]
|
98
|
Wu CG, Chen H, Guo F, Yadav VK, Mcilwain SJ, Rowse M, Choudhary A, Lin Z, Li Y, Gu T, Zheng A, Xu Q, Lee W, Resch E, Johnson B, Day J, Ge Y, Ong IM, Burkard ME, Ivarsson Y, Xing Y. PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov 2017; 3:17027. [PMID: 28884018 PMCID: PMC5586252 DOI: 10.1038/celldisc.2017.27] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B′-family PP2A regulatory subunits and holoenzymes. The B′-binding motifs have important roles in substrate recognition and in competitive inhibition of substrate binding. With more than 100 novel ligands identified, we confirmed that the recently identified LxxIxEx B′α-binding motifs serve as common binding sites for B′ subunits with minor variations, and that S/T phosphorylation or D/E residues at positions 2, 7, 8 and 9 of the motifs reinforce interactions. Hundreds of proteins in the human proteome harbor intrinsic or phosphorylation-responsive B′-interaction motifs, and localize at distinct cellular organelles, such as midbody, predicting kinase-facilitated recruitment of PP2A-B′ holoenzymes for tight spatiotemporal control of phosphorylation at mitosis and cytokinesis. Moroever, Polo-like kinase 1-mediated phosphorylation of Cyk4/RACGAP1, a centralspindlin component at the midbody, facilitates binding of both RhoA guanine nucleotide exchange factor (epithelial cell transforming sequence 2 (Ect2)) and PP2A-B′ that in turn dephosphorylates Cyk4 and disrupts Ect2 binding. This feedback signaling loop precisely controls RhoA activation and specifies a restricted region for cleavage furrow ingression. Our results provide a framework for further investigation of diverse signaling circuits formed by PP2A-B′ holoenzymes in various cellular processes.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.,Biophysics Program, University of Wisconsin at Madison, Madison, WI, USA
| | - Hui Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Feng Guo
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vikash K Yadav
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Sean J Mcilwain
- Biostatistics and Medical Informatics, Wisconsin Institutes of Medical Research, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Michael Rowse
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Alka Choudhary
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Yitong Li
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Tingjia Gu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Qingge Xu
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Woojong Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Benjamin Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jenny Day
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Irene M Ong
- Biostatistics and Medical Informatics, Wisconsin Institutes of Medical Research, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Mark E Burkard
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.,Biophysics Program, University of Wisconsin at Madison, Madison, WI, USA
| |
Collapse
|
99
|
Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. J Neurosci 2017; 36:11394-11401. [PMID: 27911741 DOI: 10.1523/jneurosci.2359-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.
Collapse
|
100
|
Kaul Z, Chakrabarti O. Tumor susceptibility gene 101 regulates predisposition to apoptosis via ESCRT machinery accessory proteins. Mol Biol Cell 2017; 28:2106-2122. [PMID: 28539405 PMCID: PMC5509423 DOI: 10.1091/mbc.e16-12-0855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
ESCRT proteins are implicated in myriad cellular processes, including endosome formation, fusion of autophagosomes/amphisomes with lysosomes, and apoptosis. The role played by these proteins in either facilitating or protecting against apoptosis is unclear. In this study, while trying to understand how deficiency of Mahogunin RING finger 1 (MGRN1) affects cell viability, we uncovered a novel role for its interactor, the ESCRT-I protein TSG101: it directly participates in mitigating ER stress-mediated apoptosis. The association of TSG101 with ALIX prevents predisposition to apoptosis, whereas ALIX-ALG-2 interaction favors a death phenotype. Altered Ca2+ homeostasis in cells and a simultaneous increase in the protein levels of ALIX and ALG-2 are required to elicit apoptosis by activating ER stress-associated caspase 4/12. We further demonstrate that in the presence of membrane-associated, disease-causing prion protein CtmPrP, increased ALIX and ALG-2 levels are detected along with ER stress markers and associated caspases in transgenic brain lysates and cells. These effects were rescued by overexpression of TSG101. This is significant because MGRN1 deficiency is closely associated with neurodegeneration and prenatal and neonatal mortality, which could be due to excess cell death in selected brain regions or myocardial apoptosis during embryonic development.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| |
Collapse
|